
ACSL: ANSI/ISO C Specification Language
ACSL Version 1.17
Implementation in FRAMA-C 23.0

ACSL: ANSI/ISO C Specification
Language

Version 1.17 – as implemented in
Frama-C 23.0

Patrick Baudin1, Pascal Cuoq1, Jean-Christophe Filliâtre4,3, Claude Marché3,4,
Benjamin Monate1, Yannick Moy2,4,3, Virgile Prevosto1

1 CEA LIST, Software Reliability Laboratory, Saclay, F-91191
2 France Télécom, Lannion, F-22307
3 INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
4 LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

This work is licensed under a “CC BY 4.0” license.
Sources are available at https://github.com/acsl-language/acsl.
©2009-2020 CEA LIST and INRIA
This work has been supported by the ANR project CAT (ANR-05-RNTL-0030x), by the
ANR CIFRE contract 2005/973, by the ANR project U3CAT (08-SEGI-021-xx), and ANR
PICF project DEVICE-Soft (2009-CARN-006-01).

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/acsl-language/acsl

CONTENTS

Contents

1 Introduction 11
1.1 Organization of this document . 12
1.2 Generalities about Annotations . 12

1.2.1 Kinds of annotations . 12
1.2.2 Parsing annotations in practice . 13
1.2.3 About preprocessing . 13
1.2.4 About keywords . 13

1.3 Notations for grammars . 14

2 Specification language 15
2.1 Lexical rules . 15
2.2 Logic expressions . 16

2.2.1 Operators precedence . 21
2.2.2 Semantics . 22
2.2.3 Typing . 22
2.2.4 Integer arithmetic and machine integers 23
2.2.5 Real numbers and floating point numbers 25
2.2.6 C arrays and pointers . 27
2.2.7 Structures, Unions and Arrays in logic 28

2.3 Function contracts . 31
2.3.1 Built-in constructs \old and \result . 32
2.3.2 Simple function contracts . 32
2.3.3 Contracts with named behaviors . 34
2.3.4 Memory locations and sets of values 37
2.3.5 Default contracts, multiple contracts 40

2.4 Statement annotations . 40
2.4.1 Assertions . 41
2.4.2 Loop annotations . 41
2.4.3 Built-in construct \at . 46

5

CONTENTS

2.4.4 Statement contracts . 50
2.5 Termination . 51

2.5.1 Integer measures . 51
2.5.2 General measures . 51
2.5.3 Recursive function calls . 52
2.5.4 Non-terminating functions . 53

2.6 Logic specifications . 54
2.6.1 Predicate and function definitions . 54
2.6.2 Lemmas . 54
2.6.3 Inductive predicates . 56
2.6.4 Axiomatic definitions . 56
2.6.5 Polymorphic logic types . 58
2.6.6 Recursive logic definitions . 58
2.6.7 Higher-order logic constructions . 58
2.6.8 Concrete logic types . 60
2.6.9 Hybrid functions and predicates . 60
2.6.10 Memory footprint specification: reads clause 63
2.6.11 Specification Modules . 64

2.7 Pointers and physical addressing . 64
2.7.1 Memory blocks and pointer dereferencing 65
2.7.2 Separation . 66
2.7.3 Dynamic allocation and deallocation 67

2.8 Sets and lists . 71
2.8.1 Finite sets . 71
2.8.2 Finite lists . 72

2.9 Abrupt termination . 74
2.10 Dependencies information . 76
2.11 Data invariants . 77

2.11.1 Semantics . 78
2.11.2 Model variables and model fields . 80

2.12 Ghost variables and statements . 82
2.12.1 Volatile variables . 86

2.13 Initialization and undefined values . 87
2.14 Dangling pointers . 88
2.15 Well-typed pointers . 88
2.16 Logic attribute annotations . 89
2.17 Preprocessing for ACSL . 89

6

CONTENTS

3 Libraries 91
3.1 Libraries of logic specifications . 91

3.1.1 Real numbers . 91
3.1.2 Finite lists . 91
3.1.3 Sets and Maps . 91

3.2 Jessie library: logical addressing of memory blocks 92
3.2.1 Abstract level of pointer validity . 92
3.2.2 Strings . 92

3.3 Memory leaks . 93

4 Conclusion 95

A Appendices 97
A.1 Glossary . 97
A.2 Builtin functions . 98
A.3 Comparison with JML . 100

A.3.1 Low-level language vs. inheritance-based one 100
A.3.2 Deductive verification vs. RAC . 104
A.3.3 Syntactic differences . 104

A.4 C grammar elements . 106
A.4.1 Identifiers . 106
A.4.2 Literals . 106
A.4.3 C Type Expressions . 106

A.5 Typing rules . 108
A.5.1 Rules for terms . 108
A.5.2 Typing rules for sets . 109

A.6 Specification Templates . 110
A.6.1 Accessing a C variable that is masked 110

A.7 Illustrative example . 111
A.8 Changes . 118

A.8.1 Version 1.17 . 118
A.8.2 Version 1.16 . 118
A.8.3 Version 1.15 . 118
A.8.4 Version 1.14 . 118
A.8.5 Version 1.13 . 118
A.8.6 Version 1.12 . 118
A.8.7 Version 1.11 . 118
A.8.8 Version 1.10 . 119

7

CONTENTS

A.8.9 Version 1.9 . 119
A.8.10 Version 1.8 . 119
A.8.11 Version 1.7 . 119
A.8.12 Version 1.6 . 119
A.8.13 Version 1.5 . 120
A.8.14 Version 1.4 . 120
A.8.15 Version 1.3 . 120
A.8.16 Version 1.2 . 120

Bibliography 121

List of Figures 125

Index 127

8

CONTENTS

Foreword

This document describes version 1.17 of the ANSI/ISO C Specification Language (ACSL).
The language features may still evolve in the future. In particular, some features in this doc-
ument are considered experimental, meaning that their syntax and semantics is not yet fixed.
These features are marked with Experimental. They must also be considered advanced
features, which are not needed for basic use of this specification language.

Acknowledgements

We gratefully thank all the people who contributed to this document: Sylvie Boldo, David
Cok, Jean-Louis Colaço, Pierre Crégut, David Delmas, Catherine Dubois, Stéphane Duprat,
Arnaud Gotlieb, Philippe Herrmann, Thierry Hubert, André Maroneze, Dillon Pariente,
Pierre Rousseau, Julien Signoles, Jean Souyris, Asma Tafat.

9

Chapter 1

Introduction

This document is a reference manual for the ACSL implementation provided by the Frama-C
framework [13]. ACSL is an acronym for “ANSI/ISO C Specification Language”. This is a
Behavioral Interface Specification Language (BISL) [15] for specifying behavioral properties
of C source code.
Not all of the features mentioned in this document are currently implemented in the Frama-C
kernel. Unimplemented features are signaled as in the following line:

This feature is not currently supported by Frama-C1

As a summary, the features that are not currently implemented in Frama-C include in par-
ticular:

• some built-in predicates and logical functions;

• definition of logical types (section 2.6);

• specification modules (section 2.6.11);

• model variables (section 2.63);

• only basic support for ghost code is provided (section 2.12);

• verification of non interference of ghost code (p. 82);

• specification of volatile variables (section 2.12.1);

The main inspiration for this language comes from the specification language of the Ca-
duceus tool [11, 12] for deductive verification of behavioral properties of C programs.
The specification language of Caduceus is itself inspired by the Java Modeling Language
(JML [21]), which aims at similar goals for Java source code: indeed it aims both at runtime
assertion checking and static verification using the OpenJML tool [6, 7], where we aim at
static verification and deductive verification (see Appendix A.3 for a detailed comparison
between ACSL and JML).
Going back further in history, the JML design was guided by the general design-by-contract
principle proposed by Bertrand Meyer, originally implemented in the Eiffel language; he

1Additional remarks on the feature may appear in a footnote.

11

CHAPTER 1. INTRODUCTION

took his inspiration from the concepts of preconditions and postconditions on a routine, going
back at least to Dijkstra, Floyd and Hoare in the late 60’s and early 70’s.
In this document, we assume that the reader has a good knowledge of the ISO C programming
language [17, 16] .

1.1 Organization of this document

In this preliminary chapter we introduce some definitions and vocabulary, and discuss gener-
alities about this specification language. Chapter 2 presents the specification language itself.
Chapter 3 presents additional information about libraries of specifications. The appendices
provide specific formal type-checking rules for ACSL annotations, the relation between ACSL
and JML, and specification templates. A detailed table of contents is given on page 5. A
glossary is given in Appendix A.1.

1.2 Generalities about Annotations

In this document, we consider that specifications are given as annotations in comments writ-
ten directly in C source files, so that source files remain compilable. Those comments must
start with /*@ or //@ and end as usual in C.
In some contexts, it is not possible to modify the source code. It is strongly recommended
that a tool that implements ACSL specifications provide technical means to store annotations
separately from the source. It is not the purpose of this document to describe such means.
Nevertheless, some of the specifications, namely those at a global level, can be given in
separate files: logical specifications can be imported (see Section 2.6.11) and a function
contract can be attached to a copy of the function profile (see Section 2.3.5).

1.2.1 Kinds of annotations

• Global annotations:

– function contract : such an annotation is inserted just before the declaration or
the definition of a function. See section 2.3.

– global invariant : this is allowed at the level of global declarations. See section 2.11.
– type invariant : this allows declaring structure invariants, union invariants, and

invariants on type names introduced by typedef . See section 2.11.
– logic specifications : definitions of logic functions or predicates, lemmas, axiomati-

zations by declaration of new logic types, logic functions, predicates with axioms
they satisfy. Such an annotation is placed at the level of global declarations. See
section 2.6

• Statement annotations:

– assertion : these are allowed everywhere a C label is allowed, or just before a block
closing brace. See section 2.4.1.

– loop annotation (invariant, variant, assign clauses): is allowed immediately before
a loop statement: for , while , do . . . while . See Section 2.4.2.

12

1.2. GENERALITIES ABOUT ANNOTATIONS

– statement contract : very similar to a function contract, and placed before a state-
ment or a block. Semantic conditions must be checked (e.g., no goto going inside,
no goto going outside). See Section 2.4.4.

– ghost code : regular C code, only visible from the specifications and only allowed to
modify ghost variables. See section 2.12. This includes ghost braces for enclosing
blocks.

1.2.2 Parsing annotations in practice

In the original (University of Iowa) JML tools, parsing was done by simply ignoring //@, /*@
and */ at the lexical analysis level. This technique could modify the semantics of the code,
for example:

1 return x /*@ +1 */ ;

In our language (as in the definition of JML and current JML tools, such as OpenJML), this
is forbidden. Technically, the current implementation of Frama-C isolates the comments in a
first step of syntax analysis, and then parses a second time. Nevertheless, the grammar and
the corresponding parser must be carefully designed to avoid interaction of annotations with
the code. For example, in code such as

1 if (c) //@ assert P;
2 c=1;

the statement c=1 must be understood as the branch of the if. This is ensured by the ACSL
grammar, which states that assert annotations are not statements themselves, but attached
to the statement that follows, like C labels.

1.2.3 About preprocessing

This document considers C source after preprocessing, except that, whereas normal prepro-
cessing replaces all comments by white space, for the purpose of ACSL, comments specific to
ACSL (cf. 2.1) are retained.
Tools must decide how they handle preprocessing (what to do with annotations, whether
macro substitution should be performed, etc.)
Preprocessing includes interpreting C digraphs and trigraphs. As these are generally depre-
cated and en route to removal from the C standard, ACSL does not define uses of digraphs
and trigraphs. Any tool that wishes to support such alternate syntax can preprocess the
tokens into conventional tokens before passing the text to ACSL tools.

1.2.4 About keywords

Additional keywords of the specification language start with a backslash, if they are used in
the position of a term or a predicate (which are defined later in the document). Otherwise
they do not start with a backslash (like ensures) and they remain valid identifiers.

1.3 Notations for grammars

13

CHAPTER 1. INTRODUCTION

In this document, grammar rules are given in BNF form. In the grammar rules, we use the
extra notations e∗ to denote repetition of zero, one or more occurrences of e, e+ for repetition
of one or more occurrences of e, and e? for zero or one occurrence of e. For the sake of
simplicity, we only describe annotations in the usual /*@ ... */ style of comments. One-line
annotations in //@ comments are similar. Note however that two consecutive comments,
regardless of their style, are considered as two independent annotations. In particular, it is
not possible in general to split a multi-line annotation into several //@ comments.

14

Chapter 2

Specification language

2.1 Lexical rules

Specification language text is placed inside special C comments; its lexical structure mostly
follows that of ANSI/ISO C. A few differences should be noted.

• The at sign (@) is equivalent to a space character, except where it indicates the beginning
of an ACSL annotation.

• Identifiers may start with the backslash character (\).

• Some UTF8 characters may be used in place of some constructs, as shown in the
following table:

>= ≥ 0x2265
<= ≤ 0x2264
> > 0x003E
< < 0x003C
\in ∈ 0x2208
!= 6≡ 0x2262
== ≡ 0x2261
==> =⇒ 0x21D2
<==> ⇐⇒ 0x21D4
&& ∧ 0x2227
|| ∨ 0x2228
^^ (xor) ∨ 0x22BB
! ¬ 0x00AC
- (unary minus) − 0x2212
\forall ∀ 0x2200
\exists ∃ 0x2203
integer Z 0x2124
real R 0x211D
boolean B 0x1D539
\pi π 0x3C0

• Comments may be put inside ACSL annotations. They use the C++ format, i.e. begin
with // and extend to the end of current line. Comments beginning with /* may not

15

CHAPTER 2. SPECIFICATION LANGUAGE

be nested within ACSL comments. Nested annotations beginning with //@ are parsed
as if the //@ is replaced by white space. An ACSL annotation that contains only white
space (after pre-processing) is ignored.

• ACSL uses some grammar elements from C, such as literals, type expressions, state-
ments and declarations. Most of these are identified as such by C- prefixes in the figures
laying out the grammar. They are described in more detail for reference in Appendix
A.4.

2.2 Logic expressions

This first section presents the language of expressions one can use in annotations. These
are called logic expressions in the following. They correspond to pure C expressions, with
additional constructs that we will introduce progressively.
Figures 2.1 and 2.2 present the grammar for the basic constructs of logic expressions. In
that grammar, we distinguish between predicates and terms, following the usual distinction
between propositions and terms in classical first-order logic. For reference, Fig. 2.3 gives
the C grammar for a C type expressions.
The grammar for binders and type expressions is given separately in Figure 2.4. Although
a type-name in the C grammar is actually an abstract type expression, possibly including
qualifiers and pointer and array decorators, here we need to distinguish between raw type
names (C-type-name) and type expressions (C-type-expr); Fig. 2.3 is adapted from the C
grammar to show this distinction. A type-expr as used in Fig. 2.4 and other grammar
productions can be either a logic type name or a C-type expression. Note that declarations
can differ slightly between C and ACSL logic. For example, C might declare arr as int arr[],
whereas in many places (e.g. Fig. 2.14), ACSL would write int[] arr.
To understand the grammar, keep in mind the following distinctions:

• An id is a basic alphanumeric identifier, used to denote all manner of language con-
structs (cf. §A.4).

• A poly-id is an id to be used in a declaration or definition of that identifier, possibly
with formal type or label arguments.

• An ident is a reference to a previously declared programming or specification language
item; syntactically it is an id possibly decorated with type arguments and memory
state labels.

With respect to C pure expressions, the additional constructs are as follows:

Additional connectives C operators && (UTF8: ∧), || (UTF8: ∨) and ! (UTF8: ¬) are
used as logical connectives. There are additional connectives ==> (UTF8: =⇒) for
implication, <==> (UTF8: ⇐⇒) for equivalence and ^^ (UTF8: ∨) for exclusive or.
These logical connectives all have a bitwise counterpart, either C ones like &, |, ~ and
^, or additional ones like bitwise implication --> and bitwise equivalence <-->.

Quantification Universal quantification is denoted by \forall τ x1,. . .,xn; e and existen-
tial quantification by \exists τ x1,. . .,xn; e.

16

2.2. LOGIC EXPRESSIONS

literal ::= \true | \false boolean constants
| integer (lexical) integer constants
| real (lexical) real constants
| string (lexical) string constants
| character (lexical) character constants

bin-op ::= + | - | * | / | %
| == | != | <= | >= | > | <
| && | || | ^^ boolean operations
| << | >>
| & | | | --> | <--> | ^ bitwise operations

unary-op ::= + | - unary plus and minus
| ! boolean negation
| ~ bitwise complementation
| * pointer dereferencing
| & address-of operator

term ::= literal literal constants
| ident variables, function names
| unary-op term
| term bin-op term
| term [term] array access
| { term

\with [term] = term } array functional modifier
| term . id structure field access
| { term \with . id = term } field functional modifier
| term -> id
| (type-expr) term cast
| ident (term (, term)∗) function application
| (term) parentheses
| term ? term : term ternary condition
| \let id = term ; term local binding
| sizeof (term)
| sizeof (C-type-expr)
| id : term syntactic naming
| string : term syntactic naming

poly-id ::= id

ident ::= id

Figure 2.1: Grammar of terms. The terminals id, C-type-name, and various literals are the
same as the corresponding C lexical tokens (cf. §A.4).

17

CHAPTER 2. SPECIFICATION LANGUAGE

rel-op ::= == | != | <= | >= | > | <

pred ::= \true | \false
| term (rel-op term)+ comparisons (see remark)
| ident (term (, term)∗) predicate application
| (pred) parentheses
| pred && pred conjunction
| pred || pred disjunction
| pred ==> pred implication
| pred <==> pred equivalence
| ! pred negation
| pred ^^ pred exclusive or
| term ? pred : pred ternary condition
| pred ? pred : pred
| \let id = term ; pred local binding
| \let id = pred ; pred
| \forall binders ; pred universal quantification
| \exists binders ; pred existential quantification
| id : pred syntactic naming
| string : pred syntactic naming

Figure 2.2: Grammar of predicates

Local binding \let x = e1;e2 introduces the name x for expression e1; x can then be used
in expression e2.

Conditional c ? e1 : e2. There is a subtlety here: the condition may be either a boolean
term or a predicate. In case of a predicate, the two branches must be also predicates,
so that this construct acts as a connective with the following semantics: c ? e1 : e2 is
equivalent to (c ==> e1) && (! c ==> e2).

Syntactic naming id : e is a term or a predicate equivalent to e. It is different from local
naming with \let : the name cannot be reused in other terms or predicates. It is only
for readability purposes.

Functional modifier The composite element modifier is an additional operator related to
C structure field and array accessors. The expression { s \with .id = v } denotes a
structure value that is the same as the value of s, except for the field id, which is equal
to v. The equivalent expression for an array is { t \with [i] = v }, which returns
an array with the same value as t, except for the ith element whose value is v. See
section 2.10 for an example use of these operators.

Logic functions Applications in terms and in propositions are not applications of C func-
tions, but of logic functions or predicates; see Section 2.6 for detail.

Consecutive comparison operators The construct t1 relop1 t2 relop2 t3 · · · tk
with several consecutive comparison operators is a shortcut for
(t1 relop1 t2) && (t2 relop2 t3) && · · ·. It is required that the relopi operators
must be in the same “direction”, i.e. they must all belong either to {<, <=, ==} or to
{>,>=,==}. Expressions such as x < y > z or x != y != z are not allowed. Furthermore

18

2.2. LOGIC EXPRESSIONS

C-type-expr ::= C-specifier-qualifier+ C-abstract-declarator?

C-type-name ::= C-declaration-specifier+

C-specifier-qualifier ::= C-type-specifier | C-type-qualifier

C-type-qualifier ::= const | volatile

C-type-specifier ::= void
| char
| short
| int
| long
| float
| double
| signed
| unsigned
| (struct | union | enum) ident a

| ident

C-abstract-declarator ::= C-pointer
| C-pointer C-direct-abstract-declarator
| C-direct-abstract-declarator

C-pointer ::= (* C-type-qualifier∗)+

C-direct-abstract-declarator ::= (C-abstract-declarator)
| C-direct-abstract-declarator?

[C-constant-expression]
| C-direct-abstract-declarator?

(C-parameter-type-list?)

C-parameter-type-list ::= C-parameter-declaration
(, C-parameter-declaration)+

C-parameter-declaration ::= C-declaration-specifier+ C-declarator
| C-declaration-specifier+

C-abstract-declarator
| C-declaration-specifier+

C-declaration-specifier ::= C-type-specifier | C-type-qualifier

C-declarator ::= C-pointer? C-direct-declarator

C-direct-declarator ::= ident
| (C-declarator)
| C-direct-declarator

[C-constant-expression?]
| C-direct-declarator

(C-parameter-type-list)
| C-direct-declarator (ident∗)

C-constant-expression ::= ... b

aACSL does not permit declaring a new type within the type-specifier
bAn expression formed from constant literals

Figure 2.3: The grammar of C type expressions, from the C standard

19

CHAPTER 2. SPECIFICATION LANGUAGE

binders ::= binder (, binder)∗

binder ::= type-name variable-ident
(,variable-ident)∗

type-name ::= logic-type-name | C-type-name

type-expr ::= logic-type-name | C-type-expr

logic-type-name ::= built-in-logic-type
| id type identifier

built-in-logic-type ::= boolean | integer | real

variable-ident ::= id
| * variable-ident
| variable-ident []
| (variable-ident)

Figure 2.4: Grammar of binders and type expressions

the types of each of the terms being compared must be non-boolean. Note that
consecutive comparison operators are allowed only in predicate position.

A consecutive comparison as the conditional expression in a ternary operation could, accord-
ing to the grammar, be either in term or predicate position. In such a case, the conditional
expression is considered a predicate. As a term a consecutive comparison that includes less-
than or greater-than operations x < y < z would be parsed as (x < y) < z which is incorrectly
typed, because in logic expressions, comparisons result in boolean values. However, when
equalities are involved there could be some ambiguity. Consider a < b == c. As a standard
expression, this would be parsed as (a < b) == c, which would require that c be a boolean
value. As a consecutive comparison, this would be interpreted as (a < b) && (b == c); this
form is only type-valid if b and c have the types that can be compared. However, as in-
teger values are implicitly converted to boolean values this parsing is also valid if a and b
are integral and c is boolean. To avoid this ambiguity and to avoid a situation where the
grammar depends on the types of terms, ACSL adopts the rule that expressions of the form
a < b == c with logic expressions are always interpreted as consecutive comparisons, even
if they then fail a type-checking test. The conventional parsing can always be obtained by
using appropriate parentheses.

To enforce the same interpretation as in C expressions, one may need to add extra paren-
theses: a == b < c is equivalent to a == b && b < c, whereas a == (b < c) is equivalent to
\let x = b < c; a == x. This situation raises some issues, as in the example below.

Comparison operators themselves are predicates when used in predicate position, and boolean
functions when used in term position, resulting in further subtleties.

Example 2.1 Let us consider the following example:

int f(int a, int b) { return a < b; }

• the obvious postcondition \result == a < b is not the right one because it is actually a
shortcut for \result == a && a < b.

20

2.2. LOGIC EXPRESSIONS

• adding parentheses results in a correct post-condition \result == (a < b). Note however
that there is an implicit conversion (see Sec. 2.2.3) from the int (the type of \result)
to boolean (the type of (a<b))

• an equivalent post-condition, which does not rely on implicit conversion, is
(\result != 0) == (a<b). Both pairs of parentheses are mandatory.

• \result == (integer)(a<b) is also acceptable because it compares two integers. The cast
towards integer enforces a<b to be understood as a boolean term. Notice that a cast
towards int would also be acceptable.

• \result != 0 <==> a < b is acceptable because it is an equivalence between two predi-
cates.

2.2.1 Operators precedence

The precedence of C operators is conservatively extended with additional operators, as shown
in Figure 2.5. In this table, operators are sorted from highest to lowest priority. Operators
of same priority are presented on the same line.

class associativity operators
selection left [· · ·] -> .
unary right ! ~ + - * & (cast) sizeof
multiplicative left * / %
additive left + -
shift left << >>
comparison - < <= > >=
comparison - == !=
bitwise and left &
list repetition left *^
bitwise xor/list concatenation left ^
bitwise or left |
bitwise implies right -->
bitwise equiv left <-->
connective and left &&
connective xor left ^^
connective or left ||
connective implies right ==>
connective equiv left <==>
ternary connective right · · ·?· · ·:· · ·
binding left \forall \exists \let
naming right :

Figure 2.5: Operator precedence

2.2.1.0.1 Conditional expressions and labels There is a remaining ambiguity be-
tween the connective · · ·?· · ·:· · · and the labelling operator :. Consider for instance the ex-
pression x?y:z:t. The precedence table does not indicate whether this should be understood
as x?(y:z):t or x?y:(z:t). Such a case must be considered as a syntax error, and should be
fixed by explicitly adding parentheses.

21

CHAPTER 2. SPECIFICATION LANGUAGE

2.2.1.0.2 Labels and parsing Note also that the use of labels can subtly change
the parsing of an expression, because labeled expressions have the least binding prece-
dence. That is, once a label is seen, the parser finds the longest valid term or
predicate following the label to consider as the labeled expression. For example,
a && b ==> c && d parses as (a && b) ==> (c && d), but a && nm: b ==> c && d parses as
a && (nm: (b ==> (c && d))). Use parentheses liberally to avoid confusing yourself or code
readers.

2.2.2 Semantics

The semantics of logic expressions in ACSL is based on mathematical first-order logic [27]. In
particular, it is a 2-valued logic with only total functions. Consequently, expressions are never
“undefined”. This is an important design choice and the specification writer should be aware of
that. (For a discussion about the issues raised by such design choices, in similar specification
languages such as JML, see the comprehensive list compiled by Patrice Chalin [4, 5].)
Having only total functions implies than one can write terms such as 1/0, or *p when p is null
(or more generally when it points to a non-properly allocated memory cell). In particular,

the predicates 1/0 == 1/0
*p == *p

are valid, since they are instances of the axiom ∀x, x = x

of first-order logic. The reader should not be alarmed, because there is no way to deduce
anything useful from such terms. As usual, it is up to the specification designer to write
consistent assertions. For example, when introducing the following lemma (see Section 2.6):

1 /*@ lemma div_mul_identity:
2 @ \forall real x, real y; y != 0.0 ==> y*(x/y) == x;
3 @*/

a premise is added to require y to be non zero.

2.2.3 Typing

The language of logic expressions is typed (as in multi-sorted first-order logic). Types are
either C types or logic types defined as follows:

• “mathematical” types: integer for unbounded, mathematical integers, real for real
numbers, boolean for booleans (with values written \true and \false);

• logic types introduced by the specification writer (see Section 2.6).

There are implicit coercions for numeric types:

• C integral types char, short , int and long, signed or unsigned, are all subtypes of type
integer ;

• integer is itself a subtype of type real ;

• C types float and double are subtypes of type real .

Notes:

• There is a distinction between booleans and predicates. The expression x<y in term
position is a boolean, and the same expression is also allowed in predicate position.

22

2.2. LOGIC EXPRESSIONS

• Unlike in C, in ACSL there is a distinction between booleans and integers. There is
an implicit promotion from integers to booleans, thus one may write x && y instead of
x != 0 && y != 0. If the reverse conversion is needed, an explicit cast is required, e.g.
(int)(x>0)+1, where \false becomes 0 and \true becomes 1.

• Quantification can be made over any type: logic types and C types. Quantification
over pointers must be used carefully, since it depends on the memory state where
dereferencing is done (see Section 2.2.4.3 and Section 2.6.9).

Formal typing rules for terms are given in appendix A.5.

2.2.4 Integer arithmetic and machine integers

The following integer arithmetic operations apply to mathematical integers: addition, sub-
traction, multiplication, unary minus. The value of a C variable of an integral type is pro-
moted to a mathematical integer. As a consequence, there is no “arithmetic overflow” in logic
expressions.
Division and modulo are also mathematical operations, which coincide with the corresponding
C operations on C machine integers, thus following the ISO C99 conventions. In particular,
these are not the usual mathematical Euclidean division and remainder. C division rounds
the result towards zero. The results are not specified if the divisor is zero; otherwise if q and
r are the quotient and the remainder of n divided by d then:

• |d× q| ≤ |n|, and |q| is maximal for this property;

• q is zero if |n| < |d|;

• q is positive if |n| ≥ |d| and n and d have the same sign;

• q is negative if |n| ≥ |d| and n and d have opposite signs;

• q × d+ r = n;

• |r| < |d|;

• r is zero or has the same sign as n.

Example 2.2 The following examples illustrate the results of division and modulo depending
on the sign of their arguments:

• 5/3 is 1 and 5%3 is 2;

• (-5)/3 is -1 and (-5)%3 is -2;

• 5/(-3) is -1 and 5%(-3) is 2;

• (-5)/(-3) is 1 and (-5)%(-3) is -2.

2.2.4.1 Hexadecimal, octal, and binary constants
Hexadecimal, octal and binary constants are always non-negative. Suffixes u and l for C
constants are allowed but meaningless.

23

CHAPTER 2. SPECIFICATION LANGUAGE

2.2.4.2 Casts and overflows
In logic expressions, casting from mathematical integers to an integral C type t (such as char,
short , int , etc.) is allowed and is interpreted as follows: the result is the unique value of the
corresponding type that is congruent to the mathematical result modulo the cardinal of this
type, that is 28× sizeof (t).

Example 2.3 (unsigned char)1000 is 1000 mod 256, i.e., 232; however, (signed char)1000 is
((1000 + 128) mod 256)− 128, i.e., −24.

To express in the logic the value of a C expression, one has to add all the necessary
casts. For example, the logic expression denoting the value of the C expression x*y+z is
(int)((int)(x*y)+z). Note that there is no implicit cast from integers to C integral types.

Example 2.4 The declaration
//@ logic int f(int x) = x+1 ;

is not allowed because x+1, which is a mathematical integer, must be cast to int . One should
write either

//@ logic integer f(int x) = x+1 ;

or
//@ logic int f(int x) = (int)(x+1) ;

2.2.4.3 Quantification on C integral types
Quantification over a C integral type corresponds to integer quantification over the corre-
sponding interval.

Example 2.5 Thus the formula
\forall char c; c <= 1000

is equivalent to
\forall integer c; CHAR_MIN <= c <= CHAR_MAX ==> c <= 1000

where the bounds CHAR_MIN and CHAR_MAX are defined in limits.h

2.2.4.4 Size of C integer types
The size of C types is architecture-dependent. ACSL does not enforce these sizes either,
hence the semantics of terms involving such types is also architecture-dependent. The sizeof
operator may be used in annotations and is consistent with its C counterpart (including that
its return type is a value of type size_t, and in most cases a constant). For instance, it
should be possible to verify the following code:

1 /*@ ensures \result <= sizeof (int); */
2 int f() { return sizeof (char); }

Constants giving maximum and minimum values of those types may be provided in a library.

24

2.2. LOGIC EXPRESSIONS

2.2.4.5 Enum types
Enum types are also interpreted as mathematical integers. Casting an integer into an enum
in the logic gives the same result as if the cast was performed in the C code.

2.2.4.6 Bitwise operations
Like arithmetic operations, bitwise operations apply to any mathematical integer: any math-
ematical integer has a unique infinite 2-complement binary representation with infinitely
many zeros (for non-negative numbers) or ones (for negative numbers) on the left. Bitwise
operations apply to this representation.

Example 2.6

• 7 & 12 == · · ·00111 & · · ·001100 == · · ·00100 == 4

• -8 | 5 == · · ·11000 | · · ·00101 == · · ·11101 == -3

• ~5 == ~· · · 00101 == · · ·111010 == -6

• -5 << 2 == · · ·11011 << 2 == · · ·11101100 == -20

• 5 >> 2 == · · ·00101 >> 2 == · · ·0001 == 1

• -5 >> 2 == · · ·11011 >> 2 == · · ·1110 == -2

2.2.5 Real numbers and floating point numbers

Floating-point constants and operations are interpreted as mathematical real numbers: a C
variable of type float or double is implicitly promoted to a real. Integers are promoted to
reals if necessary. The usual binary operations are interpreted as operators on real numbers,
hence they never involve any rounding or overflow.

Example 2.7 In an annotation, 1e+300 * 1e+300 is equal to 1e+600, even if that last number
exceeds the largest representable number in double precision: there is no "overflow".
2 ∗ 0.1 is equal to the real number 0.2, and not to any floating-point approximation: there is
no "rounding".

Unlike the promotion of C integer types to mathematical integers, there are special float
values that do not naturally map to a real number, namely the IEEE-754 special values for
“not-a-number”, +∞ and −∞. See below for a detailed discussion on such special values.
However, remember that ACSL’s logic has only total functions. Thus, there are implicit
promotion functions real_of_float and real_of_double whose results on the 3 values above
is left unspecified.
In logic, real literals can also be expressed under the hexadecimal form of C99: 0xhh.hhp±dd
where h are hexadecimal digits and dd is in decimal, denotes number hh.hh × 2dd, e.g.
0x1.Fp-4 is (1 + 15/16)× 2−4.
The usual operators for comparison are also interpreted as real operators. In partic-
ular, the equality operation ≡ for float (or double) expressions means equality of the
real numbers they represent. Or equivalently, x ≡ y for two float variables x, y means
real_of_float(x) ≡ real_of_float(y) with the mathematical equality of real numbers.

25

CHAPTER 2. SPECIFICATION LANGUAGE

Special predicates are also available to express the comparison operators of float (resp. dou-
ble) numbers as in C: \eq_float , \gt_float , \ge_float , \le_float , \lt_float , \ne_float (resp. for
double).

2.2.5.1 Casts, infinity and NaNs
Casting from a C integer type or a float type to a float or a double is as in C: the same
conversion operations apply.

Conversion of real numbers to float or double values depends on various possible rounding
modes defined by the IEEE 754 standard [26, 28]. These modes are defined by a logic type
(see section 2.6.8):

/*@ type rounding_mode = \Up | \Down | \ToZero | \NearestAway | \NearestEven;
*/

Then rounding a real number can be done explicitly using functions
logic float \round_float(rounding_mode m, real x);
logic double \round_double(rounding_mode m, real x);

Cast operators (float) and (double) applied to a mathematical integer or real number x are
equivalent to applying the rounding functions above with the nearest-even rounding mode
(which is the default rounding mode in C programs). If the source real number is too large,
this may also result in one of the special values +infinity and -infinity.

Example 2.8 We have (float)0.1 ≡ 13421773 × 2−27 which is equal to
0.100000001490116119384765625

Notice also that unlike for integers, suffixes f and l are meaningful, because they implicitly
add a cast operator as above.

This semantics of casts ensures that the float result r of a C operation e1 op e2 on floats, if
there is no overflow and if the default rounding mode is not changed in the program, has the
same real value as the logic expression (float)(e1 op e2). Notice that this is not true for the
equality \eq_float of floats: -0.0 + -0.0 in C is equal to the float number -0.0, which is not
\eq_float to 0.0, which is the value of the logic expression (float)(-0.0 + -0.0).

Finally, additional predicates are provided that check that their argument is a finite number,
an infinite one, or a NaN:

1 predicate \is_finite (double x); // is a finite double
2 predicate \is_plus_infinity (double x); // is equal to +infinity
3 predicate \is_minus_infinity (double x); // is equal to -infinity
4 predicate \is_infinite (double x); // is equal to +infinity or -infinity
5 predicate \is_NaN(double x); // is a NaN double

\is_finite , \is_plus_infinity , \is_minus_infinity and \is_NaN are mutually exclusive predi-
cates. All these predicates also exist for the float type.

Recall that under IEEE754 rules, any comparison between two NaN values returns a false
value. Consequently if a double variable d is a NaN value, then the C expression d == d and
the logic expression \eq_double(d,d) will both be false, the logic expression \real_of_double(d)
will be undefined, but the logic expression \real_of_double(d) == \real_of_double(d) is true,
as a specific instance of the axiom x ≡ x.

26

2.2. LOGIC EXPRESSIONS

2.2.5.2 Sign
The sign of a non-NaN floating-point can be extracted by the function \sign :

1 /*@
2 type sign = \Positive | \Negative;
3

4 logic sign \sign(float x);
5 logic sign \sign(double x);
6 */

2.2.5.3 Quantification
Quantification over a variable of type real is of course the usual quantification over real
numbers.
Quantification over float (resp. double) types is allowed as well, and is supposed to range
over all finite real numbers representable as floats (resp. doubles). In particular, this does
not include NaN, +infinity and -infinity in the considered range.

2.2.5.4 Mathematical functions
Classical mathematical operations like exponential, sine, cosine, and such are built-in to
ACSL. These are listed in Appendix §A.2. The symbol \pi refers to the real number π and
\e to the base of the natural logarithm: \log(\e)==1 and \exp(1)==\e.

2.2.5.5 Exact computations
In order to specify properties of rounding errors, it is useful to express something about the
so-called exact computations [3]: the computations that would be performed in an ideal mode
where variables denote true real numbers.
To express such exact computations, two special constructs exist in annotations:

• \exact(x) denotes the value of the C variable x (or more generally any C left-value) as
if the program were executed with ideal real numbers.

• \round_error(x) is a shortcut for |x− \exact(x)|

Example 2.9 Here is an example of a naive approximation of cosine [2].
/*@ requires \abs(\exact(x)) <= 0x1p-5;

@ requires \round_error(x) <= 0x1p-20;
@ ensures \abs(\exact(\result) - \cos(\exact(x))) <= 0x1p-24;
@ ensures \round_error(\result) <= \round_error(x) + 0x3p-24;
@*/

float cosine(float x) {
return 1.0f - x * x * 0.5f;

}

2.2.6 C arrays and pointers

2.2.6.1 Address operator, array access, pointer arithmetic and dereferencing
These operators are similar to their corresponding C operators.

27

CHAPTER 2. SPECIFICATION LANGUAGE

address-of operator should be used with caution. Values in logic do not lie in C memory so
it does not mean anything to talk about their “address”.
Unlike in C, there is no implicit cast from an array type to a pointer type. Nevertheless,
arithmetic and dereferencing over arrays lying in C memory are allowed like in C.

Example 2.10 Dereferencing a C array is equivalent to an access to the first element of the
array ; shifting it from i denotes the address of its ith element.

int tab[10] = { 1 } ;
int x ;
int *p = &x;

//@ requires p == &x
int main(void){

//@ assert tab[0]==1 && *p == x;
//@ assert *tab == 1;
int *q = &tab[3];
//@ assert q+1 == tab+4;
...

}

Since pointers can only refer to values lying in C memory, p->s is always equivalent to (*p).s.
On the contrary, t[i] is not always equivalent to *(t+i), especially for arrays not lying in
C memory. Section 2.2.7 details the use of arrays as logic values. There are also differences
between t and the pointer to its first element when evaluating an expression at a given
program point. See Section 2.4.3 for more information.

2.2.6.2 Function pointers
Pointers to C functions are allowed in logic. The only possible use of them is to check for
equality.

Example 2.11
int f(int x);
int g(int x);

//@ requires p == &f || p == &g;
void h(int(*p)(int)) {
...
}

2.2.7 Structures, Unions and Arrays in logic

Aggregate C objects (i.e. structures, unions and arrays) are also possible values for terms
in logic. They can be passed as parameters to and returned from logic functions, tested for
equality, etc. like any other values.
Aggregate types can be declared in logic, and their contents may be any logic types themselves
. Constructing such values in logic can be performed using a syntax similar to C designated
initializers.

28

2.2. LOGIC EXPRESSIONS

Example 2.12 Array types in logic may be declared either with or without an explicit non-
negative length. The term \length denotes the length of a logic array.

//@ type point = struct { real x; real y; };
//@ type triangle = point[3];

//@ logic point origin = { .x = 0.0 , .y = 0.0 };
/*@ logic triangle t_iso = { [0] = origin,

@ [1] = { .y = 2.0 , .x = 0.0 }
@ [2] = { .x = 2.0 , .y = 0.0 }};
@*/

/*@ logic point centroid(triangle t) = {
@ .x = mean3(t[0].x,t[1].x,t[2].x);
@ .y = mean3(t[0].y,t[1].y,t[2].y);
@ };
@*/

//@ type polygon = point[];
/*@ logic perimeter(polygon p) =

@ \sum(0,\length(p)-1,\lambda integer i;d(p[i],p[(i+1) % \length(p)])) ;
@*/

Beware that because of the principle of only total functions in logic, t[i] can appear in ACSL
annotations even if i is outside the array bounds.

2.2.7.1 Functional updates
Syntax for functional update is similar to initialization of aggregate objects.

Example 2.13 Functional update of an array is done by
{ t_iso \with [0] = { .x = 3.0, .y = 3.0 } }

Functional update of a structure is done by
{ origin \with .x = 3.0 }

There is no particular syntax for functional update of a union. For an object of a union
type, the following equality is not true

{ { object \with .x = 3.0 }
\with .y = 2.0 } == { { object \with .y = 2.0 }

\with .x = 3.0 }

The equality predicate == applies to aggregate values, but it is required that they have the
same type. Then equality amounts to recursively checking equality of fields. Equality of
arrays of different lengths returns false. Beware that equality of unions is also equality of all
fields.

2.2.7.2 C aggregate types
C aggregate types (struct, union or array) naturally map to logic types, by recursively map-
ping their fields.

Example 2.14 There is no implicit cast to type of the updated/initialized fields.

29

CHAPTER 2. SPECIFICATION LANGUAGE

struct S { int x; float y; int t[10]; };

//@ logic integer f(struct S s) = s.t[3];
//@ logic struct S g(integer n, struct S s) = { s \with .x = (int)n };

Unlike in C, all fields should be initialized:
/*@ logic struct S h(integer n, int a[10]) = {

@ .x = (int)n, .y = (float)0.0, .t = a
@ };
@*/

2.2.7.3 Cast and conversion
Unlike in C, there is no implicit conversion from an array type to a pointer type. On the
other hand, there is an implicit conversion from an array of a given size to an array with
unspecified size (but not the converse).

Example 2.15
//@ logic point square[4] = { origin, ... };

//@ ... perimeter(square); // well-typed
//@ ... centroid(square); // wrongly typed
//@ ... centroid((triangle)square); // well-typed (truncation)

An explicit cast from an array type to a pointer type is allowed only for arrays that lie in C
memory. As in C, the result of the cast is the address of the first element of the array (see
Section 2.2.6.1).
Conversely, an explicit cast from a pointer type to an array type acts as collecting the values
it points to.
Subtyping and cast recursively apply to fields.

Example 2.16
struct { float u,v; } p[10];

//@ assert centroid((point[3])p) == ...

//@ assert perimeter((point[])p) == ...

Precisely, conversion of a pointer p of type τ∗ to a logic array of type τ [] returns a logic array
t such that

length(t) = (\block_length(p)− \offset (p))/ sizeof (τ)

More generally, an explicit cast from a C aggregate of type τ to another C aggregate type is
allowed in order to specify such a value conversion into logical functions or function contracts
without using the addressing operator &.

Example 2.17 Unlike in C, conversion of an aggregate of C type struct τ to another struc-
ture type is allowed.

30

2.3. FUNCTION CONTRACTS

struct long_st { int x1,y2;};
struct st { char x,y; };

//@ ensures \result == (struct st) s;
struct st from_long_st(struct long_st s) {

return *(struct st *)&s;
}

2.3 Function contracts

function-contract a ::= requires-clause∗ terminates-clause?

decreases-clause? simple-clause∗
named-behavior∗ completeness-clause∗

clause-kind ::= check | admit

requires-clause ::= clause-kind? requires pred ;

terminates-clause ::= terminates pred ;

decreases-clause ::= decreases term (for ident)? ;

simple-clause ::= assigns-clause | ensures-clause
| allocation-clause | abrupt-clause

assigns-clause ::= assigns locations ;

locations ::= locations-list | \nothing

locations-list ::= location (, location) ∗

location ::= tset b

ensures-clause ::= clause-kind? ensures pred ;

named-behavior ::= behavior id : behavior-body

behavior-body ::= assumes-clause∗ requires-clause∗ simple-clause∗

assumes-clause ::= assumes pred ;

completeness-clause ::= complete behaviors (id (, id)∗)? ;
| disjoint behaviors (id (, id)∗)? ;

aempty contracts are forbidden
bA ’location’ may hold a set of many memory locations

Figure 2.6: Grammar of function contracts

term ::= \old (term) old value
| \result result of a function

pred ::= \old (pred)

Figure 2.7: \old and \result in terms

Figure 2.6 shows a grammar for function contracts. Location denotes a memory location and
is defined in Section 2.3.4. Allocation-clauses allow specifying which memory locations are

31

CHAPTER 2. SPECIFICATION LANGUAGE

dynamically allocated or deallocated by the function from the heap; they are defined later in
Section 2.7.3.

This section is organized as follows. First, the grammar for terms is extended with two new
constructs. Then Section 2.3.2 introduces simple contracts. Finally, Section 2.3.3 defines
more general contracts involving named behaviors.

The decreases and terminates clauses are presented later in Section 2.5. Abrupt-clauses allow
specifying what happens when the function does not return normally but exits abruptly; they
are defined in Section 2.9.

The grammar in Fig. 2.6 requires clauses to be written in a particular order. This order is
helpful for readability, though tools may be lenient towards out-of-order clauses.

2.3.1 Built-in constructs \old and \result

Post-conditions usually require referring to both the function result and values in the pre-
state. Thus terms are extended with the following new constructs (shown in Figure 2.7).

• \old(e) denotes the value of predicate or term e in the pre-state of the function.

• \result denotes the returned value of the function.

\old(e) can be used only in ensures , assigns , allocates and frees clauses, since the other
clauses already refer to only one state, the pre-state. In addition, \result may not be used in
the contract of a function that returns void.

C function parameters are obtained by value from actual parameters that mostly remain
unaltered by the function calls. For that reason, formal parameters in function contracts
are defined such that they always refer implicitly to their values interpreted in the pre-state.
Thus, the \old construct is not needed (but permitted) for formal parameters (in function
contracts only).

2.3.2 Simple function contracts

2.3.2.1 Semantics
A simple function contract, having only simple clauses and no named behaviors, takes the
following form:

1 /*@ requires P1; requires P2; ...
2 @ assigns L1; assigns L2; ...
3 @ ensures E1; ensures E2; ...
4 @*/

The semantics of such a contract is as follows:

• The caller of the function must guarantee that it is called in a state where the property
P1 && P2 && ... holds.

• The called function returns1 a state where the property E1 && E2 && ... holds.
1An ensures clause does not imply that the function will necessarily return.

32

2.3. FUNCTION CONTRACTS

• All memory locations that are allocated in both the pre-state and the post-state2 and
do not belong to the set L1 ∪ L2 ∪ . . . are left unchanged in the post-state. The set
L1 ∪ L2 ∪ . . . itself is interpreted in the pre-state, although it is permitted to refer to
the post state through \at expressions.

Having multiple requires , assigns , or ensures clauses only improves readability since the con-
tract above is equivalent to the following simplified one:

1 /*@ requires P1 && P2 && ...;
2 @ assigns L1, L2,...;
3 @ ensures E1 && E2 && ...;
4 @*/

If no requires clause is given, it defaults to \true , and similarly for an omitted ensures clause.
Giving no assigns clause means that locations assigned by the function are not specified, so
the caller has no information at all on this function’s side effects. See Section 2.3.5 for more
details on default status of clauses.

2.3.2.2 Semantics of frame conditions
It is worth pointing out that there are different treatments of frame conditions (assigns
statements) in various specification languages. The frame condition can follow either writes
semantics or modifies semantics.

• Under writes (or assigns) semantics, only those memory locations listed in a frame
condition may be written to, that is, only those locations may be the target of an
assignment statement or listed in the frame condition of a called function. This is true
whether or not the value of the memory location changes.

• Under modifies semantics, a memory location may be written to, as long as the value
is restored (that is, not modified) by the end of the scope of the function contract.
Under this semantics, a frame condition is a requirement on the relationship between
two states — any memory location not a member of the frame condition must have the
same value in its pre-state and its post-state.

Confusion can arise because the words assigns and modifies are sometimes used interchange-
ably. In particular,ACSL usesmodifies semantics, even though the frame condition
is introduced by the assigns keyword.3

2.3.2.3 check and admit clauses
As presented above, in their basic acceptions, requires and ensures clauses both must be
checked when control reaches the corresponding point, and can be assumed to hold to continue
the analysis. However if only one of these actions is needed, a clause-kind modifier can be
used. check will indicate that the corresponding clause must be verified, but with a non-
blocking semantics. In other words, even if the clause is found invalid, the execution should
continue unhindered. Conversely, admit indicates that the corresponding clause can be readily
assumed to hold, without trying to verify it.

2Functions that allocate or free memory can be specified with additional clauses described in section 2.7.3.
3For comparison, JML and the OpenJML tool define frame conditions to have write semantics but use the

keywords assigns and modifies interchangeably; however, the KeY tool for JML implements modifies semantics.
Ada/SPARK’s data flow contracts effectively encode write semantics.

33

CHAPTER 2. SPECIFICATION LANGUAGE

Example 2.18 The following function is given a simple contract for computing the integer
square root.

1 /*@ requires x >= 0;
2 @ ensures \result >= 0;
3 @ ensures \result * \result <= x;
4 @ ensures x < (\result + 1) * (\result + 1);
5 @*/
6 int isqrt(int x);

The contract means that the function must be called with a nonnegative argument, and returns
a value satisfying the conjunction of the three ensures clauses. Inside these ensures clauses,
the use of the construct \old(x) is not necessary, even if the function modifies the formal
parameter x, because function calls modify a copy of the effective parameters, and the effective
parameters remain unaltered. In fact, x denotes the effective parameter of isqrt calls, which
has the same value interpreted in the pre-state as in the post-state.

Example 2.19 The following function is given a contract to specify that it increments the
value pointed to by the pointer given as argument.

1 /*@ requires \valid (p);
2 @ assigns *p;
3 @ ensures *p == \old(*p) + 1;
4 @*/
5 void incrstar(int *p);

The contract means that the function must be called with a pointer p that points to a safely
allocated memory location (see Section 2.7 for details on the \valid built-in predicate). It
does not modify any memory location but the one pointed to by p. Finally, the ensures clause
specifies that the value *p is incremented by one.

2.3.3 Contracts with named behaviors

The general form of a function contract may contain named behaviors (restricted to two
behaviors, in the following, for readability).

1 /*@ requires P;
2 @ behavior b1:
3 @ assumes A1;
4 @ requires R1;
5 @ assigns L1;
6 @ ensures E1;
7 @ behavior b2:
8 @ assumes A2;
9 @ requires R2;

10 @ assigns L2;
11 @ ensures E2;
12 @*/

The names of behaviors must be distinct within the given function (or statement) contract.
A behavior name may be the same as a behavior name of an enclosing contract; in this case
references to the behavior name refer to the behavior in the innermost contract of those
contracts in scope.
The semantics of such a contract is as follows:

34

2.3. FUNCTION CONTRACTS

• The caller of the function must guarantee that the call is performed in a state where the
effective precondition, namely the property P && (A1 ==> R1) && (A2 ==> R2), holds.

• The called function returns a state where the properties \old(Ai) ==> Ei hold for each i.
The conjunction of these properties is the effective postcondition of the contract.

• For each i, if the function is called in a pre-state where Ai holds, then each memory
location of that pre-state that does not belong to the set Li is left unchanged in the
post-state.

requires clauses in the behaviors are proposed mainly to improve readability (to avoid some
duplication of formulas), since the contract above is equivalent to the following simplified
one:

1 /*@ requires P && (A1 ==> R1) && (A2 ==> R2);
2 @ behavior b1:
3 @ assumes A1;
4 @ assigns L1;
5 @ ensures E2;
6 @ behavior b2:
7 @ assumes A2;
8 @ assigns L2;
9 @ ensures E2;

10 @*/

A simple contract such as
1 /*@ requires P; assigns L; ensures E; */

is actually equivalent to a single named behavior as follows:
1 /*@ requires P;
2 @ behavior <unique name>:
3 @ assumes \true;
4 @ assigns L;
5 @ ensures E;
6 @*/

Similarly, global assigns and ensures clauses are equivalent to a single named behavior. More
precisely, the following contract

1 /*@ requires P;
2 @ assigns L;
3 @ ensures E;
4 @ behavior b1: ...
5 @ behavior b2: ...
6 @ ...
7 @*/

is equivalent to (if b1 and b2 do not have requires clauses)
1 /*@ requires P;
2 @ behavior <unique name>:
3 @ assumes \true;
4 @ assigns L;
5 @ ensures E;
6 @ behavior b1: ...
7 @ behavior b2: ...
8 @ ...
9 @*/

35

CHAPTER 2. SPECIFICATION LANGUAGE

Example 2.20 In the following, bsearch(t,n,v) searches for element v in array t between
indices 0 and n-1.

1 /*@ requires n >= 0 && \valid(t+(0..n-1));
2 @ assigns \nothing;
3 @ ensures -1 <= \result <= n-1;
4 @ behavior success:
5 @ ensures \result >= 0 ==> t[\result] == v;
6 @ behavior failure:
7 @ assumes t_is_sorted : \forall integer k1, integer k2;
8 @ 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];
9 @ ensures \result == -1 ==>

10 @ \forall integer k; 0 <= k < n ==> t[k] != v;
11 @*/
12 int bsearch(double t[], int n, double v);

The precondition requires array t to be allocated at least from indices 0 to n-1. The two
named behaviors correspond respectively to the successful behavior and the failing behavior.
Since the function is performing a binary search, it requires the array t to be sorted in
increasing order: this is the purpose of the predicate named t_is_sorted in the assumes clause
of the behavior named failure.
See 2.4.2 for a continuation of this example.

Example 2.21 The following function illustrates the importance of different assigns clauses
for each behavior.

1 /*@ behavior p_changed:
2 @ assumes n > 0;
3 @ requires \valid (p);
4 @ assigns *p;
5 @ ensures *p == n;
6 @ behavior q_changed:
7 @ assumes n <= 0;
8 @ requires \valid (q);
9 @ assigns *q;

10 @ ensures *q == n;
11 @*/
12 void f(int n, int *p, int *q) {
13 if (n > 0) *p = n; else *q = n;
14 }

Its contract means that it may modify values pointed to by p or by q, conditionally on the
sign of n.

2.3.3.1 Completeness of behaviors
In a contract with named behaviors, it is not required that the disjunction of the Ai is true,
i.e. it is not mandatory to provide a “complete” set of behaviors. If such a condition is
desired, it is possible to add the following clause to a contract:

/*@ requires R;
admit requires AR;
check requires CR;
behavior bi: ...
...

36

2.3. FUNCTION CONTRACTS

complete behaviors b1,...,bn;
@*/

It specifies that the set of behaviors b1,. . .,bn is complete i.e. that

R && AR ==> (A1 || A2 || ... || An)

holds. Note in particular that the completeness is established under the assumption that
the main requires and admit requires clauses of the contract hold, but not the check requires
clause, since the latter is only used to verify that a property holds at a given point, and never
as hypothesis (see section 2.3.2.3).

The simplified version of that clause

/*@ ...
@ complete behaviors;
@*/

means that all named4 behaviors given in the contract should be taken into account.

Similarly, it is not required that two distinct behaviors are disjoint. If desired, this can be
specified with the following clause:

/*@ ...
@ disjoint behaviors b1,...,bn;
@*/

It means that the given behaviors are pairwise disjoint i.e. that, for all distinct i and j,

R && AR ==> ! (Ai && Aj)

holds. The simplified version of that clause

/*@ ...
@ disjoint behaviors ;
@*/

means that all named5 behaviors given in the contract should be taken into account. Multiple
complete and disjoint sets of behaviors can be given for the same contract.

2.3.4 Memory locations and sets of values

There are several places where one needs to describe a set of memory locations: for example, in
assigns clauses of function contracts and in loop assigns clauses (see section 2.4.2). A memory
location is an l-value and a set of memory locations is a tset. Moreover, the argument of an
assigns clause must be a set of modifiable l-values, as described in Section A.1. More generally,
we introduce syntactic constructs to denote sets of values (tsets) that are also useful for the
\separated predicate (see Section 2.7.2). The terms in a tset may have any type, though the
operations described below are only well-typed for certain types of tsets. For example, s1[s2]
as defined below is only well-typed if one of s1 and s2 is a set of arrays and the other a set
of integers.

4If there is a default (unnamed) behavior, it has an assumes clause of true; including it makes the com-
pleteness assertion trivially true.

5If there is a default (unnamed) behavior, it has an assumes clause of true and is thus not disjoint with
other clauses.

37

CHAPTER 2. SPECIFICATION LANGUAGE

range ::= term? .. term?

tset ::= \empty empty set
| tset -> id
| tset . id
| * tset
| & tset
| tset [tset]
| tset [range]
| (range) a range as a set of integers
| \union (tset (, tset)∗) union of location sets
| \inter (tset (, tset)∗) intersection of location sets
| tset + tset
| (tset)
| { tset | binders (; pred)? } set comprehension
| { (term (, term)∗)? } explicit set
| term a implicit singleton

pred ::= \subset (tset , tset) set inclusion
| term \in tset set membership

range ::= term? .. term?

aThe given term may not itself be a set

Figure 2.8: Grammar for sets of memory locations

2.3.4.0.1 Ranges The .. syntax for ranges of integers has the appearance of a binary
operator but is not a binary operator with conventional precedence, because either or both
operand is optional. A missing operand designates an open range, that is the range includes
all integers in the negative (if the left operand is missing) or positive direction (if the right
operand is missing). This range syntax is used only within parentheses to designate a set of
integers (cf. Fig. 2.8 later) or within square brackets to designate a range of array indices,
as shown in Figs. 2.1 and 2.8.

2.3.4.0.2 Tsets The grammar for tsets is given in Figure 2.8. Note though that tsets are
actually simply terms whose type is a set. Thus, for example, the + operator is overloaded
for various numeric and string types and also for sets. The constructs in Figure 2.8 are
syntactically valid whatever the types of terms are, but are only type-valid when used on
values that are tsets as described.6

The semantics of tset operations is given below, where s denotes any tset.

• \empty denotes the empty set.

• a simple term denotes a singleton set.

• s->id denotes the set of x->id for each x ∈ s.

• s.id denotes the set of x.id for each x ∈ s.
6Resolving the restrictions on tsets during type-checking rather than parsing greatly reduces the size and

complexity of the overall grammar and avoids needing to propagate meta-information along with parsing
information.

38

2.3. FUNCTION CONTRACTS

• *s denotes the set of *x for each x ∈ s.

• &s denotes the set of &x for each x ∈ s.

• s1[s2] denotes the set of x1[x2] for each x1 ∈ s1 and x2 ∈ s2.

• t1 .. t2 denotes the set of integers between t1 and t2, inclusive. If t1 > t2, this is the
same as \empty

• \union(s1,. . .,sn) denotes the union of s1,s2, . . . and sn;

• \inter (s1,. . .,sn) denotes the intersection of s1,s2, . . . and sn;

• s1+s2 denotes the set of x1+x2 for each x1 ∈ s1 and x2 ∈ s2;

• { t1,. . .,tn } is the set composed of the elements t1, . . ., tn.

• (s) denotes the same set as s;

• { s | b ; P } denotes set comprehension, that is the union of the sets denoted by s
for each value b of binders satisfying predicate P (binders b are bound in both s and P).

• x \in s holds if and only if x is an element of s. The operator has the same precedence
as relational predicates (e.g., <).

• \subset(s1,s2) holds if and only if each element of s1 is also an element of s2 (that is,
s1 is a subset of s2).

Note that assigns \nothing is equivalent to assigns \empty; it is left for convenience.

Note that in some cases there is a small ambiguity. The use of an individual variable, as
in assigns x;, invokes an implicit conversion to a singleton set, to assigns {x};, but only if
the value of x is not already a set of memory locations. Similarly, for example, if x is a set
of memory locations but y is not a set, then assigns x,y; means assigns \union(x,{y});. If
neither x and y are sets, then assigns x,y; means assigns \union({x},{y});.

Example 2.22 The following function sets each cell of an array to 0.

1 /*@ requires \valid (t+(0..n-1));
2 @ assigns t[0..n-1];
3 @ assigns *(t+(0..n-1));
4 @ assigns *(t+{ i | integer i ; 0 <= i < n });
5 @*/
6 void reset_array(int t[],int n) {
7 int i;
8 for (i=0; i < n; i++) t[i] = 0;
9 }

It is annotated with three equivalent assigns clauses, each one specifying that only the set of
cells {t[0],. . .,t[n-1]} is potentially modified.

Example 2.23 The following function increments each value stored in a linked list.

39

CHAPTER 2. SPECIFICATION LANGUAGE

1 struct list {
2 int hd;
3 struct list *next;
4 };
5

6 // reachability in linked lists
7 /*@ inductive reachable{L}(struct list *root, struct list *to) {
8 @ case empty{L}: \forall struct list *l; reachable(l,l) ;
9 @ case non_empty{L}: \forall struct list *l1,*l2;

10 @ \valid (l1) && reachable(l1->next,l2) ==> reachable(l1,l2) ;
11 @ }
12 */
13

14 // The requires clause forbids giving a circular list
15 /*@ requires reachable(p,\null);
16 @ assigns { q->hd | struct list *q ; reachable(p,q) } ;
17 @*/
18 void incr_list(struct list *p) {
19 while (p) { p->hd++ ; p = p->next; }
20 }

The assigns clause specifies that the set of possibly modified memory locations is the set of
fields q->hd for each pointer q reachable from p following next fields. See Section 2.6.3 for
details about the declaration of the predicate reachable.

2.3.5 Default contracts, multiple contracts

A C function can be defined only once but declared several times. It is allowed to annotate
each of these declarations with contracts. Those contracts are seen as a single contract with
the union of the requires clauses and behaviors.

On the other hand, a function may have no contract at all, or a contract with missing clauses.
Missing requires and ensures clauses default to \true . If no assigns clause is given, it remains
unspecified. If the function under consideration has only a declaration but no body, then
it means that it potentially modifies “everything”, hence in practice it will be impossible to
verify anything about programs calling that function; in other words giving it a contract is
in practice mandatory. On the other hand, if that function has a body, giving no assigns
clause means in practice that it is left to tools to compute an over-approximation of the sets
of modified locations.

2.4 Statement annotations

Annotations on C statements are of three kinds:

• Assert statements are allowed before any C statement or at end of blocks.

• Loop annotations (the invariant , assigns , and variant clauses) are allowed before any
loop statement: while , for , and do ... while.

• Statement contracts are allowed before any C statement (including a block), specifying
its behavior in a manner similar to function contracts.

40

2.4. STATEMENT ANNOTATIONS

2.4.1 Assertions

C-compound-statement a ::= { C-declaration∗
C-statement∗ assertion+ }

C-statement b ::= assertion
C-statement

assertion-kind ::= assert assertion
| clause-kind non-blocking assertion

assertion ::= /*@ assertion-kind pred ;
*/

| /*@ for id (, id)∗ :
assertion-kind pred ;
*/

aExtension to the C standard grammar for compound statements
bExtension to the C standard grammar for statements

Figure 2.9: Grammar for assertions

The syntax of assertions is given in Figure 2.9, as an extension of the grammar of C state-
ments.

• assert P means that P must hold in the current state (the sequence point where the
assertion occurs).

• check P and admit P indicate respectively that P should be checked but not block the
execution, and that P can be assumed to hold without verification. See section 2.3.2.3
for more information.

• The variant for id1,. . .,idk: assert P associates the assertion to the named behaviors
idi, each of them being a behavior identifier for the current function (or a behavior of
an enclosing block as defined later in Section 2.4.4). It means that this assertion is only
required to hold for the listed behaviors.

2.4.2 Loop annotations

The syntax of loop annotations is given in Figure 2.10, as an extension of the grammar of C
statements. Loop-allocation clauses allow specifying which memory locations are dynamically
allocated or deallocated by a loop from the heap; they are defined later in Section 2.7.3.

2.4.2.1 Loop invariants and loop assigns
The semantics of loop invariants and loop assigns is defined as follows: a simple loop anno-
tation of the form

1 /*@ loop invariant I;
2 @ loop assigns L;
3 @*/
4 ...

specifies that the following conditions hold.

41

CHAPTER 2. SPECIFICATION LANGUAGE

C-statement a ::= /*@ loop-annot */
C-iteration-statement

loop-annot b ::= loop-clause∗ loop-behavior∗
loop-variant?

loop-clause ::= loop-invariant | loop-assigns
| loop-allocation

loop-invariant ::= clause-kind?

loop invariant pred ;

loop-assigns ::= loop assigns locations ;

loop-behavior ::= for id (, id)∗ : loop-clause+ annotation for behavior id

loop-variant ::= loop variant term ;
| loop variant term for ident ; variant for relation ident

aExtension of the C standard for statements
bempty loop annotations are forbidden

Figure 2.10: Grammar for loop annotations

• The predicate I holds before entering the loop (in the case of a for loop, this means
right after the initialization expression).

• The predicate I is an inductive invariant, that is if I is assumed true in some state
where the condition c is also true, and if execution of the loop body in that state ends
normally at the end of the body or with a continue statement, I is true in the resulting
state. If the loop condition has side effects, these are included in the loop body in a
suitable way:

– for a while (c) s loop, I must be preserved by the side-effects of c followed by s;
– for a for(init;c;step) s loop, I must be preserved by the side-effects of c followed

by s followed by step;
– for a do s while (c); loop, I must be preserved by s followed by the side-effects of

c.

Note that if c has side-effects, the invariant might not be true at the exit of the loop:
the last “step” starts from a state where I holds, performs the side-effects of c, which
in the end evaluates to false and exits the loop. Likewise, if a loop is exited through a
break statement, I does not necessarily hold, as side effects may occur between the last
state in which I was supposed to hold and the break statement.

• At any loop iteration, any location that was allocated before entering the loop and is
not a member of L (interpreted in the current state, that is LoopCurrent) has the same
value as before entering the loop (LoopEntry). In fact, the loop assigns clause specifies
an inductive invariant for the locations that are not members of L.

2.4.2.2 Loop behaviors
A loop annotation preceded by for id_1,. . .,id_k: is similar to the above, but applies only
for behaviors id_1,. . .,id_k of the current function, hence in particular holds only under the

42

2.4. STATEMENT ANNOTATIONS

assumption of their assumes clauses.

2.4.2.2.1 Remarks

• The \old construct is not allowed in loop annotations. The \at form should be used to
refer to another state (see Section 2.4.3).

• When a loop exits with break or return or goto, it is not required that the loop invariant
holds. In such cases, locations that are not members of L can be assigned between the
end of the previous iteration and the exit statement.

• If no loop assigns clause is given, assignments remain unspecified. It is left to tools to
compute an over-approximation of the sets of assigned locations.

Example 2.24 Here is a continuation of example 2.20. Note the use of a loop invariant
associated to a function behavior.

1 /*@ requires n >= 0 && \valid(t+(0..n-1));
2 @ assigns \nothing;
3 @ ensures -1 <= \result <= n-1;
4 @ behavior success:
5 @ ensures \result >= 0 ==> t[\result] == v;
6 @ behavior failure:
7 @ assumes t_is_sorted : \forall integer k1, int k2;
8 @ 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];
9 @ ensures \result == -1 ==>

10 @ \forall integer k; 0 <= k < n ==> t[k] != v;
11 @*/
12 int bsearch(double t[], int n, double v) {
13 int l = 0, u = n-1;
14 /*@ loop invariant 0 <= l && u <= n-1;
15 @ for failure: loop invariant
16 @ \forall integer k; 0 <= k < n && t[k] == v ==> l <= k <= u;
17 @*/
18 while (l <= u) {
19 int m = l + (u-l)/2; // better than (l+u)/2
20 if (t[m] < v) l = m + 1;
21 else if (t[m] > v) u = m - 1;
22 else return m;
23 }
24 return -1;
25 }

2.4.2.3 Loop variants
Optionally, a loop annotation may include a loop variant of the form

/*@ loop variant m; */

where m is a term of type integer .
The semantics is as follows: for each loop iteration that terminates normally or with continue ,
the value of m at end of the iteration must be smaller than its value at the beginning of the
iteration. Moreover, its value at the beginning of the iteration must be nonnegative. Note
that the value of m at loop exit might be negative. It does not compromise termination of
the loop. Here is an example:

43

CHAPTER 2. SPECIFICATION LANGUAGE

Example 2.25
1 void f(int x) {
2 //@ loop variant x;
3 while (x >= 0) {
4 x -= 2;
5 }
6 }

It is also possible to specify termination orderings other than the usual order on integers,
using the additional for modifier. This is explained in Section 2.5.

2.4.2.4 General inductive invariants
It is actually allowed to pose an inductive invariant anywhere inside a loop body. For example,
it makes sense for a do s while (c); loop to contain an invariant right after statement s. Such
an invariant is a kind of assertion, as shown in Figure 2.11.

assertion ::= /*@ clause-kind? invariant pred ; */
| /*@ for id (, id)∗ : clause-kind? invariant pred ; */

Figure 2.11: Grammar for general inductive invariants

Example 2.26 In the following example, the natural invariant holds at this point (\max and
\lambda are introduced later in Section 2.6.7). It would be less convenient to set an invariant
at the beginning of the loop.

1 /*@ requires n > 0 && \valid(t+(0..n-1));
2 @ ensures \result == \max(0,n-1,(\lambda integer k ; t[k]));
3 @*/
4 double max(double t[], int n) {
5 int i = 0; double m,v;
6 do {
7 v = t[i++];
8 m = v > m ? v : m;
9 /*@ invariant m == \max(0,i-1,(\lambda integer k ; t[k])); */

10 } while (i < n);
11 return m;
12 }

More generally, loops can be introduced by gotos. As a consequence, such invariants may
occur anywhere inside a function’s body. The meaning is that the invariant holds at that
point, much like an assert. Moreover, the invariant must be inductive, i.e. it must be
preserved across a loop iteration. Several invariants are allowed at different places in a loop
body. These extensions are useful when dealing with complex control flows.

Example 2.27 Here is a program annotated with an invariant inside the loop body:
1 /*@ requires n > 0;
2 @ ensures \result == \max(0,n-1,\lambda integer k; t[k]);
3 @*/

44

2.4. STATEMENT ANNOTATIONS

4 double max_array(double t[], int n) {
5 double m; int i=0;
6 goto L;
7 do {
8 if (t[i] > m) { L: m = t[i]; }
9 /*@ invariant

10 @ 0 <= i < n && m == \max(0,i,\lambda integer k; t[k]);
11 @*/
12 i++;
13 }
14 while (i < n);
15 return m;
16 }

The control-flow graph of the code is as follows

invdo

i← 0

m← t[i]

i← i+ 1

i ≥ n

i < n

m < t[i]

m ≥ t[i]

The invariant is inductively preserved by the two paths that go from node “inv” to itself.

Example 2.28 The program
1 int x = 0;
2 int y = 10;
3

4 /*@ loop invariant 0 <= x < 11;
5 @*/
6 while (y > 0) {
7 x++;
8 y--;
9 }

is not correctly annotated, even if it is true that x remains smaller than 11 during the ex-
ecution. This is because it is not true that the property x<11 is preserved by the execution
of x++ ; y--;. A correct loop invariant could be 0 <= x < 11 && x+y == 10. It holds at loop
entrance and is preserved (under the assumption of the loop condition y>0).
Similarly, the following general invariants are not inductive:

1 int x = 0;
2 int y = 10;
3

4 while (y > 0) {

45

CHAPTER 2. SPECIFICATION LANGUAGE

5 x++;
6 //@ invariant 0 < x < 11;
7 y--;
8 //@ invariant 0 <= y < 10;
9 }

since 0 <= y < 10 is not a consequence of hypothesis 0 < x < 11 after executing y--; and
0 < x < 11 cannot be deduced from 0 <= y < 10 after looping back through the condition y>0
and executing x++. Correct invariants could be:

1 while (y > 0) {
2 x++;
3 //@ invariant 0 < x < 11 && x+y == 11;
4 y--;
5 //@ invariant 0 <= y < 10 && x+y == 10;
6 }

2.4.3 Built-in construct \at

Statement annotations usually need another additional construct \at(e,id) referring to the
value of the expression e in the state at label id. In particular, for a C array of int , t,
\at(t,id) is a logical array whose content is the same as that of t in state at label id. It is
thus very different from \at((int *)t,id), which is a pointer to the first element of t (and
stays the same between the state at id and the current state). Namely, if t[0] has changed
since id, we have \at(t,id)[0] != \at((int *)t,id)[0].
The label id can be either a regular C label or a label added within a ghost statement as
described in Section 2.12. This label must be declared in the same function as the occurrence
of \at(e,id), but unlike gotos, more restrictive scoping rules must be respected:

• the label id must occur before the occurrence of \at(e,id) in the source;

• the label id must not be inside an inner block that syntactically ends before the use of
the label.

These rules are exactly the same rules as for the visibility of local variables within C state-
ments (see [17], Section A11.1).
Note that the \at construct must be interpreted carefully when a variable is redeclared within
the body of a function. Consider the example below:

Example 2.29 labels and scopes of local variables
1 int x;
2 int y;
3

4 void m() {
5 y = 1;
6 x = 4;
7 b: ; // a label can't be directly over a declaration, hence the ';'.
8 //@ assert \at(x,b) == 4;
9 int* x = &y;

10 y = 2;
11 c:
12 y = 3;

46

2.4. STATEMENT ANNOTATIONS

Table 2.1: Meaning and permitted locations of built-in labels

Label Permitted locations Meaning

Here
statement annotations state where the annotation appears
function contracts pre-state of function
data invariants invocation point of the invariant

Old function contracts pre-state of function
statement contracts pre-state of statement

Pre statement annotations pre-state of enclosing function
Post assigns and ensures clauses post-state of contract

LoopEntry loop annotations and loop state-
ments

state prior to first loop entry

LoopCurrent loop annotations and loop state-
ments

state at beginning of current loop
interation

Init all annotations state before call to main

13 //@ assert \at(x,b) == 4;
14 //@ assert *x == 3;
15 //@ assert \at(*x,c) == 2;
16 *x = 5;
17 }

• The assert annotation on line 8 refers to the value of x declared on line 1 and set on
line 6; it is proved without difficulty.

• The assert annotation on line 14 refers to the current state of *x, where x is declared
on line 9, that is the assignment to y on line 12; it is also proved without difficulty.

• The assert annotation on line 156 refers to the state of *x at label c, that is the
assignment to y on line 5; it is also proved without difficulty.

But consider the assert annotation on line 13. It references the state at label b. At that
label, x refers to the declaration on line 1, not the declaration current at line 13, namely the
declaration on line 9.
Thus determining the value of an expression at a given label requires that the name and type
resolution of the expression be performed at that label also, and may be different than the
results of name and type resolution in the state in which the \at expression occurs.

Default logic labels
There are seven predefined logic labels: Pre, Here, Old, Post, LoopEntry, LoopCurrent and
Init. \old(e) is in fact syntactic sugar for \at(e,Old).

• The label Here is visible in all statement annotations, where it refers to the state
where the annotation appears; and in all contracts, where it refers to the pre-state for
the requires , assumes, assigns , frees , decreases , terminates clauses and the post-state for
ensures , allocates , and abrupt termination clauses. It is also visible in data invariants,
presented in Section 2.11.

47

CHAPTER 2. SPECIFICATION LANGUAGE

• The label Old is visible in assigns and ensures clauses of all contracts (both for functions
and for statement contracts described below in Section 2.4.4), and refers to the pre-state
of this contract.

• The label Pre is visible in all statement annotations, and refers to the pre-state of the
function it occurs in.

• The label Post is visible in assigns and ensures clauses of all contracts, and it refers to
the post-state.

• The label LoopEntry is visible in loop annotations and all annotations related to a
statement enclosed in a loop. It refers to the state just before entering that loop
for the first time –but after initialization took place in the case of a for loop, as for
loop invariant (section 2.4.2.1). When LoopEntry is used in a statement enclosed in
nested loops, it refers to the innermost loop containing that statement.

• The label LoopCurrent is visible in loop annotations and all other annotations related
to a statement enclosed in a loop. It refers to the state at the beginning of the current
step of the loop (see section 2.4.2.1 for more details on what constitutes a loop step
in presence of side-effects in the condition). When LoopCurrent is used in a statement
enclosed in nested loops, it refers to the innermost loop containing that statement.

• The label Init is visible in all statement annotations and contracts. It refers to the
state just before the call to the main function, once the global data have been initialized.

Inside loop annotations, the labels LoopCurrent and Here are equivalent, except inside clauses
loop frees (see section 2.7.3) where Here is equivalent to LoopEntry.
There is one special case regarding formal parameters. Despite any surrounding \at construct
or the type of clause, formal parameters in a function contract are always interpreted in the
pre-state (that is in the Old state). Note that formal parameters are not special in this regard
in statement contracts.
No logic label is visible in global logic declarations such as lemmas, axioms, definition of
predicate or logic functions. When such an annotation needs to refer to a given memory
state, it has to be given a label binder: this is described in Section 2.6.9.

term ::= \at (term , label-id)

pred ::= \at (pred , label-id)

label-id ::= Here | Old | Pre | Post
| LoopEntry | LoopCurrent | Init |
| id a

aAn id must be a C program label in scope

Figure 2.12: Grammar for at construct

Example 2.30 The code below implements the famous extended Euclid’s algorithm for com-
puting the greatest common divisor of two integers x and y, while computing at the same time
the two Bézout coefficients p and q such that p × x + q × y = gcd(x, y). The loop invariant
for the Bézout property needs to refer to the value of x and y in the pre-state of the function.

48

2.4. STATEMENT ANNOTATIONS

1 /*@ requires x >= 0 && y >= 0;
2 @ behavior bezoutProperty:
3 @ ensures (*p)*x+(*q)*y == \result;
4 @*/
5 int extended_Euclid(int x, int y, int *p, int *q) {
6 int a = 1, b = 0, c = 0, d = 1;
7 /*@ loop invariant x >= 0 && y >= 0 ;
8 @ for bezoutProperty: loop invariant
9 @ a*\at(x,Pre)+b*\at(y,Pre) == x &&

10 @ c*\at(x,Pre)+d*\at(y,Pre) == y ;
11 @ loop variant y;
12 @*/
13 while (y > 0) {
14 int r = x % y;
15 int q = x / y;
16 int ta = a, tb = b;
17 x = y; y = r;
18 a = c; b = d;
19 c = ta - c * q; d = tb - d * q;
20 }
21 *p = a; *q = b;
22 return x;
23 }

Example 2.31 Here is a toy example illustrating tricky issues with \at and labels:
1 int i;
2 int t[10];
3

4 //@ ensures 0 <= \result <= 9;
5 int any();
6

7 /*@ assigns i,t[\at(i,Post)];
8 @ ensures
9 @ t[i] == \old(t[\at(i,Here)]) + 1;

10 @ ensures
11 @ \let j = i; t[j] == \old(t[j]) + 1;
12 @*/
13 void f() {
14 i = any();
15 t[i]++;
16 }

The two ensures clauses are equivalent. The simpler clause t[i] == \old(t[i]) + 1 would be
wrong because in \old(t[i]), i denotes the value of i in the pre-state.
Also, the assigns clause i,t[i] would be wrong also because again in t[i], the value of i is
its value in the pre-state.

Example 2.32 Here is an example illustrating the use of LoopEntry and LoopCurrent

1 void f (int n) {
2 for (int i = 0; i < n; i++) {
3 /*@ assert \at(i,LoopEntry) == 0; */
4 int j = 0;
5 while (j++ < i) {

49

CHAPTER 2. SPECIFICATION LANGUAGE

6 /*@ assert \at(j,LoopEntry) == 0; */
7 /*@ assert \at(j,LoopCurrent) + 1 == j; */
8 }
9 }

10 }

2.4.4 Statement contracts

C-statement a ::= /*@ statement-contract */ C-statement

statement-contract b ::= (for id (, id)∗ :)? requires-clause∗
simple-clause-stmt∗ named-behavior-stmt∗
completeness-clause∗

simple-clause-stmt ::= simple-clause | abrupt-clause-stmt

named-behavior-stmt ::= behavior id : behavior-body-stmt

behavior-body-stmt c ::= assumes-clause∗
requires-clause∗ simple-clause-stmt∗

aExtension to the C standard grammar for statements
bempty contracts are forbidden
cempty behavior bodies are forbidden

Figure 2.13: Grammar for statement contracts

The grammar for statement contracts is given in Figure 2.13. It is similar to function con-
tracts, but without a decreases clause. Additionally, a statement contract may refer to en-
closing named behaviors, with the form for id:.... Such contracts are only valid for the
corresponding behaviors, in particular only under the corresponding assumes clause. Note
that behaviors in statement contracts may have the same ids as enclosing function contract
behaviors or enclosing statement contracts. In such cases, a use of an id (in a for construct)
refers to the innermost behavior id.
The ensures clause does not constrain the post-state when the annotated statement is ter-
minated by a goto jumping out of it, by any abrupt termination of the statement that is
annotated. To specify such behaviors, abrupt clauses (described in Section 2.9) need to be
used.
On the other hand, it is different with assigns clauses. The locations having their values
modified during the path execution, starting at the beginning of the annotated statement
and leading to a goto jumping out of it, should be part of its assigns clause.

Example 2.33 The clause assigns \nothing; does not hold for that statement, even if the
clause ensures x==\old(x); holds:

1 /*@ assigns x;
2 @ ensures x==\old(x);
3 @*/
4 if (c) {
5 x++;
6 goto L;
7 }
8 L: ...

50

2.5. TERMINATION

Allocation-clauses allow specifying which memory locations are dynamically allocated or
deallocated by the annotated statement from the heap; they are defined later in Section 2.7.3.
The semantics of multiple clauses or missing clauses of a given type within a behavior or in
the unnamed behavior are the same as for function contracts (cf. Section 2.3.5).

2.5 Termination

The property of termination concerns both loops and recursive function calls. Termination
is guaranteed by attaching a measure function to each loop (an aspect already addressed in
Section 2.4.2.3) and each recursive function. By default, a measure is an integer expression,
and measures are compared using the usual ordering over integers (Section 2.5.1). It is also
possible to define measures using other domains and/or using a different ordering relation
(Section 2.5.2).

2.5.1 Integer measures

Functions are annotated with integer measures with the syntax
//@ decreases e;

and loops are annotated similarly with the syntax
//@ loop variant e;

where the logic expression e has type integer . For recursive calls, or for loops, this expression
must decrease for the relation R defined by

R(x,y) <==> x > y && x >= 0.

In other words, the measure must be a decreasing sequence of integers which remain nonneg-
ative, except possibly for the last value of the sequence (See example 2.25).

Example 2.34 The clause loop variant u-l; can be added to the loop annotations of the
example 2.24. The measure u-l decreases at each iteration, and remains nonnegative, except
at the last iteration where it may become negative.

16 @ ...
17 @ loop variant u-l; */
18 while ...

2.5.2 General measures

More general measures on other types can be provided, using the keyword for . For functions
it becomes

//@ decreases e for R;

and for loops
//@ loop variant e for R;

In those cases, the logic expression e has some type τ and R must be a relation on τ , that is
a binary predicate declared (see Section 2.6 for details) as

51

CHAPTER 2. SPECIFICATION LANGUAGE

//@ predicate R(τ x, τ y) · · ·

Of course, to guarantee termination, it must be proved that R is a well-founded relation.

Example 2.35 The following example illustrates a variant annotation using a pair of inte-
gers, ordered lexicographically.

1 //@ ensures \result >= 0;
2 int dummy();
3

4 //@ type intpair = (integer,integer);
5

6 /*@ predicate lexico(intpair p1, intpair p2) =
7 @ \let (x1,y1) = p1 ;
8 @ \let (x2,y2) = p2 ;
9 @ x1 < x2 && 0 <= x2 ||

10 @ x1 == x2 && 0 <= y2 && y1 < y2;
11 @*/
12

13 //@ requires x >= 0 && y >= 0;
14 void f(int x,int y) {
15 /*@ loop invariant x >= 0 && y >= 0;
16 @ loop variant (y,x) for lexico;
17 @*/
18 while (x > 0 && y > 0) {
19

20 if (dummy()) {
21 x--; y = dummy();
22 }
23 else y--;
24 }
25 }

2.5.3 Recursive function calls

The precise semantics of measures on recursive calls, especially in the general case of mutually
recursive functions, is given as follows. We call a set of mutually recursive functions that is a
strongly connected component of the call graph a cluster. Within each cluster, each function
must be annotated with a decreases clause with the same relation R (syntactically). Then,
in the body of any function f of that cluster, any recursive call to a function g must occur
in a state where the measure attached to g is smaller (w.r.t R) than the measure of f in the
pre-state of f. This also applies when g is f itself.

Example 2.36 Here are the classical factorial and Fibonacci functions:
1

2 /*@ requires n <= 12;
3 @ decreases n;
4 @*/
5 int fact(int n) {
6 if (n <= 1) return 1;
7 return n * fact(n-1);
8 }
9

52

2.5. TERMINATION

10 //@ decreases n;
11 int fib(int n) {
12 if (n <= 1) return 1;
13 return fib(n-1) + fib(n-2);
14 }

Example 2.37 This example illustrates mutual recursion:
1 /*@
2 requires n>=0;
3 decreases n;
4 */
5 int even(int n) {
6 if (n == 0) return 1;
7 return odd(n-1);
8 }
9

10 /*@
11 requires x>=0;
12 decreases x;
13 */
14 int odd(int x) {
15 if (x == 0) return 0;
16 return even(x-1);
17 }

2.5.4 Non-terminating functions

Experimental
There are cases where a function is not supposed to terminate. For instance, the main
function of a reactive program might be a while(1) that indefinitely waits for an event to
process. More generally, a function can be expected to terminate only if some preconditions
are met. In those cases, a terminates clause can be added to the contract of the function,
using the following form:

//@ terminates p;

The semantics of such a clause is as follows: if p holds, then the function is guaranteed to
terminate (more precisely, its termination must be proved). If such a clause is not present
(and in particular if there is no function contract at all), it defaults to terminates \true; that
is, the function is supposed to always terminate, which is the expected behavior of most
functions.
Note that nothing is specified for the case where p does not hold: the function may terminate
or not. In particular, terminates \false ; does not imply that the function loops forever. A
possible specification for a function that never terminates is the following:

1 /*@ ensures \false ;
2 terminates \false ;
3 */
4 void f() { while(1); }

Example 2.38 A concrete example of a function that may not always terminate is the
incr_list function of example 2.23. In fact, the following contract is also acceptable for
this function:

53

CHAPTER 2. SPECIFICATION LANGUAGE

1 // this time, the specification accepts circular lists, but does not ensure
2 // that the function terminates on them (as a matter of fact, it does not).
3 /*@ terminates reachable(p,\null);
4 @ assigns { q->hd | struct list *q ; reachable(p,q) } ;
5 @*/
6 void incr_list(struct list *p) {
7 while (p) { p->hd++ ; p = p->next; }
8 }

2.6 Logic specifications

The language of logic expressions used in annotations can be extended by declarations of new
logic types, and new constants, logic functions and predicates. These declarations follow the
classical setting of algebraic specifications. The grammar for these declarations is given in
Figure 2.14.

2.6.1 Predicate and function definitions

New functions and predicates can be defined by explicit expressions, given after an equal
sign.

Example 2.39 The following code

1 //@ predicate is_positive(integer x) = x > 0;
2 /*@ logic integer get_sign(real x) =
3 @ x > 0.0 ? 1 : (x < 0.0 ? -1 : 0);
4 @*/

illustrates the definition of a new predicate is_positive with an integer parameter and a new
logic function sign with a real parameter returning an integer.

2.6.2 Lemmas

Lemmas are user-given propositions, a facility that might help theorem provers establish
validity of ACSL specifications.

Example 2.40 The following lemma

1 //@ lemma mean_property: \forall integer x,y; x <= y ==> x <= (x+y)/2 <= y;

is a useful hint for a program like binary search.

Of course, a complete verification of an ACSL specification has to provide a proof for each
lemma. Again, check lemma can be used to indicate that the property should only be verified,
but not used in other verification activities, and conversely admit lemma indicates that the
property can be assumed without trying to verify it (see section 2.3.2.3). Note that an
admit lemma is in practice equivalent to an axiom, as introduced in section 2.6.4.

54

2.6. LOGIC SPECIFICATIONS

C-external-declaration a ::= /*@ logic-def + */

logic-def ::= logic-const-def
| logic-function-def
| logic-predicate-def
| lemma-def
| data-inv-def

type-var ::= id

type-expr ::= type-var type variable
| id

< type-expr
(, type-expr)∗ > polymorphic type

type-var-binders ::= < type-var
(, type-var)∗ >

poly-id ::= id type-var-binders polymorphic object identifier

logic-const-def ::= logic
type-expr
poly-id = term ;

logic-function-def ::= logic
type-expr
poly-id parameters
= term ;

logic-predicate-def ::= predicate
poly-id parameters?

= pred ;

parameters ::= (parameter
(, parameter)∗)

parameter ::= type-expr id

lemma-def ::= clause-kind?

lemma poly-id :
pred ;

aExtension to the C standard grammar for external declarations as global declarations

Figure 2.14: Grammar for global logic definitions

logic-def ::= inductive-def

inductive-def ::= inductive
poly-id parameters? { indcase∗ }

indcase ::= case poly-id : pred ;

Figure 2.15: Grammar for inductive definitions

55

CHAPTER 2. SPECIFICATION LANGUAGE

2.6.3 Inductive predicates

A predicate may also be defined by an inductive definition. The grammar for this style of
definition is given in Figure 2.15.
In general, an inductive definition of a predicate P has the form

1 /*@ inductive P(x1,. . .,xn) {
2 @ case c1 : p1;
3 ...
4 @ case ck : pk;
5 @ }
6 @*/

where each ci is an identifier and each pi is a proposition.
The semantics of such a definition is that P is the least fixpoint of the cases, i.e. is the
smallest predicate (in the sense that it is false the most often) satisfying the propositions
p1, . . . ,pk. With this general form, the existence of a least fixpoint is not guaranteed, so tools
might enforce syntactic conditions on the form of inductive definitions. A standard syntactic
restriction could be to allow only propositions pi of the form

\forall y1,...,ym, h1 ==> · · · ==> hl ==> P(t1,...,tn)

where P occurs only positively in hypotheses h1, . . . ,hl (definite Horn clauses, http://en.
wikipedia.org/wiki/Horn_clause).

Example 2.41 The following introduces a predicate isgcd(x,y,d), which means that d is the
greatest common divisor of x and y.

1 /*@ inductive is_gcd(integer a, integer b, integer d) {
2 @ case gcd_zero:
3 @ \forall integer n; is_gcd(n,0,n);
4 @ case gcd_succ:
5 @ \forall integer a,b,d; is_gcd(b, a % b, d) ==> is_gcd(a,b,d);
6 @ }
7 @*/

This definition uses definite Horn clauses, hence is consistent.

Example 2.23 already introduced an inductive definition of reachability in linked-lists, and
was also based on definite Horn clauses, and is thus consistent.

2.6.4 Axiomatic definitions

Instead of an explicit definition, one may introduce an axiomatic definition for a set of types,
predicates and logic functions, which amounts to declaring the expected profiles and a set of
axioms. The grammar for those constructions is given in Figure 2.16.

Example 2.42 The following axiomatization introduces a theory of finite lists of integers a
la LISP.

1 /*@ axiomatic IntList {
2 @ type int_list;
3 @ logic int_list nil;

56

http://en.wikipedia.org/wiki/Horn_clause
http://en.wikipedia.org/wiki/Horn_clause

2.6. LOGIC SPECIFICATIONS

logic-def ::= axiomatic-decl

axiomatic-decl ::= axiomatic id { logic-decl∗ }

logic-decl ::= logic-def
| logic-type-decl
| logic-const-decl
| logic-predicate-decl
| logic-function-decl
| axiom-def

logic-type-decl ::= type logic-type ;

logic-type ::= id
| id type-var-binders polymorphic type

logic-const-decl ::= logic type-expr poly-id ;

logic-function-decl ::= logic type-expr
poly-id parameters ;

logic-predicate-decl ::= predicate
poly-id parameters? ;

axiom-def ::= axiom poly-id : pred ;

Figure 2.16: Grammar for axiomatic declarations

4 @ logic int_list cons(integer n,int_list l);
5 @ logic int_list append(int_list l1,int_list l2);
6 @ axiom append_nil:
7 @ \forall int_list l; append(nil,l) == l;
8 @ axiom append_cons:
9 @ \forall integer n, int_list l1,l2;

10 @ append(cons(n,l1),l2) == cons(n,append(l1,l2));
11 @ }
12 @*/

Unlike inductive definitions, there is no syntactic condition that guarantees that axiomatic
definitions are consistent. It is usually up to the user to ensure that the introduction of
axioms does not lead to a logical inconsistency.

Example 2.43 The following axiomatization
1 /*@ axiomatic sign {
2 @ logic integer get_sign(real x);
3 @ axiom sign_pos: \forall real x; x >= 0. ==> get_sign(x) == 1;
4 @ axiom sign_neg: \forall real x; x <= 0. ==> get_sign(x) == -1;
5 @ }
6 @*/

is inconsistent since it implies sign(0.0) == 1 and sign(0.0) == -1, hence -1 == 1

The axiomatic construct is solely a grouping construct, meant to organize declarations that
together define the behavior of a collection of types, predicates and logic functions. Currently
the grammar requires logic function and predicate declarations and axioms to be written
inside an axiomatic; only full definitions may be written outside an axiomatic.

57

CHAPTER 2. SPECIFICATION LANGUAGE

2.6.5 Polymorphic logic types

We consider here an algebraic specification setting based on multi-sorted logic, where types
can be polymorphic (that is, parametrized by other types). For example, one may declare
the type of polymorphic lists as

1 //@ type list<A>;

One can then consider for instance list of integers (list < integer>), list of pointers (e.g.
list <char*>), list of list of reals (list<list <real> >7), etc.

The grammar of Figure 2.14 contains rules for declaring polymorphic types and using poly-
morphic type expressions.

2.6.6 Recursive logic definitions

Explicit definitions of logic functions and predicates can be recursive. Declarations in the
same bunch of logic declarations are implicitly mutually recursive, so that mutually recursive
functions are possible too.

Example 2.44 The following logic declaration

1 /*@ logic integer max_index{L}(int t[],integer n) =
2 @ (n==0) ? 0 :
3 @ (t[n-1]==0) ? n-1 : max_index(t, n-1);
4 @*/

defines a logic function that returns the maximal index i between 0 and n-1 such that t[i]=0.

There is no syntactic condition on such recursive definitions, such as limitation to prim-
itive recursion. In essence, a recursive definition of the form f(args) = e; where f oc-
curs in expression e is just a shortcut for an axiomatic declaration of f with an ax-
iom \forall args; f(args) = e. In other words, recursive definitions are not guaranteed
to be consistent, in the same way that axiomatics may introduce inconsistency. Of course,
tools might provide a way to check consistency.

2.6.7 Higher-order logic constructions

Experimental

Figure 2.17 introduces new term constructs for higher-order logic.

Abstraction The term \lambda τ1 x1,. . .,τn xn; t denotes the n-ary logic function that
maps x1, . . . ,xn to t. It has the same precedence as \forall and \exists

Extended quantifiers Terms \quant(t1,t2,t3) where quant is max, min, sum, product or
numof are extended quantifications. t1 and t2 must have type integer , and t3 must
be a unary function with an integer argument, and a numeric value (integer or real)

7In this latter case, note that the two ’>’ must be separated by a space, to avoid confusion with the shift
operator.

58

2.6. LOGIC SPECIFICATIONS

term ::= \lambda binders ; term abstraction
| ext-quantifier (term , term , term)
| { term \with [range] = term } a

ext-quantifier ::= \max | \min | \sum
| \product | \numof

aThe last term may be either a value of the correct type or a lambda expression from integer to the array
element type

Figure 2.17: Grammar for higher-order constructs

except for \numof for which it should have a boolean value. Their meanings are given

as follows:

\max(i,j,f) = max{f(i), f(i+1), . . . , f(j)}
\min(i,j,f) = min{f(i), f(i+1), . . . , f(j)}
\sum(i,j,f) = f(i) + f(i+1) + · · ·+ f(j)

\product(i,j,f) = f(i) × f(i+1)× · · · × f(j)
\numof(i,j,f) = #{k | i ≤ k ≤ j ∧ f(k)}

= \sum(i,j,\lambda integer k ; f(k) ? 1 : 0)

If i>j then \sum and \numof above are 0, \product is 1, and \max and \min are unspecified
(see Section 2.2.2).

Array slice update A term of the form { a \with [low .. up] = f} allows updating a
slice of an array. a must be an array of τ and f a unary function taking as argument
an integer and returning a value of type τ . Such a term denotes an array a′ such that:

a′[i] =


a[i] if i < low
f(i) if low ≤ i ≤ up
a[i] if i > up

If low (resp. up) is missing, then all the lower (resp. upper) part of the array gets
modified in a′. If both bounds are omitted, all elements of a′ are computed using f .
As a special case, a term of the form { a \with [low .. up] = v} where v is a term
of type τ is equivalent to { a \with [low .. up] = \lambda Z. v }, i.e. it evaluates
to an array where the relevant cells all contain the same value v.
Finally, ranges can also be used in designated initializers (see section 2.2.7), with the
same semantics as above.

Example 2.45 Function that sums the elements of an array of doubles.
1 /*@ requires n >= 0 && \valid(t+(0..n-1)) ;
2 @ ensures \result == \sum(0,n-1,\lambda integer k; t[k]);
3 @*/
4 double array_sum(double t[],int n) {
5 int i;
6 double s = 0.0;
7 /*@ loop invariant 0 <= i <= n;
8 @ loop invariant s == \sum(0,i-1,\lambda integer k; t[k]);
9 @ loop variant n-i;

10 */
11 for(i=0; i < n; i++) s += t[i];
12 return s;
13 }

59

CHAPTER 2. SPECIFICATION LANGUAGE

Example 2.46 Properties of arrays initialized as a whole slice
1 //@ type seq = integer[];
2

3 //@ logic seq init = { [..] = 0 };
4

5 //@ logic seq ident = { init \with [0 .. 10] = \lambda integer i; i };
6

7 //@ lemma init_def: \forall integer i; init[i] == 0;
8

9 //@ lemma ident_def1: \forall integer i; i < 0 ==> ident[i] == 0;
10

11 //@ lemma ident_def2: \forall integer i; 0 <= i <= 10 ==> ident[i] == i;
12

13 //@ lemma ident_def3: \forall integer i; i > 10 ==> ident[i] == 0;

2.6.8 Concrete logic types

Experimental
Logic types may not only be declared but also be given a definition. Defined logic types can
be either record types, sum types, product (tuple) types, or function types. These definitions
may be recursive. For record types, the field access notation t.id can be used; for sum types, a
pattern-matching construction is available. Grammar rules for these additional constructions
are given in Figure 2.18

Example 2.47 The declaration
1 //@ type list<A> = Nil | Cons(A,list<A>);

introduces a concrete definition of finite lists. The logic definition
1 /*@ logic integer list_length<A>(list<A> l) =
2 @ \match l {
3 @ case Nil : 0
4 @ case Cons(h,t) : 1+list_length(t)
5 @ };
6 @*/

defines the length of a list by recursion and pattern-matching.

2.6.9 Hybrid functions and predicates

Logic functions and predicates may take arguments with either (pure) C type or logic type.
Such a predicate (or function) can either be defined with the same syntax as before (or
axiomatized). However, such definitions usually depend on one or more program points,
because it depends upon memory states, via expressions such as:

• pointer dereferencing: *p, p->f;

• array access: t[i];

• address-of operator: &x;

• built-in predicate depending on memory: \valid

60

2.6. LOGIC SPECIFICATIONS

logic-def ::= type logic-type =
logic-type-def ;

logic-type-def ::= record-type
| sum-type
| product-type
| function-type
| type-expr type abbreviation

record-type ::= { type-expr id
(; type-expr id)∗ ;? }

function-type ::= ((type-expr
(, type-expr)∗)?)
-> type-expr

sum-type ::= |? constructor
(| constructor)∗

constructor ::= id constant constructor
| id

(type-expr
(, type-expr)∗) non-constant constructor

product-type ::= (type-expr
(, type-expr)+) product type

term ::= term . id record field access
| \match term

{ match-cases } pattern-matching
| (term (, term)+) tuples
| { (. id = term ;)+ } records
| \let (id (, id)+) =

term ; term

match-cases ::= match-case+

match-case ::= case pat : term

pat ::= id constant constructor
| id (pat (, pat)∗) non-constant constructor
| pat | pat or pattern
| _ any pattern
| literal | { (. id = pat)∗ } record pattern
| (pat (, pat)∗) tuple pattern
| pat as id pattern binding

Figure 2.18: Grammar for concrete logic types and pattern-matching

61

CHAPTER 2. SPECIFICATION LANGUAGE

To make such a definition safe, it is mandatory to add after the declared identifier a set
of labels, between curly braces. We then speak of a hybrid predicate (or function). The
grammar for ident is extended as shown on Figure 2.19. Expressions as above must then be
enclosed in an \at construct to refer to a given label. However, to ease reading of such logic
expressions, it is allowed to omit a label whenever there is only one label in the context.

ident ::= ident label-binders a

poly-id ::= id label-binders
| id type-var-binders

label-binders
| id label-binders

type-var-binders

label-binders ::= { label-id (, label-id)∗ } label-id defined in Fig. 2.12

aAn ident can have label-binders and actual type arguments, in either order but only at most one of
each.

Figure 2.19: Grammar for logic declarations with labels

Example 2.48 The following annotations declare a function that returns the number of
occurrences of a given double in a memory block storing doubles between the given indexes,
together with the related axioms. It should be noted that without labels, this axiomatization
would be inconsistent, since the function would not depend on the values stored in t, hence
the two last axioms would say both that a==b+1 and a==b for some a and b.

1 /*@ axiomatic NbOcc {
2 @ // nb_occ(t,i,j,e) gives the number of occurrences of e in t[i..j]
3 @ // (in a given memory state labelled L)
4 @ logic integer nb_occ{L}(double *t, integer i, integer j,
5 @ double e);
6 @ axiom nb_occ_empty{L}:
7 @ \forall double *t, e, integer i, j;
8 @ i > j ==> nb_occ(t,i,j,e) == 0;
9 @ axiom nb_occ_true{L}:

10 @ \forall double *t, e, integer i, j;
11 @ i <= j && t[j] == e ==>
12 @ nb_occ(t,i,j,e) == nb_occ(t,i,j-1,e) + 1;
13 @ axiom nb_occ_false{L}:
14 @ \forall double *t, e, integer i, j;
15 @ i <= j && t[j] != e ==>
16 @ nb_occ(t,i,j,e) == nb_occ(t,i,j-1,e);
17 @ }
18 @*/

Example 2.49 This second example defines a predicate that indicates whether two memory
blocks of the same size are a permutation of each other. It illustrates the use of more than a
single label. Thus, the \at operator is mandatory here. Indeed the two blocks may come from
two distinct memory states. Typically, one of the post conditions of a sorting function would
be permut{Pre,Post}(t,t).

1 /*@ axiomatic Permut {

62

2.6. LOGIC SPECIFICATIONS

2 @ // permut{L1,L2}(t1,t2,n) is true whenever t1[0..n-1] in state L1
3 @ // is a permutation of t2[0..n-1] in state L2
4 @ predicate permut{L1,L2}(double *t1, double *t2, integer n);
5 @ axiom permut_refl{L}:
6 @ \forall double *t, integer n; permut{L,L}(t,t,n);
7 @ axiom permut_sym{L1,L2} :
8 @ \forall double *t1, *t2, integer n;
9 @ permut{L1,L2}(t1,t2,n) ==> permut{L2,L1}(t2,t1,n) ;

10 @ axiom permut_trans{L1,L2,L3} :
11 @ \forall double *t1, *t2, *t3, integer n;
12 @ permut{L1,L2}(t1,t2,n) && permut{L2,L3}(t2,t3,n)
13 @ ==> permut{L1,L3}(t1,t3,n) ;
14 @ axiom permut_exchange{L1,L2} :
15 @ \forall double *t1, *t2, integer i, j, n;
16 @ \at(t1[i],L1) == \at(t2[j],L2) &&
17 @ \at(t1[j],L1) == \at(t2[i],L2) &&
18 @ (\forall integer k; 0 <= k < n && k != i && k != j ==>
19 @ \at(t1[k],L1) == \at(t2[k],L2))
20 @ ==> permut{L1,L2}(t1,t2,n);
21 @ }
22 @*/

2.6.10 Memory footprint specification: reads clause

logic-function-decl ::= logic type-expr poly-id
parameters reads-clause ;

logic-predicate-decl ::= predicate poly-id
parameters? reads-clause ;

reads-clause ::= reads locations

logic-function-def ::= logic type-expr poly-id
parameters reads-clause = term ;

logic-predicate-def ::= predicate poly-id
parameters? reads-clause = pred ;

Figure 2.20: Grammar for logic declarations with reads clauses

Experimental
Logic declarations may be augmented with a reads clause, with the syntax given in Figure 2.20,
which extends the syntax in Figure 2.14. This feature allows specifying the footprint of a
hybrid predicate or function, that is, the set of memory locations that it depends on. From
such information, one might deduce properties of the form f{L1}(args) = f{L2}(args) if it
is known that between states L1 and L2, the memory changes are disjoint from the declared
footprint. Only mutable locations need be listed in a reads footprint: locations that hold
constants that do not change in the course of a program may be omitted.

Example 2.50 The following is the same as example 2.48 augmented with a reads clause.
1 /*@ axiomatic Nb_occ {
2 @ logic integer nb_occ{L}(double *t, integer i, integer j,
3 @ double e)

63

CHAPTER 2. SPECIFICATION LANGUAGE

4 @ reads t[i..j];
5 @
6 @ axiom nb_occ_empty{L}: // ...
7 @
8 @ // ...
9 @ }

10 @*/

If for example a piece of code between labels L_1 and L_2 only modifies t[k] for some index k
outside i..j, then one can deduce that nb_occ{L_1}(t,i,j,e)==nb_occ{L_2}(t,i,j,e).

2.6.11 Specification Modules

Experimental
Specification modules can be provided to encapsulate several logic definitions, for example

1

2 /*@ module List {
3 @
4 @ type list<A> = Nil | Cons(A , list<A>);
5 @
6 @ logic integer length<A>(list<A> l) =
7 @ \match l {
8 @ case Nil : 0
9 @ case Cons(h,t) : 1+length(t) } ;

10 @
11 @ logic A fold_right<A,B>((A -> B -> B) f, list<A> l, B acc) =
12 @ \match l {
13 @ case Nil : acc
14 @ case Cons(h,t) : f(h,fold_right(f,t,acc)) } ;
15 @
16 @ logic list<A> filter<A>((A -> boolean) f, list<A> l) =
17 @ fold_right((\lambda A x, list<A> acc;
18 @ f(x) ? Cons(x,acc) : acc), Nil) ;
19 @
20 @ }
21 @*/

Module components are then accessible using a qualified notation like List::length .
Predefined algebraic specifications can be provided as libraries (see section 3), and imported
using a construct like

1 //@ import List;

where the file List.acsl contains logic definitions, like the List module above.

2.7 Pointers and physical addressing

The grammar for terms and predicates is extended with new constructs given in Figure 2.21.
The arguments of these built-in predicates are terms or location-lists designating sets of
locations. Each argument is a set of values of some common pointer type as defined in
Section 2.3.4. As indicated below where necessary, many built-in functions and predicates
dealing with pointers depend on the size of the referenced type. Thus, they cannot be given

64

2.7. POINTERS AND PHYSICAL ADDRESSING

a pointer to void as an argument. On the other hand, a pointer referencing an incomplete
type (hence having an abstract size) is possible.

term ::= \null
| \base_addr one-label? (term)
| \block_length one-label? (term)
| \offset one-label? (term)
| \allocation one-label? (term)

pred ::= \allocable one-label? (term)
| \freeable one-label? (term)
| \fresh two-labels? (term, term)
| \valid one-label? (locations-list)
| \valid_read one-label? (locations-list)
| \separated (location , locations-list)

one-label ::= { label-id }

two-labels ::= { label-id, label-id }

Figure 2.21: Grammar extension of terms and predicates about memory

2.7.1 Memory blocks and pointer dereferencing

C memory is structured into allocated blocks that can come either from a declarator or a
call to one of the calloc, malloc or realloc functions. A block is characterized by its base
address, which is the address of the declared object (the first declared object in case of an
array declarator) or the pointer returned by the allocating function (when the allocation
succeeds), and its length.
ACSL provides the following built-in functions to deal with allocated blocks. Each of them
takes an optional label identifier as argument. The default value of that label is defined in
Section 2.4.3.

• \base_addr{L}(p) returns the base address of the allocated block containing, at the label
L, the pointer p

\base_addr{id} : void* → char*

• \block_length{L}(p) returns the length (in bytes) of the allocated block containing, at
the label L, its argument pointer.

\block_length{id} : void* → size_t

In addition, dereferencing a pointer may lead to run-time errors. A pointer p is said to be
valid if *p is guaranteed to produce a definite value according to the C standard [16]. The
following built-in predicates deal with this notion:

• \valid applies to a tset (see Section 2.3.4) each of whose elements has some common
pointer type (other than void*). \valid {L}(s) holds if and only if dereferencing any
p ∈ s is safe at label L, both for reading from *p and writing to it. In particular,
\valid {L}(\empty) holds for any label L.

\valid {id} : set<α *> → boolean

65

CHAPTER 2. SPECIFICATION LANGUAGE

• \valid_read applies to a tset of some pointer type (other than void*) and holds if and
only if it is safe to read from all the pointers in the set

\valid_read{id} : set<α *> → boolean

\valid {L}(s) implies \valid_read{L}(s) but the reverse is not true. In particular, it is allowed
to read from a string literal, but not to write in it (see [16], 6.4.5§6).

The status of \valid and \valid_read constructs depends on the type of their argument.
Namely, \valid {L}((int *) p) and \valid {L}((char *)p) are not equivalent. On the other
hand, if we ignore potential alignment constraints, the following equivalence is true for any
pointer p:

\valid {L}(p) <==> \valid{L}(((char *)p)+(0 .. sizeof(*p)-1))

and similarly for \valid_read

\valid_read{L}(p) <==> \valid_read{L}(((char *)p)+(0 .. sizeof(*p)-1))

Some shortcuts are provided:

• \null is an extra notation for the null pointer (i.e. a shortcut for (void*)0). As in
C itself (see [16], 6.3.2.3§3), the constant 0 can have any pointer type. Note that
\valid {L}((char*)\null) and \valid_read{L}((char*)\null) are always false, for any logic
label L.

• \offset {L}(p) returns the offset in bytes between p and its base address
\offset {id} : void* → size_t
\offset {L}(p) = (char*)p - \base_addr{L}(p)

Again, if there are no alignment constraints, the following property holds: for any set
of pointers s and label L, \valid_read{L}(s) if and only if for all p∈s:

\offset {L}(p) >= 0 && \offset{L}(p) + sizeof(*p) <= \block_length{L}(p)

2.7.2 Separation

ACSL provides a built-in function to deal with separation of locations:

• \separated applies to tsets (see Section 2.3.4) of some common pointer type other than
void*. \separated(s1,s2) holds for any set of pointers s1 and s2 if and only if for all p∈s1

and q∈s2:

forall integer i,j; 0 <= i < sizeof(*p), 0 <= j < sizeof(*q)
==> (char*)p + i != (char*)q + j

In fact, \separated is an n-ary predicate.
\separated(s1,..,sn) means that for each i 6= j, \separated(si,sj).

Note that \separated does not have a label argument. The separation of sets of locations can
be determined without reference to the content of the heap, so no reference to a heap state
is needed. However the evaluation of each argument may depend on a heap state, so \at
expressions are often needed.

66

2.7. POINTERS AND PHYSICAL ADDRESSING

2.7.3 Dynamic allocation and deallocation

Experimental

Allocation-clauses allow specifying which memory locations are dynamically allocated or
deallocated. The grammar for those constructions is given in Figure 2.22.

allocates \nothing and frees \nothing are respectively equivalent to allocates \empty and
frees \empty; it is left for convenience like for assigns clauses.

allocation-clause ::= allocates dyn-allocation-addresses ;
| frees dyn-allocation-addresses ;

loop-allocation ::= loop allocates dyn-allocation-addresses ;
| loop frees dyn-allocation-addresses ;

dyn-allocation-addresses ::= locations a

a\nothing is allowed

Figure 2.22: Grammar for dynamic allocations and deallocations

2.7.3.1 Allocation clauses for function and statement contracts

Clauses allocates and frees are tied together. The simple contract

/*@ frees P1,P2,...;
@ allocates Q1,Q2,...;
@*/

means that any memory address that does not belong to the union of the sets Pi and Qj of
some common pointer type other than void* has the same allocation status (see below) in the
post-state as in the pre-state. The only difference between allocates and frees is that sets Pi

are evaluated in the pre-state, and sets Qi are evaluated in the post-state.

The built-in type allocation_status can take the following values:

/*@
type allocation_status =

\static | \register | \automatic | \dynamic | \unallocated;
*/

Built-in function \allocation {L}(p) returns the allocation status of the block containing, at
the label L, the pointer p

\allocation {id} : void* → allocation_status

This function is such that for any pointer p and label L

\allocation {L}(p) == \allocation{L}(\base_addr(p))

and

\allocation {L}(p)==\unallocated ==> !\valid_read{L}((char*)p)

allocates Q1,. . .,Qn is equivalent to the postcondition

67

CHAPTER 2. SPECIFICATION LANGUAGE

\forall char* p;
\separated(\union(Q1,. . .,Qn),p)==>

(\base_addr{Here}(p)==\base_addr{Pre}(p)
&& \block_length{Here}(p)==\block_length{Pre}(p)
&& \valid{Here}(p)<==>\valid{Pre}(p)
&& \valid_read{Here}(p)<==>\valid_read{Pre}(p)
&& \allocation {Here}(p)==\allocation{Pre}(p))

In fact, just as the assigns clause does not specify precisely which memory locations are
modified (just which are permitted to be modified), the allocation-clauses do not specify
which memory locations are dynamically allocated or deallocated (just those that might be
allocated or deallocated). Pre-conditions and post-conditions should be added to complete
the specifications about allocations and deallocations. The following shortcuts can be used
for that:

• \allocable {L}(p) holds if and only if the pointer p refers, at the label L, to the base
address of an unallocated memory block.

\allocable {id} : void* → boolean
For any pointer p and label L

\allocable {L}(p) <==> (\allocation{L}(p)==\unallocated
&& (void*)p==(void*)\base_addr{L}(p))

• \freeable {L}(p) holds if and only if the pointer p refers, at the label L, to the base
address of an allocated memory block that can be safely released using the C function
free. Note that \freeable (\null) does not hold, despite NULL being a valid argument to
the C function free.

\freeable {id} : void* → boolean
For any pointer p and label L

\freeable {L}(p) <==> (\allocation{L}(p)==\dynamic
&& (void*)p==(void*)\base_addr{L}(p))

• \fresh {L0,L1}(p,n) indicates that p refers to the base address of an allocated memory
block at label L1, but that it is not the case at label L0. The predicate ensures also that,
at label L1, the length (in bytes) of the block allocated dynamically equals n.

\fresh {id,id} : void*, integer → boolean
For any pointer p and labels L0 and L1

\fresh {L0,L1}(p,n) <==> (\allocable{L0}(p) && \freeable{L1}(p) &&
\block_length{L1}(p)==n &&
\valid {L1}((char*)p+(0 .. (n-1)))

Example 2.51 malloc and free functions can be specified as follows.
1

2 typedef unsigned long size_t;
3

4 /*@ assigns \nothing;
5 @ allocates \result ;
6 @ ensures \result ==\null || \fresh{Old,Here}(\result,n);
7 @*/
8 void *malloc(size_t n);
9

68

2.7. POINTERS AND PHYSICAL ADDRESSING

10 /*@ requires p!=\null ==> \freeable{Here}(p);
11 @ assigns \nothing;
12 @ frees p;
13 @ ensures p!=\null ==> \allocable {Here}(p);
14 @*/
15 void free(void *p);

Default labels for constructs dedicated to memory are such that the logic label Here can be
omitted.

When a behavior contains only one of the two allocation clauses, the given clause specifies
the whole set of memory addresses to consider. This means that the set value for the other
clause of that behavior defaults to \nothing. Now, when neither of the two allocation clauses
is given, the meaning is different for anonymous behaviors and named behaviors:

• a named behavior without allocation clauses does not specify anything about allocations
and deallocations. The allocated and deallocated memory blocks are in fact specified
by the anonymous behavior of the contract. There is no condition to verify for these
named behaviors about allocations and deallocations;

• for an anonymous behavior, the absence of allocation clauses means that there is no
newly allocated nor deallocated memory block. That is equivalent to stating allocates
\nothing; (which is equivalent to allocates \nothing; frees \nothing;).

These rules are such that contracts without any allocation clause should be considered as
having only one allocates \nothing; leading to a condition to verify for each anonymous
behavior.

Example 2.52 More precise specifications can be given using named behaviors under the
assumption of assumes clauses.

1

2 typedef unsigned long size_t;
3

4 //@ ghost int heap_status;
5 /*@ axiomatic dynamic_allocation {
6 @ predicate is_allocable(size_t n) // Can a block of n bytes be allocated?
7 @ reads heap_status;
8 @ }
9 @*/

10

11 /*@ allocates \result ;
12 @ behavior allocation:
13 @ assumes is_allocable(n);
14 @ assigns heap_status;
15 @ ensures \fresh (\result ,n);
16 @ behavior no_allocation:
17 @ assumes !is_allocable(n);
18 @ assigns \nothing;
19 @ allocates \nothing;
20 @ ensures \result ==\null;
21 @ complete behaviors;
22 @ disjoint behaviors ;
23 @*/

69

CHAPTER 2. SPECIFICATION LANGUAGE

24 void *malloc(size_t n);
25

26 /*@ frees p;
27 @ behavior deallocation:
28 @ assumes p!=\null;
29 @ requires \freeable (p);
30 @ assigns heap_status;
31 @ ensures \allocable (p);
32 @ behavior no_deallocation:
33 @ assumes p==\null;
34 @ assigns \nothing;
35 @ frees \nothing;
36 @ complete behaviors;
37 @ disjoint behaviors ;
38 @*/
39 void free(void *p);

The behaviors named allocation and deallocation do not need an allocation clause. For
example, the allocation constraint of the allocation behavior is given by the clause allocates
\result of the anonymous behavior of the malloc function contract. To set a stronger con-
straint into the behavior named no_allocation, the clause allocates \nothing should be given.

2.7.3.2 Allocation clauses for loop annotations
Loop annotations may contain similar clauses allowing one to specify which memory locations
are dynamically allocated or deallocated by a loop. The grammar for those constructions is
given in Figure 2.22.
The clauses loop allocates and loop frees are tied together. The simple loop annotation

/*@ loop frees P1,P2,...;
@ loop allocates Q1,Q2,...; */

means that any memory address that does not belong to the union of sets of terms Pi and
Qi has the same allocation status in the current state as before entering the loop. The only
difference between these two clauses is that sets Pi are evaluated in the state before entering
the loop (label LoopEntry), and Qi are evaluated in the current loop state (label LoopCurrent).
Just as for loop assigns , the loop annotations loop frees and loop allocates define a loop
invariant.
More precisely, this loop annotation

//@ loop allocates Q1,...,Qn; */

is equivalent to the loop invariant
\forall char* p;
\separated(\union(Q1,. . .,Qn),p) ==>

(\base_addr{Here}(p)==\base_addr{LoopEntry}(p)
&& \block_length{Here}(p)==\block_length{LoopEntry}(p)
&& (\valid{Here}(p)<==>\valid{LoopEntry}(p))
&& (\valid_read{Here}(p)<==>\valid_read{LoopEntry}(p))
&& \allocation {Here}(p)==\allocation{LoopEntry}(p))

Example 2.53

70

2.8. SETS AND LISTS

1 /*@ assert \forall integer j; 0<=j<n ==> \freeable(q[j]); */
2 /*@ loop assigns q[0..(i-1)];
3 @ loop frees q[0..\at(i-1,LoopCurrent)];
4 @ loop invariant \forall integer j ;
5 0 <= j < i ==> \allocable(\at(q[j],LoopEntry));
6 @ loop invariant \forall integer j ; 0 <= i <= n;
7 @*/
8 for (i=0; i<n; i++) {
9 free(q[i]);

10 q[i]=NULL;
11 }
12

The addresses of locations q[0..n] are not modified by the loop, but their values are. The
clause loop frees catches the set of the memory blocks that may have been released by the
previous loop iterations. The first loop invariant defines exactly these memory blocks. On
the other hand, loop frees indicates that the remaining blocks have not been freed since the
beginning of the loop. Hence, they are still \freeable as expressed by the initial assert, and
free(q[i]) will succeed at next step.

A loop-annot without an allocation clause implicitly states loop allocates \nothing. That
means the allocation status is not modified by the loop body. A loop-behavior without
allocation clause means that the allocated and deallocated memory blocks are in fact specified
by the allocation clauses of the loop-annot (The grammar of loop-annot and loop-behaviors
is given in Figure 2.10).

2.8 Sets and lists

2.8.1 Finite sets

Sets of memory locations (tsets), as defined in Section 2.3.4, can be used as first-class values
in annotations. All the elements of such a set must share the same type (taking into account
the usual implicit conversions). Sets have the built-in type set<A> where A is the type of
terms contained in the set.
In addition, it is possible to consider sets of pointers to values of different types. In
this case, the set is of type set<char*> and each of its elements e is converted to
(char*)e + (0..sizeof(*e)-1).

Example 2.54 The following example defines the footprint of a structure, that is the set of
locations that can be accessed from an object of this type.

1 struct S {
2 char *x;
3 int *y;
4 };
5

6 //@ logic set<char*> footprint(struct S s) = \union(s.x,s.y) ;
7

8 /*@ logic set<char*> footprint2(struct S s) =
9 @ \union(s.x,(char*)s.y+(0..sizeof(s.y)-1)) ;

10 @*/

71

CHAPTER 2. SPECIFICATION LANGUAGE

11

12 /*@ axiomatic Conv {
13 axiom conversion: \forall struct S s;
14 footprint(s) == \union(s.x,(char*) s.y + (0 .. sizeof(int) - 1));
15 }
16 */

In the first definition, since the arguments of union are a set<char*> and a set<int*>, the
result is a set<char*> (according to typing of union). In other words, the two definitions
above are equivalent.
This logic function can be used as an argument of \separated or of an assigns clause.

Thus, the \separated predicate satisfies the following property (with s1 of type set<τ1*> and
s2 of type set<τ2*>)

1 \separated(s1,s2) <==>
2 (\forall τ1* p; \forall τ2* q;
3 \subset(p,s1) && \subset(q,s2) ==>
4 (\forall integer i,j;
5 0 <= i < \sizeof(τ1) && 0 <= j < \sizeof(τ2) ==>
6 (char*)p + i != (char*)q + j))

and a clause assigns L1,. . .,Ln is equivalent to the postcondition
\forall char* p; \separated(\union(&L1,. . .,&Ln),p) ==> *p == \old(*p)

2.8.2 Finite lists

The built-in type \list <A> can be used for finite sequences of elements of the same type A.
For constructing such homogeneous lists, built-in functions and notations are available.
The term \Nil denotes the empty sequence.

\list <A> \Nil<A>;

The function \Cons prepends an element elt onto a sequence tail

\list <A> \Cons<A>(<A> elt, \list<A> tail);

while \concat concatenates two sequences
\list <A> \concat<A>(\list<A> front, \list<A> tail);

and \repeat repeats a sequence n times, n being a positive number
\list <A> \repeat<A>(\list <A> seq, integer n);

The semantics of these functions rely on two useful functions: \length returns the number of
elements of a sequence seq

integer \length<A>(\list <A> seq);

and \nth returns the element that is at position n of the given sequence seq. The first element
is at position 0.

<A> \nth<A>(\list<A> seq, integer n);

72

2.8. SETS AND LISTS

Last but not least, the functions \repeat and \nth aren’t specified for negative number n. The
function \nth(l) is also unspecified for index greater than or equal to \length(l).
The notation [| |] is just the same thing as \Nil and [|1,2,3|] is the sequence of three inte-
gers. In addition the infix operator ^ (resp. *^) is the same as function \concat (resp. \repeat).
These infix operators have the same precedence as the conventional bit-wise exclusive-or op-
erator and are left-associative.

term ::= [| |] empty list
| [| term (, term)∗ |] list of elements
| term ^ term list concatenation (overloading bitwise-xor

operator)
| term *^ term list repetition

Figure 2.23: Notations for built-in list datatype

Example 2.55 The following example illustrates using such a data structure and notations
in connection with ghost code.

1 //@ ghost int ghost_trace;
2 /*@ axiomatic TraceObserver {
3 @ logic \list < integer > observed_trace{L} reads ghost_trace;
4 @ }
5 @*/
6

7 /*@ ghost
8 /@ assigns ghost_trace;
9 @ ensures register : observed_trace == (\old(observed_trace) ^ [| a |]);

10 @/
11 void track(int a);
12 */
13

14 /*@ requires empty_trace: observed_trace == \Nil;
15 @ assigns ghost_trace;
16 @ ensures head_seq: \nth(observed_trace,0) == x;
17 @ behavior shortest_trace:
18 @ assumes no_loop_entrance: n<=0;
19 @ ensures shortest_len: \length(observed_trace) == 2;
20 @ ensures shortest_seq: observed_trace == [| x, z |];
21 @ behavior longest_trace:
22 @ assumes loop_entrance: n>0;
23 @ ensures longest_len: \length(observed_trace) == 2+n;
24 @ ensures longest_seq:
25 @ observed_trace == ([| x |] ^ ([| y |] *^ n) ^ [| z |]);
26 @*/
27 void loops(int n, int x, int y, int z) {
28 int i;
29 //@ ghost track(x);
30 /*@ loop assigns i, ghost_trace;
31 @ loop invariant idx_min: 0<=i;
32 @ loop invariant idx_max: 0<=n ? i<=n : i<=0;
33 @ loop invariant inv_seq:
34 @ observed_trace == (\at(observed_trace,LoopEntry) ^ ([| y |] *^ i));
35 @*/

73

CHAPTER 2. SPECIFICATION LANGUAGE

36 for (i=0; i<n; i++) {
37 //@ ghost track(y);
38 ;
39 }
40 //@ ghost track(z);
41 }

The function track adds a value to the tail of a ghost trace variable. Calls to that function
inside ghost statements allow modifying that trace; also properties of the observed_trace can
be specified. Notice that the assigned ghost variable is ghost_trace.

2.9 Abrupt termination

abrupt-clause ::= exits-clause

exits-clause ::= exits pred ;

abrupt-clause-stmt ::= breaks-clause | continues-clause | returns-clause
| exits-clause

breaks-clause ::= breaks pred ;

continues-clause ::= continues pred ;

returns-clause ::= returns pred ;

term ::= \exit_status

Figure 2.24: Grammar of contracts about abrupt terminations

The ensures clause of function and statement contracts does not constrain the post-state
when the annotated function or statement terminates abruptly. In such cases, abrupt clauses
can be used within simple clause or behavior body. The allowed constructs are shown in
Figure 2.24.
The clauses breaks , continues and returns can only be found in a statement contract and state
properties on the program state that hold when the annotated statement terminates abruptly
with the corresponding statement (break, continue or return).
Inside these clauses, the construct \old(e) is allowed and denotes, as for statement contracts
ensures , assigns and allocates , the value of e in the pre-state of the statement. More generally,
the visibility in abrupt clauses of predefined logic labels (presented in Section 2.4.3) is the
same as in ensures clauses.
For the returns case, the \result construct is allowed (if the function does not return void)
and is bound to the returned value.

Example 2.56 The following example illustrates each abrupt clause of statement contracts.
1 int f(int x) {
2

3 while (x > 0) {
4

5 /*@ breaks x % 11 == 0 && x == \old(x);
6 @ continues (x+1) % 11 != 0 && x % 7 == 0 && x == \old(x)-1;
7 @ returns (\result +2) % 11 != 0 && (\result+1) % 7 != 0

74

2.9. ABRUPT TERMINATION

8 @ && \result % 5 == 0 && \result == \old(x)-2;
9 @ ensures (x+3) % 11 != 0 && (x+2) % 7 != 0 && (x+1) % 5 != 0

10 @ && x == \old(x)-3;
11 @*/
12 {
13 if (x % 11 == 0) break;
14 x--;
15 if (x % 7 == 0) continue;
16 x--;
17 if (x % 5 == 0) return x;
18 x--;
19 }
20 }
21 return x;
22 }

The exits clause can be used in both function and statement contracts to give behavioral
properties to the main function or to any function that may exit the program, e.g. by calling
the exit function. The simple contract

/*@ exits E;
@*/

means that, if the program terminates while executing the corresponding function (or state-
ment), then it exits in a post-state where the property E holds. In any other termination
kind, the exits clause does not constrain the post-state.
In such clauses, \old(e) is allowed and denotes the value of e in the pre-state of the function
or statement, and \exit_status is bound to the return code, e.g. the value returned by main or
the argument passed to exit. The construct \exit_status can be used only in exits, assigns
and allocates clauses; \result cannot be used in exits clauses.

Example 2.57 Here is a complete specification of the exit function, which performs an
unconditional exit of the main function:

1 /*@ terminates \true;
2 @ assigns \nothing;
3 @ ensures \false ;
4 @ exits \exit_status == status;
5 @*/
6 void exit(int status);
7

8 int status;
9

10 /*@ terminates \true;
11 @ assigns status;
12 @ exits !cond && \exit_status == 1 && status == val;
13 @ ensures cond && status == \old(status);
14 @*/
15 void may_exit(int cond, int val) {
16 if (! cond) {
17 status = val;
18 exit(1);
19 }
20 }

75

CHAPTER 2. SPECIFICATION LANGUAGE

Note that the specification of the may_exit function is incomplete since it allows modifications
of the variable status when no exit is performed. Using behaviors, it is possible to distinguish
between the exit case and the normal case, as in the following specification:

8 /*@ behavior no_exit :
9 @ assumes cond;

10 @ assigns \nothing;
11 @ exits \false ;
12 @ behavior no_return :
13 @ assumes !cond;
14 @ assigns status;
15 @ exits \exit_status == 1 && status == val;
16 @ ensures \false ;
17 @*/
18 void may_exit(int cond, int val) ;

In contrast to ensures clauses, assigns , allocates and frees clauses of function and statement
contracts constrain the post-state even when the annotated function or statement terminates
abruptly. This is shown in example 2.57 for a function contract.

2.10 Dependencies information

Experimental
An extended syntax of assigns clauses, described in Figure 2.25, allows specifying data de-
pendencies and functional expressions .

assigns-clause ::= assigns locations-list (\from locations)? ;
| assigns term \from locations = term ;

Figure 2.25: Grammar for dependencies information

Such a clause indicates that the assigned values can only depend upon the locations mentioned
in the \from part of the clause. Again, this is an over-approximation: all of the locations
involved in the computation of the modified values must be present, but some of locations
might not be used in practice. If the \from clause is absent, all of the locations reachable at
the given point of the program are supposed to be used. Moreover, for a single location, it is
possible to give the precise relation between its final value and the value of its dependencies.
This expression is evaluated in the pre-state of the corresponding contract.

Example 2.58 The following example is a variation of the array_sum function in exam-
ple 2.45, in which the values of the array are added to a global variable total.

1 double total = 0.0;
2

3 /*@ requires n >= 0 && \valid(t+(0..n-1)) ;
4 @ assigns total
5 \from t[0..n-1] = total + \sum(0,n-1,\lambda int k; t[k]);
6 @*/
7 void array_sum(double t[],int n) {
8 int i;
9 for(i=0; i < n; i++) total += t[i];

10 return;
11 }

76

2.11. DATA INVARIANTS

Example 2.59 The composite element modifier operators can be useful for writing such func-
tional expressions.

1 struct buffer { int pos ; char buf[80]; } line;
2

3 /*@ requires 80 > line.pos >= 0 ;
4 @ assigns line
5 @ \from line =
6 { line \with .buf =
7 { line.buf \with [line.pos] = (char)'\0' } };
8 @*/
9 void add_eol() {

10 line.buf[line.pos] = '\0' ;
11 }

2.11 Data invariants

Data invariants are properties on data that are supposed to hold permanently during the
lifetime of these data. ACSL distinguishes between

• global invariants and type invariants: the former only apply to specified global variables,
whereas the latter are associated with a static type, and apply to any variables of the
corresponding type;

• strong invariants and weak invariants: strong invariants must be valid at any time
during program execution (more precisely at any sequence point as defined in the C
standard), whereas weak invariants must be valid at function boundaries (function
entrance and exit) but can be violated in between.

data-inv-def ::= data-invariant | type-invariant

data-invariant ::= inv-strength? global invariant
id : pred ;

type-invariant ::= inv-strength? type invariant
id (C-type-name id) = pred ;

inv-strength ::= weak | strong

Figure 2.26: Grammar for declarations of data invariants

The syntax for declaring data invariants is given in Figure 2.26. The strength modifier
defaults to weak.

Example 2.60 In the following example, we declare

1. a weak global invariant a_is_positive, which specifies that global variable a should re-
main positive (weakly, so this property might be violated temporarily between function
calls);

2. a strong type invariant for variables of type temperature;

3. a weak type invariant for variables of type struct S.

77

CHAPTER 2. SPECIFICATION LANGUAGE

1 int a;
2 //@ global invariant a_is_positive: a >= 0 ;
3

4 typedef double temperature;
5 /*@ strong type invariant temp_in_celsius(temperature t) =
6 @ t >= -273.15 ;
7 @*/
8

9 struct S {
10 int f;
11 };
12 //@ type invariant S_f_is_positive(struct S s) = s.f >= 0 ;

2.11.1 Semantics

The distinction between strong and weak invariants has to do with the sequence points where
the property is supposed to hold. The distinction between global and type invariants has to
do with the set of values on which they are supposed to hold.

• Weak global invariants are properties that apply to global data and hold at any function
entrance and function exit.

• Strong global invariants are properties that apply to global data and hold at any step
during execution (starting after initialization of these data).

• A weak type invariant on type τ must hold at any function entrance and exit, and
applies to any value (variable, field, array element, formal parameter, etc.) with static
type τ . If the result of a function is of type τ , that result must also satisfy its weak
invariant at function exit.

• A strong type invariant on type τ must hold at any step (more precisely, ay sequence
point as defined in C) during execution, and applies to any global variable, local variable,
or formal parameter with static type τ . If the result of a function has type τ , that result
must also satisfy its strong invariant at function exit.

Example 2.61 The following example illustrates the use of a weak data invariant on a local
static variable.

1 void out_char(char c) {
2 static int col = 0;
3 //@ global invariant I : 0 <= col <= 79;
4 col++;
5 if (col >= 80) col = 0;
6 }

Example 2.62 Here is a longer example, the famous Dijkstra’s Dutch flag algorithm.

1 typedef enum { BLUE, WHITE, RED } color;
2 /*@ type invariant isColor(color c) =
3 @ c == BLUE || c == WHITE || c == RED ;
4 @*/
5

78

2.11. DATA INVARIANTS

6 /*@ predicate permut{L1,L2}(color *t1, color *t2, integer n) =
7 @ \at(\valid (t1+(0..n)),L1) && \at(\valid(t2+(0..n)),L2) &&
8 @ \numof(0,n,\lambda integer i; \at(t1[i],L1) == BLUE) ==
9 @ \numof(0,n,\lambda integer i; \at(t2[i],L2) == BLUE)

10 @ &&
11 @ \numof(0,n,\lambda integer i; \at(t1[i],L1) == WHITE) ==
12 @ \numof(0,n,\lambda integer i; \at(t2[i],L2) == WHITE)
13 @ &&
14 @ \numof(0,n,\lambda integer i; \at(t1[i],L1) == RED) ==
15 @ \numof(0,n,\lambda integer i; \at(t2[i],L2) == RED);
16 @*/
17

18 /*@ requires \valid (t+i) && \valid(t+j);
19 @ assigns t[i],t[j];
20 @ ensures t[i] == \old(t[j]) && t[j] == \old(t[i]);
21 @*/
22 void swap(color t[], int i, int j) {
23 int tmp = t[i];
24 t[i] = t[j];
25 t[j] = tmp;
26 }
27 typedef struct flag {
28 int n;
29 color *colors;
30 } flag;
31 /*@ type invariant is_colored(flag f) =
32 @ f.n >= 0 && \valid(f.colors+(0..f.n-1)) &&
33 @ \forall integer k; 0 <= k < f.n ==> isColor(f.colors[k]) ;
34 @*/
35

36 /*@ predicate isMonochrome{L}(color *t, integer i, integer j,
37 @ color c) =
38 @ \forall integer k; i <= k <= j ==> t[k] == c ;
39 @*/
40

41 /*@ assigns f.colors[0..f.n-1];
42 @ ensures
43 @ \exists integer b, integer r;
44 @ isMonochrome(f.colors,0,b-1,BLUE) &&
45 @ isMonochrome(f.colors,b,r-1,WHITE) &&
46 @ isMonochrome(f.colors,r,f.n-1,RED) &&
47 @ permut{Old,Here}(f.colors,f.colors,f.n-1);
48 @*/
49 void dutch_flag(flag f) {
50 color *t = f.colors;
51 int b = 0;
52 int i = 0;
53 int r = f.n;
54 /*@ loop invariant
55 @ (\forall integer k; 0 <= k < f.n ==> isColor(t[k])) &&
56 @ 0 <= b <= i <= r <= f.n &&
57 @ isMonochrome(t,0,b-1,BLUE) &&
58 @ isMonochrome(t,b,i-1,WHITE) &&
59 @ isMonochrome(t,r,f.n-1,RED) &&
60 @ permut{Pre,Here}(t,t,f.n-1);
61 @ loop assigns b,i,r,t[0 .. f.n-1];

79

CHAPTER 2. SPECIFICATION LANGUAGE

62 @ loop variant r - i;
63 @*/
64 while (i < r) {
65 switch (t[i]) {
66 case BLUE:
67 swap(t, b++, i++);
68 break;
69 case WHITE:
70 i++;
71 break;
72 case RED:
73 swap(t, --r, i);
74 break;
75 }
76 }
77 }

Note that in this example the invariant could be declared strong . However, not all C enums
would obey a corresponding invariant, because in C, enum values are just int s and can hold
values other than those listed in the declaration of the enum type.

2.11.2 Model variables and model fields

A model variable is a variable introduced in the specification with the keyword model . Its type
must be a logic type. Analogously, types may have model fields. These are used to provide
abstract specifications for functions whose concrete implementation must remain private.

logic-def ::= model parameter ; model variable
| model C-type-name { parameter ;? } ; model field ;

Figure 2.27: Grammar for declarations of model variables and fields

The precise syntax for declaring model variables and fields is given in Figure 2.27. It is
presented as additions to the regular C grammar for declarations.

The informal semantics of model variables is as follows.

• Model variables can only appear in specifications. They are not lvalues, thus they
cannot be assigned directly (unlike ghost variables, see below).

• Nevertheless, a function contract might state that a model variable is assigned, meaning
that the value of the model variable may be different between the pre and post states
of the contract.

• When a function contract mentions model variables:

– the precondition is implicitly existentially quantified over those variables;

– the postconditions are universally quantified over the old values of model variables,
and existentially quantified over the new values.

80

2.11. DATA INVARIANTS

Thus, in practice, the only way to prove that a function body satisfies a contract with model
variables is to provide an invariant relating model variables and concrete variables, as in the
example below.

Model fields behave the same, but they are attached to any value whose static type is the one
of the model declaration. A model field can be attached to any C type, not only to struct.
When it is attached to a compound type, however, it must not have the same name as a C
field of that compound type. In addition, model fields are “inherited” by a typedef in the
sense that the newly defined type has also the model fields of its parents (and can acquire
more, which will not be present for the parent). For instance, in the following code, t1 has
one model field m1, while t2 has two model fields, m1 and m2.

1 typedef int t1;
2 typedef t1 t2;
3 /*@ model t1 { int m1 }; */
4 /*@ model t2 { int m2 }; */

Example 2.63 Here is an example of a specification for a function that generates fresh
integers. The contract is given in terms of a model variable that is intended to represent the
set of “forbidden” values, e.g. the values that have already been generated.

1 /* public interface */
2

3 //@ model set<integer> forbidden = \empty;
4

5 /*@ assigns forbidden;
6 @ ensures ! (\result \in \old(forbidden))
7 @ && \result \in forbidden && \subset(\old(forbidden),forbidden);
8 @*/
9 int gen();

The contract is expressed abstractly, telling that

• the forbidden set of values is modified;

• the value returned is not in the set of forbidden values, thus it is “fresh”;

• the new set of forbidden values contains both the value returned and the previous for-
bidden values. The new set may have more values than the union of { \result } and
\old(forbidden).

An implementation of this function might be as follows, where a decision has been made to
generate values in increasing order, so that it is sufficient to record the last value generated.
This decision is made explicit by an invariant.

1 /* implementation */
2 int gen() {
3 static int x = 0;
4 /*@ global invariant I: \forall integer k;
5 @ Set::mem(k,forbidden) ==> x > k;
6 @*/
7 return x++;
8 }

81

CHAPTER 2. SPECIFICATION LANGUAGE

2.11.2.0.1 Remarks Although the syntax of model variables is close to JML model vari-
ables, they differ in the sense that the type of a model variable is a logic type, not a C
type. Also, the semantics above is closer to the one of B machines [1]. It should be noticed
that program verification with model variables does not have a well-established theoretical
background [22, 20], so we deliberately do not provide a precise semantics in this document .

2.12 Ghost variables and statements

Ghost variables and statements are like C variables and statements, but visible only in the
specifications. They are introduced by the ghost keyword at the beginning of the annotation
(i.e. /*@ ghost ... */ or //@ ghost ... for one-line ghost code, as mentioned in section 1.2).
The grammar is given in Figure 2.28, in which only the first form of annotation is used.
In this figure, the C-* non-terminals refer to the corresponding grammar rules of the ISO
standard. The definition of some of them is extended in order to accept ACSL entensions.
Such extensions are sometimes only available in ghost code (e.g. use of logic types), or only
in the C code (e.g. you can’t use /*@ ghost when already in ghost code). This is mentioned
in the definition as well.
The variations with respect to the C grammar are the following:

• Comments within ghost code must be introduced by // and extend until the end of the
line (the ghost code itself is placed inside a C comment, so an embedded comment of
the form /* ... */ would be incorrect C code).

• It is however possible to write multi-line annotations inside ghost code. These annota-
tions are enclosed between /@ and @/ (since as indicated above, /*@ ... */ would lead
to incorrect C code). As in normal annotations, @ characters (most commonly at the
beginning of a line and at the end of an annotation, before the final @/) are considered
to be white space. This style of annotation is only needed and permitted within ghost
code. Also, ghost code may not be written within enclosing ghost code.

• Logical types, such as integer or real are authorized in ghost code .

• A non-ghost function can take ghost parameters. If such a ghost clause is present in the
declarator, then the list of ghost parameters must be non-empty and fixed (no vararg
ghost). The call to the function must then provide the appropriate number of ghost
parameters.

• Any non-ghost if-statement that does not have a non-ghost else clause can be aug-
mented with a ghost one. Similarly, a non-ghost switch can have a ghost default : clause
if it does not have a non-ghost one (there are however semantic restrictions for valid
ghost labelled statements in a switch, see next paragraph for details).

2.12.0.0.1 Semantics of Ghost Code The question of semantics is essential for ghost
code. Informally, the semantics requires that ghost statements do not change the regular
program execution. This implies several conditions, including e.g.:

• Ghost code cannot modify a non-ghost C variable.

• Ghost code cannot modify a non-ghost structure field.

82

2.12. GHOST VARIABLES AND STATEMENTS

C-type-qualifier a ::= \ghost ghost qualifier

C-type-specifier b ::= logic-type

logic-def ::= ghost C-declaration

C-direct-declarator c ::= C-direct-declarator function declarator
(C-parameter-type-list?

) /*@ ghost (
C-parameter-type-list with ghost params
) */

C-postfix-expression d ::= C-postfix-expression function call
(C-argument-expression-list?

) /*@ ghost (
C-argument-expression-list with ghost args
)
*/

C-statement e ::= /*@ ghost
C-statement+ ghost code
*/

| if (C-expression)
C-statement
/*@ ghost
else C-statement ghost alternative
C-statement∗ unconditional ghost code
*/

C-struct-declaration f ::= /*@ ghost
C-struct-declaration ghost field
*/

aExtension to the C standard grammar for type qualifiers in ghost code only
bextension to the C standard grammar for type specifiers in ghost code only
cExtension to the C standard grammar for direct declarators, except in ghost code
dExtension to the C standard grammar for postfix expressions, except in ghost code
eExtension to the C standard grammar for statements, except in ghost code
fExtension to the C standard grammar for struct declarations, except in ghost code

Figure 2.28: Grammar for ghost statements

83

CHAPTER 2. SPECIFICATION LANGUAGE

• If p is a ghost pointer pointing to a non-ghost memory location, then it is forbidden to
assign *p.

• The body of a ghost function is ghost code, and hence may not modify non-ghost
variables or fields.

• If a non-ghost C function is called in ghost code, it must not modify non-ghost variables
or fields.

• If a structure has ghost fields, the sizeof of the structure is the same as the structure
without ghost fields. Also, alignment of fields remains unchanged.

• The control-flow graph of a function must not be altered by ghost statements. In
particular, no ghost return can appear in the body of a non-ghost function. Similarly,
ghost goto, break, and continue cannot jump outside of the innermost non-ghost enclosing
block.

The semantics is specified as follows. First, the execution of a program with ghost code
involves a ghost memory heap and a ghost stack, disjoint from the regular heap and stack.
Ghost variables lie in the ghost heap, as do the ghost fields of structures. Thus, every memory
side-effect can be classified as ghost or non-ghost. Then, the semantics is that any memory
side-effects of ghost code must be only in the ghost heap or the ghost stack.
Notice that this semantics is not statically decidable. It is left to tools to provide approxi-
mations, correct in the sense that any code statically detected as ghost must be semantically
ghost.

Example 2.64 The following example shows some invalid assignments of ghost pointers:
1

2 void f(int x, int *q) {
3 //@ ghost int *p = q;
4 //@ ghost *p = 0;
5 // above assignment is wrong: it modifies *q which lies
6 // in regular memory heap
7

8 //@ ghost p = &x;
9 //@ ghost *p = 0;

10 // above assignment is wrong: it modifies x which lies
11 // in regular memory stack
12

13 }

Example 2.65 The following example shows some invalid ghost statements:
1 int f (int x, int y) {
2 //@ ghost int z = x + y;
3 switch (x) {
4 case 0: return y;
5 //@ ghost case 1: z=y;
6 // above statement is correct.
7 //@ ghost case 2: { z++; break; }
8 // invalid, would bypass the non-ghost default
9 default : y++;

10 }

84

2.12. GHOST VARIABLES AND STATEMENTS

11 return y;
12 }
13

14 int g(int x) {
15 //@ ghost int z = x;
16 if (x > 0) { return x; }
17 //@ ghost else { z++; return x; }
18 // invalid, would bypass the non-ghost return
19 return x+1;
20 }

The qualifier \ghost can be used, in ghost code only, in declaration of a variable to state
precisely in which memory (normal or ghost) its type belongs. Since it is a syntactic element,
it is statically decidable.
Since \ghost is a qualifier, it obeys to the same typing rules except on two aspects. First, a
variable declared in a ghost annotation (including ghost parameters) receives implicitly the
\ghost qualifier. Second, compared to the const qualifier, the \ghost qualifier follows a stricter
rule. When assigning a reference, the ghost qualification of the lvalue must exactly match
the ghost qualification of the reference, meaning that a (non-)\ghost memory location can
only be referenced by a pointer to a (non-)\ghost memory location.

Example 2.66 The following example shows simple uses of the \ghost qualifier.
1 int a ; // a non-ghost location
2 /*@ ghost
3 int* good0 = &a ; // can be referenced by a pointer to non-ghost
4 int \ghost* bad0 = &a ; // cannot be referenced by a pointer to ghost
5 */
6 /*@ ghost
7 int g ; // a ghost location
8 int \ghost* good1 = &a ; // can be referenced by a pointer to ghost
9 int * bad1 = &a ; // cannot be referenced by a pointer to non-ghost

10 */

2.12.0.0.2 Differences between model variables and ghost variables A ghost vari-
able is an additional specification variable that is assigned in ghost code like any C variable.
On the other hand, a model variable cannot be assigned, but one can state it is modified
and can express properties about the new value, in a non-deterministic way, using logic as-
sertions and invariants. In other words, specifications using ghost variable assignments are
executable.

Example 2.67 The example 2.63 can also be specified with a ghost variable instead of a
model variable:

1 //@ ghost set<integer> forbidden = \empty;
2

3 /*@ assigns forbidden;
4 @ ensures ! \subset(\result ,\old(forbidden))
5 @ && \result \in forbidden
6 && \subset(\old(forbidden),forbidden);
7 @*/
8 int gen() {

85

CHAPTER 2. SPECIFICATION LANGUAGE

9 static int x = 0;
10 /*@ global invariant I: \forall integer k;
11 @ k \in forbidden ==> x > k;
12 @*/
13 x++;
14 //@ ghost forbidden = \union(x,forbidden);
15 return x;
16 }

2.12.1 Volatile variables

Volatile variables can not be used in logic terms, since reading such a variable may have a
side effect, in particular two successive reads may return different values.

logic-def ::= //@ volatile locations (reads ident)? (writes ident)? ; a

aonly implemented for C-external-declaration

Figure 2.29: Grammar for volatile constructs

Specifying properties of a volatile variable may be done via a specific construct to attach
two ghost functions to it. This construct, described by the grammar of Figure 2.29, has the
following shape:

1 volatile τ x;

2 //@ volatile x reads f writes g;

where f and g are ghost functions with the following prototypes:
3 τ f(volatile τ* p);
4 τ g(volatile τ* p, τ v);

This must be understood as a special construct to instrument the C code, where each access
to the variable x is replaced by a call to f(&x), and each assignment to x of a value v is
replaced by g(&x,v). If a given volatile variable is only read or only written to, the unused
accessor function can be omitted from the volatile construct.

Example 2.68 The following code is instrumented in order to inject fixed values at each
read of variable x, and collect written values.

1 volatile int x;
2

3 //@ ghost int injector_x[3] = { 1, 2, 3 };
4 //@ ghost int injector_count = 0;
5

6 /*@ ghost /@ requires p == &x;
7 @ assigns injector_count; @/
8 @ int reads_x(volatile int *p) {
9 @ if (p == &x)

10 @ return injector_x[injector_count++];
11 @ else
12 @ return 0; // should not happen
13 @ }
14 @*/

86

2.13. INITIALIZATION AND UNDEFINED VALUES

15

16 //@ ghost int collector_x[3];
17 //@ ghost int collector_count = 0;
18

19 /*@ ghost /@ requires p == &x;
20 @ assigns collector_count; @/
21 @ int writes_x(volatile int *p, int v) {
22 @ if (p == &x)
23 @ return collector_x[collector_count++] = v;
24 @ else
25 @ return 0; // should not happen
26 @ }
27 @*/
28

29 //@ volatile x reads reads_x writes writes_x;
30

31 /*@ ensures collector_count == 3 && collector_x[2] == 2;
32 @ ensures \result == 6;
33 @*/
34 int main () {
35 int i, sum = 0;
36 for (i=0 ; i < 3; i++) {
37 sum += x;
38 x = i;
39 }
40 return sum;
41 }

pred ::= \initialized one-label? (location-address)
| \dangling one-label? (location-address)

location-address ::= & location

Figure 2.30: Grammar extensions regarding initialized and dangling memory

2.13 Initialization and undefined values

\initialized {L}(p) is a predicate taking a set of pointers (having a type other than void*) to
l-values as argument (cf. Fig. 2.30) and means that each l-value in this set is initialized at
label L.

\initialized {id} : set<α*> → boolean

Example 2.69 In the following, the assertion is true.
1 int f(int n) {
2 int x;
3

4 if (n > 0) x = n ; else x = -n;
5 //@ assert \initialized {Here}(&x);
6 return x;
7 }

Default labels are such that logic label {Here} can be omitted.

87

CHAPTER 2. SPECIFICATION LANGUAGE

2.14 Dangling pointers

\dangling{L}(p) is a predicate taking a set of pointers (having a type other than void*) to
l-values as argument (cf. Fig. 2.30) and means that each l-value in this set has a dangling
content at label L. That is, its value is (or contains bits of) a dangling address: either the
address of a local variable referred to outside of its scope or the address of a variable that
has been dynamically allocated, then deallocated.

\dangling{id} : set<α*> → boolean

Example 2.70 In the following, the assertion holds.
1

2 int* f() {
3 int a;
4 return &a;
5 }
6

7 int* g() {
8 int* p = f();
9 //@ assert \dangling{Here}(&p);

10 return p+1;
11 }

In most cases, the arguments to \dangling are pointers to l-values that themselves have type
pointer, so the usual signature of \dangling is actually set<α**> → boolean. The signature
set<α*> → boolean is useful to handle pointer values that have been written inside scalar
variables through heterogeneous casts.
Note that \dangling takes a set of memory locations as its argument. The predicate is true if
all of the memory locations contained in the argument are dangling. That semantics implies
that !\dangling(s) is true precisely when at least one of the locations in s is not dangling.
!\dangling(s) does not mean that all of the indicated memory locations are not dangling,
only that some are.

2.15 Well-typed pointers

Experimental

pred ::= \valid_function (locations-list)

Figure 2.31: Grammar for predicates related to well-typedness

The predicates of Figure 2.31 are used to relate the type of a pointer to the effective type of
the memory location or function that is being pointed to.
Currently, only the compatibility of a function pointer with the type of the function it
points to is axiomatized, through the predicate \valid_function . This predicate has type
set<α*> → boolean, and \valid_function (p) holds if and only if

• p is a pointer to a function of type t, and

88

2.16. LOGIC ATTRIBUTE ANNOTATIONS

• *p is a function whose type is compatible with t, in the sense of [16, §6.2.7]

Example 2.71 In the following, the assertions are true.
1 int* f (int x);
2

3 int main() {
4 int* (*p)(int) = &f;
5 //@ assert \valid_function ((int* (*)(int)) p); // true
6 //@ assert \valid_function ((int* (*)()) p); // true (see C99 6.7.5.3:15)
7

8 //@ assert ! \valid_function ((void* (*)(int)) p);
9 // not compatible: void* and int* are not compatible (see C99 6.7.5.1:2)

10

11 //@ assert ! \valid_function ((volatile int* (*)(int)) p);
12 // not compatible: qualifiers cannot be dropped (see C99 6.7.3:9)
13 return *(p(0));
14 }

2.16 Logic attribute annotations

Experimental
These are annotations allowing to add attributes on variables, like regular C qualifiers (const,
volatile, restrict), or GNU __attribute__. They are defined in figure 2.32.

C-type-qualifier a ::= acsl-attribute

acsl-attribute ::= /*@b id */ implementation dependent attribute

aExtension to the C standard grammar for type qualifiers
bThe identifier may be enclosed between /@ and @/ in ghost code

Figure 2.32: Grammar for ACSL attributes

Supported attributes are implementation dependent.

2.17 Preprocessing for ACSL

The C/C++ preprocessor transforms input text files before the C/C++ compiler acts on
them. Although in principle any preprocessor could be used, in practice, a standard C/C++
preprocessor is used by nearly all C/C++ systems and its behavior is assumed in inter-
preting source files. This standard behavior replaces comments (including ACSL annotation
comments) with white space as part of initial tokenization and before any preprocessing direc-
tives are interpreted. Thus any tool that embeds information in formatted comments, such as
tools that support ACSL, must provide its own tools to do preprocessing. More importantly
for language definition, any content within comments cannot change the interpretation of
non-comment material that the C/C++ compiler sees.
Consequently, the following rules apply to preprocessing features within ACSL annotations:

89

CHAPTER 2. SPECIFICATION LANGUAGE

• define and undef are not permitted in an annotation. (If they were to be allowed,
their scope would have to extend only to the end of the annotation, which could be
confusing to readers.)

• macros occurring in an annotation but defined by define statements prior to the an-
notation are expanded according to the normal rules, including concatenation by ##
operators. The context of macro definitions corresponds to the textual location of the
annotation, as would be the case if the annotation were not embedded in a comment.

• if, ifdef, ifndef, elif, else, endif are permitted but must be completely nested
within the annotation in which they appear (an endif and its corresponding if, ifdef,
ifndef, or elif must both be in the same annotation comment.)

• warning and error are permitted

• include is permitted, but will cause errors if it contains, as is almost always the case,
other disallowed directives

• line is not permitted

• pragma and the _Pragma operator are not permitted

• stringizing (#) and string concatenation (##) operators are permitted

• the defined operator is permitted

• the standard predefined macro names are permitted: __DATE__, __TIME__, __FILE__,
__LINE__, __STDC_HOSTED__

90

Chapter 3

Libraries

Disclaimer: this chapter is unfinished, it is left here to give an idea of what it will look like
in the final document.

This chapter is devoted to libraries of specification, built upon the ACSL specification lan-
guage. Section 3.2 describes additional predicates introduced by the Jessie plugin of Frama-C,
to propose a slightly higher level of annotation.

3.1 Libraries of logic specifications

A standard library is provided, in the spirit of the List module of Section 2.6.11

3.1.1 Real numbers

A library of general purpose functions and predicates over real numbers, floats and doubles.

Includes

• abs, exp, power, log, sin, cos, atan, etc. over reals

• isFinite predicate over floats and doubles (means not NaN nor infinity)

• rounding reals to floats or doubles with specific rounding modes.

3.1.2 Finite lists

• pure functions nil, cons, append, fold, etc.

• Path, Reachable, isFiniteList, isCyclic, etc. on C linked-lists.

3.1.3 Sets and Maps

Finite sets, finite maps, in ZB-style.

91

CHAPTER 3. LIBRARIES

3.2 Jessie library: logical addressing of memory blocks

The Jessie library is a collection of logic specifications whose semantics is well-defined only
on source codes free from architecture-dependent features. In particular it is currently in-
compatible with pointer casts or unions (although there is ongoing work to support some of
them [23]). As a consequence, a valid pointer of some type τ∗ necessarily points to a memory
block which contains values of type τ .

3.2.1 Abstract level of pointer validity

In the particular setting described above, it is possible to introduce the following logic func-
tions:

1 /*@
2 @ logic integer \offset_min{L}<a>(a *p);
3 @ logic integer \offset_max{L}<a>(a *p);
4 @*/

• \offset_min{L}(p) is the minimum integer i such that (p+i) is a valid pointer at label
L.

• \offset_max{L}(p) is the maximum integer i such that (p+i) is a valid pointer at label
L.

The following properties hold:

1 \offset_min{L}(p+i) == \offset_min{L}(p)-i
2 \offset_max{L}(p+i) == \offset_max{L}(p)-i

It also introduces some syntactic sugar:

1 /*@
2 predicate \valid_range{L}<a>(a *p,integer i,integer j) =
3 \offset_min{L}(p) <= i && \offset_max{L}(p) >= j;
4 */

and the ACSL built-in predicate \valid {L}(p+(a..b)) is now equivalent to
\valid_range{L}(p,a,b).

3.2.2 Strings

Experimental The logic function

//@ logic integer \strlen (char* p);

denotes the length of a 0-terminated C string. It is a total function, whose value is nonnegative
if and only if the pointer in the argument is really a string.

Example 3.1 Here is a contract for the strcpy function:

92

3.3. MEMORY LEAKS

1 /*@ // src and dest cannot overlap
2 @ requires \base_addr(src) != \base_addr(dest);
3 @ // src is a valid C string
4 @ requires \strlen (src) >= 0 ;
5 @ // dest is large enough to store a copy of src up to the 0
6 @ requires \valid (dest+(0..\strlen(src)));
7 @ ensures
8 @ \forall integer k; 0 <= k <= \strlen(src) ==> dest[k] == src[k];
9 @*/

10 char* strcpy(char *dest, const char *src);

3.3 Memory leaks

Experimental
Verification of absence of memory leak is outside the scope of the specification language. On
the other hand, various models could be set up, using for example ghost variables.

93

Chapter 4

Conclusion

This document presents a Behavioral Interface Specification Language for ANSI C source
code. It provides a common basis that can be shared among different tools. The specification
language described here is intended to evolve in the future and remain open to additional
constructions. One interesting possible extension regards “temporal” properties in a large
sense, such as liveness properties, which can sometimes be simulated by regular specifications
with ghost variables [14], or properties on evolution of data over the time, such as the history
constraints of JML, or in the Lustre assertion language.

95

AppendixA

Appendices

A.1 Glossary

pure expressions In ACSL setting, a pure expression is a C expression which contains no
assignments, no incrementation operator ++ or --, no function call, and no access to
a volatile object. The set of pure expressions is a subset of the set of C expressions
without side effect (C standard [17, 16], §5.1.2.3, alinea 2).

left-values A left-value (lvalue for short) is an expression which denotes some place in the
memory during program execution, either on the stack, on the heap, or in the static
data segment. It can be either a variable identifier or an expression of the form *e,
e[e], e.id or e->id, where e is any expression and id a field name. See C standard,
§6.3.2.1 for a more detailed description of lvalues.

A modifiable lvalue is an lvalue allowed in the left part of an assignment. In essence,
all lvalues are modifiable except variables declared as const or of some array type with
explicit length.

pre-state and post-state For a given function call, the pre-state denotes the program state
at the beginning of the call, including the current values for the function parameters.
The post-state denotes the program state at the return of the call.

For a statement annotation, the pre-state denotes the program state just prior to the
annotation statement; the post-state denotes the program state immediately after exe-
cution of the annotated statement (which may be a block statement).

For a statement annotation, the pre-state denotes the program state just prior to the
annotation statement; the post-state denotes the program state immediately after exe-
cution of the annotated statement (which may be a block statement).

function behavior A function behavior (behavior for short) is a set of properties relating
the pre-state and the post-state for a possibly restricted set of pre-states (behavior
assumptions).

function contract A function contract (contract for short) forms a specification of a func-
tion, consisting of the combination of a precondition (a requirement on the pre-state
for any caller to that function), a collection of behaviors, and possibly a measure in
case of a recursive function.

97

APPENDIX A. APPENDICES

A.2 Builtin functions

The following are pre-defined, mathematical logic functions that are built-in to ACSL.
integer \min(integer x, integer y) ;
integer \max(integer x, integer y) ;
real \min(real x, real y) ;
real \max(real x, real y) ;

integer \abs(integer x) ;
real \abs(real x) ;

real \sqrt(real x) ;
integer pow(integer x, integer y) ;
real \pow(real x, real y) ;

integer \ceil (real x) ;
integer \floor (real x) ;

real \e ;
real \exp(real x) ;
real \log(real x) ;
real \log10(real x) ;

real \pi ;
real \sin(real x) ;
real \cos(real x) ;
real \tan(real x) ;

real \cosh(real x) ;
real \sinh(real x) ;
real \tanh(real x) ;

real \asin(real x) ;
real \acos(real x) ;
real \atan(real x) ;

real \asinh(real x) ;
real \acosh(real x) ;
real \atanh(real x) ;

real \atan2(real y, real x) ;
real \hypot(real x, real y) ;

float \round_float(rounding_mode m, real x) ;
double \round_double(rounding_mode, real x) ;

These are the built-in predicates:
\is_finite (float x) ;
\is_finite (double x) ;
\is_NaN(float x) ;
\is_NaN(double x) ;
\is_plus_infinity (float x) ;
\is_plus_infinity (double x) ;
\is_minus_infinity (float x) ;
\is_minus_infinity (double x) ;

98

A.2. BUILTIN FUNCTIONS

\eq_float(float x, float y) ;
\eq_double(double x, double y) ;
\gt_float (float x, float y) ;
\gt_double(double x, double y) ;
\ge_float(float x, float y) ;
\ge_double(double x, double y) ;
\lt_float (float x, float y) ;
\lt_double(double x, double y) ;
\le_float (float x, float y) ;
\le_double(double x, double y) ;
\ne_float(float x, float y) ;
\ne_double(double x, double y) ;

99

APPENDIX A. APPENDICES

A.3 Comparison with JML

Although ACSL took inspiration from the Java Modeling Language (aka JML [18]), ACSL
is notably different from JML in two crucial aspects:

• ACSL is a BISL for C, a low-level structured language, while JML is a BISL for Java,
an object-oriented inheritance-based high-level language. Not only are the language
features not the same between Java and C, but the programming styles and idioms are
very different, which then entails different ways of specifying behaviors. In particular,
C has no inheritance or exceptions, and no language support for the simplest properties
on memory (e.g., the size of an allocated memory block).

• JML also supports runtime assertion checking (RAC) when typing, static analysis and
automatic deductive verification fail. The example of CCured [24, 9], which also adds
strong typing to C by relying on RAC, shows that it is not possible to do it in a modular
way. Indeed, it is necessary to modify the layout of C data structures for RAC, which
is not modular. The follow-up project Deputy [10] thus reduces the checking power of
annotations in order to preserve modularity. In contrast, we choose not to restrain the
power of annotations (e.g., all first order logic formulas are allowed). To that end, we
rely on manual deductive verification using an interactive theorem prover (e.g., Coq)
when every other technique fails.

In the remainder of this chapter, we describe these differences in further detail.

A.3.1 Low-level language vs. inheritance-based one

No inherited specifications
JML has a core notion of specification inheritance, which enables support for behavioral
subtyping, by applying specifications of parent methods to overriding methods. Inheritance
combined with visibility and modularity account for a number of complex features in JML
(e.g., spec_public modifier, data groups, represents clauses, etc), that are necessary to ex-
press the desired inheritance-related specifications while respecting visibility and modularity.
Since C has no inheritance, these intricacies are avoided in ACSL.

Error handling without exceptions
The usual way of signaling errors in Java is through exceptions. Therefore, JML specifications
are tailored to express exceptional postconditions, depending on the exception raised. Since
C has no exceptions, ACSL does not use exceptional specifications. Instead, C programmers
typically signal errors by returning special values, as is mandated in various ways by the C
standard.

Example A.1 In §7.12.1 of the standard, it is said that functions in <math.h> signal errors
as follows: “On a domain error, [...] the integer expression errno acquires the value EDOM.”

Example A.2 In §7.19.5.1 of the standard, it is said that function fclose signals errors as
follows: “The fclose function returns [...] EOF if any errors were detected.”

100

A.3. COMPARISON WITH JML

Example A.3 In §7.19.6.1 of the standard, it is said that function fprintf signals errors as
follows: “The fprintf function returns [...] a negative value if an output or encoding error
occurred.”

Example A.4 In §7.20.3 of the standard, it is said that memory management functions
signal errors as follows: “If the space cannot be allocated, a null pointer is returned.”

As shown by these few examples, there is no unique way to signal errors in the C standard
library, not to mention errors from user-defined functions. But since errors are signaled by
returning special values, it is sufficient to write an appropriate postcondition:

/*@ ensures \result == error_value || normal_postcondition; */

C contracts are not Java ones
In Java, the precondition of the following function that nullifies an array of characters is
always true. Even if there was a precondition on the length of array a, it could easily be
expressed using the Java expression a.length that gives the dynamic length of array a.

1 public static void Java_nullify(char[] a) {
2 if (a == null) return;
3 for (int i = 0; i < a.length; ++i) {
4 a[i] = 0;
5 }
6 }

On the other hand, the precondition of the same function in C, whose definition follows, is
more involved. First, note that the C programmer has to add an extra argument for the size
of the array, or rather a lower bound on this array size.

1 void C_nullify(char* a, unsigned int n) {
2 int i;
3 if (n == 0) return;
4 for (i = 0; i < n; ++i) {
5 a[i] = 0;
6 }
7 }

A correct precondition for this function is the following:
/*@ requires \valid (a + 0..(n-1)); */

where predicate \valid is the one defined in Section 2.7.1. (note that \valid (a + 0..(-1)) is
the same as \valid (\empty) and thus is true regardless of the validity of a itself). When n
is 0, a does not need to be valid at all, and when n is strictly positive, a must point to an
array of size at least n. To make it more obvious, the C programmer adopted a defensive
programming style, which returns immediately when n is 0. We can duplicate this in the
specification:

/*@ requires n == 0 || \valid(a + 0..(n-1)); */

Many memory requirements are only necessary for some paths through the function, which
correspond to some particular behaviors, selected according to some tests performed along the
corresponding paths. Since C has no memory primitives, these tests involve other variables
that the C programmer adds to track additional information, such as n in our example.

101

APPENDIX A. APPENDICES

To make it easier, it is possible in ACSL to distinguish between the assumes part of a behavior,
that specifies the tests that need to succeed for this behavior to apply, and the requires part
that specifies the additional assumptions that must be true when a behavior applies. The
specification for our example can then be translated into:

1 /*@ behavior n_is_null:
2 @ assumes n == 0;
3 @ behavior n_is_not_null:
4 @ assumes n > 0;
5 @ requires \valid (a + 0..(n-1));
6 @*/

This is equivalent to the previous requirement, except here behaviors can be completed with
postconditions that belong to one behavior only.

ACSL contracts vs. JML ones
In JML, the set of stated behaviors is assumed to cover all permitted uses of the function;
any calling context in which none of the requires preconditions are true would be identified
as an error. In ACSL, the set of behaviors for a function do not necessarily cover all cases
of use for this function, as mentioned in Section 2.3.3. This allows for partial specifications.
In the example above, our two behaviors are clearly mutually exclusive, and, since n is an
unsigned int , they cover all the possible cases. We could have specified that as well, by adding
the following lines in the contract (see Section 2.3.3.1).

1 @ ...
2 @ disjoint behaviors ;
3 @ complete behaviors;
4 @*/

To fully understand the difference between specifications in ACSL and JML, we detail below
the requirements on the pre-state and the guarantees in the post-state given by behaviors in
JML and ACSL.

A JML contract is either lightweight or heavyweight. For the purpose of our comparison,
it is sufficient to know that a lightweight contract is syntactic sugar for a single specific
heavyweight contract; a contract can have multiple heavyweight behaviors and these can be
nested. Here is a hypothetical JML contract:

1 /*@ behavior x1:
2 @ requires A1;
3 @ requires R1;
4 @ ensures E1;
5 @ behavior x2:
6 @ requires A2;
7 @ requires R2;
8 @ ensures E2;
9 @*/

It assumes that the pre-state satisfies the condition:
((A1 && R1) || (A2 && R2))

and guarantees that the following condition holds in post-state:
(\old(A1 && R1) ==> E1) && (\old(A2 && R2) ==> E2)

102

A.3. COMPARISON WITH JML

Note particularly that the pre-state is required to satisfy the precondition of at least one
behavior.
Here is now a syntactically similar ACSL specification:

1 /*@ requires P1;
2 @ requires P2;
3 @ ensures Q1;
4 @ ensures Q2;
5 @ behavior x1:
6 @ assumes A1;
7 @ requires R1;
8 @ ensures E1;
9 @ behavior x2:

10 @ assumes A2;
11 @ requires R2;
12 @ ensures E2;
13 @*/

Syntactically, the only difference with the JML specification is the addition of the assumes
clauses and allowing an anonymous behavior at the beginning of the contract. Rewriting the
anonymous behavior with a name gives

1 /*@
2 @ behavior x0:
3 @ assumes \true;
4 @ requires P1;
5 @ requires P2;
6 @ ensures Q1;
7 @ ensures Q2;
8 @ behavior x1:
9 @ assumes A1;

10 @ requires R1;
11 @ ensures E1;
12 @ behavior x2:
13 @ assumes A2;
14 @ requires R2;
15 @ ensures E2;
16 @*/

Its translation to assume-guarantee is however quite different than JML. It assumes the
pre-state satisfies the condition

(\true ==> (P1 && P2)) && (A1 ==> R1) && (A2 ==> R2)

Here, it is acceptable that none of the behaviors are active (that is, that none of the assumes
clauses are true, even without the unnamed behavior). In that case there is no post-condition
guarantee either.
The contract guarantees that the following condition holds in the post-state:

(\true ==> (Q1 && Q2)) && (\old(A1) ==> E1) && (\old(A2) ==> E2)

Thus, ACSL allows distinguishing between the clauses that control which behavior is active
(the assumes clauses) and the clauses that are preconditions for a particular behavior (the
internal requires clauses).
In addition, as mentioned above, there is by default no requirement in ACSL for the specifi-
cation to be complete. In JML an incomplete specification may cause a warning in a calling

103

APPENDIX A. APPENDICES

context; partial behavior is specified by an explicitly underspecified postcondition. In ACSL,
an incomplete specification specifies partial behavior; a warning for a particular behavior is
produced by a requires \false ; clause.

Modifies vs. writes semantics
As described in §2.3.2.2, ACSL interprets frame conditions with modifies semantics, whereas
JML defines frame conditions with writes semantics.

A.3.2 Deductive verification vs. RAC

Sugar-free behaviors
As explained in detail in [25], JML heavyweight behaviors can be viewed as syntactic sugar
that can be translated automatically into more basic contracts consisting mostly of pre- and
postconditions and frame conditions. This allows complex nesting of behaviors from the user
point of view, while tools only have to deal with basic contracts. In particular, older tools on
JML used this desugaring process, such as the Common JML tools to do assertion checking,
unit testing, etc. (see [21]) and the tool ESC/Java2 for automatic deductive verification of
JML specifications (see [8]).

One issue with such a desugaring approach is the complexity of the transformations involved,
as e.g. for desugaring assignable clauses between multiple spec-cases in JML [25]. Another
issue is precisely that tools only see one global contract, instead of multiple independent
behaviors, that could be analyzed separately in more detail. Instead, we favor the view that
a function implements multiple behaviors, that can be analyzed separately if a tool feels like
it. Therefore, we do not intend to provide a desugaring process. Indeed, the current JML
tool, OpenJML [6, 7], also does only a partial desugaring, which at minimum is able to give
more informative error messages when proof attempts fail.

Axiomatized functions in specifications
JML allows pure Java methods to be called in specifications [19]. This avoids having to write
essentially duplicate logical functions that mimic Java functions. It is also useful when relying
on RAC: methods called should be defined so that the runtime can call them, and they should
not have side-effects in order not to pollute the program they are supposed to annotate. JML
also permits model (logical) functions to be used in specifications; if the model function does
not have a body, then RAC cannot be used. But for deductive verification, the properties of
a model function can be specified axiomatically.

ACSL focuses on deductive verification and currently only allows calls to logical functions in
specifications. These functions may be defined, like program functions, but they may also be
only declared (with a suitable declaration of reads clause) and their behavior defined through
an axiomatization. This makes for richer specifications that may be useful either in automatic
or in manual deductive verification.

A.3.3 Syntactic differences

The following table summarizes the difference between JML and ACSL keywords, when the
intent is the same, although minor differences might exist.

104

A.3. COMPARISON WITH JML

JML ACSL
modifiable, assignable assigns
measured_by decreases
loop_invariant loop invariant
decreases loop variant
(\forall τ x ; P ; Q) (\forall τ x ; P ==> Q)
(\exists τ x ; P ; Q) (\exists τ x ; P && Q)
\max τ x ; a <= x <= b ; f) \max(a,b,\lambda τ x ; f)

105

APPENDIX A. APPENDICES

A.4 C grammar elements

This appendix chapter summarizes the elements of the C grammar that are used by ACSL.

A.4.1 Identifiers

• An id is a sequence of alphanumeric characters and underscores beginning with a non-
digit: [a-zA-Z_][a-zA-Z_0-9]* .

A.4.2 Literals

Numeric, character and string literals are adopted from C without modification:

• An integer literal is a digit sequence with optional radix and bit-size indicators:
[+-]?(0 | [1-9][0-9]* | 0[0-7]+ | 0x[0-9A-Za-z]+)

• A real literal has the following form:

1 [+-]? ([0-9]+)? (\.[0-9]*)? ([eE][+-]?(0-9)+)? ([fFlL])?

where there must be either an initial digit sequence or post-decimal point digit sequence
and either a decimal point or an exponent.1

• A character literal is a single character or a backslash followed by a single character
enclosed in single quotes, optionally preceded by the L character to denote a wide
character.

• A string literal is a sequence of printable characters or escape sequences enclosed in
double quotes: TODO

A.4.3 C Type Expressions

1In C++17 exponents beginning with p or P and hex digit sequences with leading 0x are permitted.

106

A.4. C GRAMMAR ELEMENTS

C-type-expr ::= C-specifier-qualifier+ C-abstract-declarator?

C-type-name ::= C-declaration-specifier+

C-specifier-qualifier ::= C-type-specifier | C-type-qualifier

C-type-qualifier ::= const | volatile

C-type-specifier ::= void
| char
| short
| int
| long
| float
| double
| signed
| unsigned
| (struct | union | enum) ident a

| ident

C-abstract-declarator ::= C-pointer
| C-pointer C-direct-abstract-declarator
| C-direct-abstract-declarator

C-pointer ::= (* C-type-qualifier∗)+

C-direct-abstract-declarator ::= (C-abstract-declarator)
| C-direct-abstract-declarator?

[C-constant-expression]
| C-direct-abstract-declarator?

(C-parameter-type-list?)

C-parameter-type-list ::= C-parameter-declaration
(, C-parameter-declaration)+

C-parameter-declaration ::= C-declaration-specifier+ C-declarator
| C-declaration-specifier+

C-abstract-declarator
| C-declaration-specifier+

C-declaration-specifier ::= C-type-specifier | C-type-qualifier

C-declarator ::= C-pointer? C-direct-declarator

C-direct-declarator ::= ident
| (C-declarator)
| C-direct-declarator

[C-constant-expression?]
| C-direct-declarator

(C-parameter-type-list)
| C-direct-declarator (ident∗)

C-constant-expression ::= ... b

aACSL does not permit declaring a new type within the type-specifier
bAn expression formed from constant literals

Figure A.1: The grammar of C type expressions, from the C standard

107

APPENDIX A. APPENDICES

A.5 Typing rules

Disclaimer: this section is unfinished, it is left here just to give an idea of what it will look
like when completed.

A.5.1 Rules for terms

Integer promotion:
Γ ` e : τ

Γ ` e : integer

if τ is any C integer type char, short, int, or long, whatever attribute they have, in
particular signed or unsigned

Variables:

Γ ` id : τ if id : τ ∈ Γ

Unary integer operations:

Γ ` t : integer
Γ ` op t : integer if op ∈ {+,−,∼}

Boolean negation:
Γ ` t : boolean
Γ `! t : boolean

Pointer dereferencing:
Γ ` t : τ∗
Γ ` ∗t : τ

Address operator:
Γ ` t : τ

Γ ` &t : τ∗

Binary
Γ ` t1 : integer Γ ` t2 : integer

Γ ` t1 op t2 : integer if op ∈ {+,−, ∗, /,%}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : real if op ∈ {+,−, ∗, /}

Γ ` t1 : integer Γ ` t2 : integer
Γ ` t1 op t2 : boolean if op ∈ {==, ! =, <=, <,>=, >}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : boolean if op ∈ {==, ! =, <=, <,>=, >}

Γ ` t1 : τ ∗ Γ ` t2 : τ∗
Γ ` t1 op t2 : boolean if op ∈ {==, ! =, <=, <,>=, >}

(to be continued)

108

A.5. TYPING RULES

A.5.2 Typing rules for sets

We consider the typing judgement Γ,Λ ` s : τ, b meaning that s is a set of terms of type τ ,
which is moreover a set of locations if the boolean b is true. Γ is the C environment and Λ
is the logic environment.

Rules:

Γ,Λ ` id : τ, true if id : τ ∈ Γ

Γ,Λ ` id : τ, true if id : τ ∈ Λ

Γ,Λ ` s : τ∗, b
Γ,Λ ` ∗s : τ, true

id : τ s : set < struct S∗ >
` s− > id : set < τ >

Γ, b ∪ Λ ` e : tsetτ
Γ,Λ ` {e | b;P} : tsetτ

Γ,Λ ` e1 : τ, b Γ,Λ ` e2 : τ, b
Γ,Λ ` e1, e2 : τ, b

109

APPENDIX A. APPENDICES

A.6 Specification Templates

This section describes some common issues that may occur when writing an ACSL specifica-
tion and proposes some solution to overcome them

A.6.1 Accessing a C variable that is masked

The situation may happen where it is necessary to refer in an annotation to a C variable
that is masked at that point. For instance, a function contract may need to refer to a global
variable that has the same name as a function parameter, as in the following code:

1 int x;
2 //@ assigns x;
3 int g();
4

5 int f(int x) {
6 // ...
7 return g();
8 }

In order to write the assigns clause for f, we must access the global variable x, since f calls
g, which can modify x. This is not possible with C scoping rules, as x refers to the parameter
of f in the scope of the function.

A solution is to use a ghost pointer to x, as shown in the following code:

1 int x;
2

3 //@ ghost int* const ghost_ptr_x = &x;
4

5 //@ assigns x;
6 int g();
7

8 //@ assigns *ghost_ptr_x;
9 int f(int x) {

10 // ...
11 return g();
12 }

110

A.7. ILLUSTRATIVE EXAMPLE

A.7 Illustrative example

This is an attempt to define an example for ACSL, much as the Purse example in JML
description papers. It is a memory allocator, whose main functions are memory_alloc and
memory_free, to respectively allocate and deallocate memory. The goal is to exercise as much
as possible of ACSL.

1

2 #include <stdlib.h>
3

4 #define DEFAULT_BLOCK_SIZE 1000
5

6 typedef enum _bool { false = 0, true = 1 } bool;
7

8 /*@ predicate finite_list<A>((A* -> A*) next_elem, A* ptr) =
9 @ ptr == \null ||

10 @ (\valid (ptr) && finite_list(next_elem,next_elem(ptr))) ;
11 @
12 @ logic integer list_length<A>((A* -> A*) next_elem, A* ptr) =
13 @ (ptr == \null) ? 0 :
14 @ 1 + list_length(next_elem,next_elem(ptr)) ;
15 @
16 @
17 @ predicate lower_length<A>((A* -> A*) next_elem,
18 @ A* ptr1, A* ptr2) =
19 @ finite_list(next_elem, ptr1) && finite_list(next_elem, ptr2)
20 @ && list_length(next_elem, ptr1) < list_length(next_elem, ptr2) ;
21 @*/
22

23 // forward reference
24 struct _memory_slice;
25

26 /* A memory block holds a pointer to a raw block of memory allocated by
27 * calling [malloc]. It is sliced into chunks, which are maintained by
28 * the [slice] structure. It maintains additional information such as
29 * the [size] of the memory block, the number of bytes [used] and the [next]
30 * index at which to put a chunk.
31 */
32 typedef struct _memory_block {
33 //@ ghost boolean packed;
34 // ghost field [packed] is meant to be used as a guard that tells when
35 // the invariant of a structure of type [memory_block] holds
36 unsigned int size;
37 // size of the array [data]
38 unsigned int next;
39 // next index in [data] at which to put a chunk
40 unsigned int used;
41 // how many bytes are used in [data], not necessarily contiguous ones
42 char* data;
43 // raw memory block allocated by [malloc]
44 struct _memory_slice* slice;
45 // structure that describes the slicing of a block into chunks
46 } memory_block;
47

48 /*@ strong type invariant inv_memory_block(memory_block mb) =
49 @ mb.packed ==>

111

APPENDIX A. APPENDICES

50 @ (0 < mb.size && mb.used <= mb.next <= mb.size
51 @ && \offset (mb.data) == 0
52 @ && \block_length(mb.data) == mb.size) ;
53 @
54 @ predicate valid_memory_block(memory_block* mb) =
55 @ \valid (mb) && mb->packed ;
56 @*/
57

58 /* A memory chunk holds a pointer [data] to some part of a memory block
59 * [block]. It maintains the [offset] at which it points in the block,
60 * as well as the [size] of the block it is allowed to access.
61 * A field [free] tells whether the chunk is used or not.
62 */
63 typedef struct _memory_chunk {
64 //@ ghost boolean packed;
65 // ghost field [packed] is meant to be used as a guard that tells when
66 // the invariant of a structure of type [memory_chunk] holds
67 unsigned int offset;
68 // offset at which [data] points into [block->data]
69 unsigned int size;
70 // size of the chunk
71 bool free;
72 // true if the chunk is not used, false otherwise
73 memory_block* block;
74 // block of memory into which the chunk points
75 char* data;
76 // shortcut for [block->data + offset]
77 } memory_chunk;
78

79 /*@ strong type invariant inv_memory_chunk(memory_chunk mc) =
80 @ mc.packed ==>
81 @ (0 < mc.size && valid_memory_block(mc.block)
82 @ && mc.offset + mc.size <= mc.block->next) ;
83 @
84 @ predicate valid_memory_chunk(memory_chunk* mc, int s) =
85 @ \valid (mc) && mc->packed && mc->size == s ;
86 @
87 @ predicate used_memory_chunk(memory_chunk mc) =
88 @ mc.free == false ;
89 @
90 @ predicate freed_memory_chunk(memory_chunk mc) =
91 @ mc.free == true ;
92 @*/
93

94 /* A memory chunk list links memory chunks in the same memory block.
95 * Newly allocated chunks are put first, so that the offset of chunks
96 * decreases when following the [next] pointer. Allocated chunks should
97 * fill the memory block up to its own [next] index.
98 */
99 typedef struct _memory_chunk_list {

100 memory_chunk* chunk;
101 // current list element
102 struct _memory_chunk_list* next;
103 // tail of the list
104 } memory_chunk_list;
105

112

A.7. ILLUSTRATIVE EXAMPLE

106 /*@ logic memory_chunk_list* next_chunk(memory_chunk_list* ptr) =
107 @ ptr->next ;
108 @
109 @ predicate valid_memory_chunk_list
110 @ (memory_chunk_list* mcl, memory_block* mb) =
111 @ \valid (mcl) && valid_memory_chunk(mcl->chunk,mcl->chunk->size)
112 @ && mcl->chunk->block == mb
113 @ && (mcl->next == \null ||
114 @ valid_memory_chunk_list(mcl->next, mb))
115 @ && mcl->offset == mcl->chunk->offset
116 @ && (
117 @ // it is the last chunk in the list
118 @ (mcl->next == \null && mcl->chunk->offset == 0)
119 @ ||
120 @ // it is a chunk in the middle of the list
121 @ (mcl->next != \null
122 @ && mcl->next->chunk->offset + mcl->next->chunk->size
123 @ == mcl->chunk->offset)
124 @)
125 @ && finite_list(next_chunk, mcl) ;
126 @
127 @ predicate valid_complete_chunk_list
128 @ (memory_chunk_list* mcl, memory_block* mb) =
129 @ valid_memory_chunk_list(mcl,mb)
130 @ && mcl->next->chunk->offset +
131 @ mcl->next->chunk->size == mb->next ;
132 @
133 @ predicate chunk_lower_length(memory_chunk_list* ptr1,
134 @ memory_chunk_list* ptr2) =
135 @ lower_length(next_chunk, ptr1, ptr2) ;
136 @*/
137

138 /* A memory slice holds together a memory block [block] and a list of chunks
139 * [chunks] on this memory block.
140 */
141 typedef struct _memory_slice {
142 //@ ghost boolean packed;
143 // ghost field [packed] is meant to be used as a guard that tells when
144 // the invariant of a structure of type [memory_slice] holds
145 memory_block* block;
146 memory_chunk_list* chunks;
147 } memory_slice;
148

149 /*@ strong type invariant inv_memory_slice(memory_slice* ms) =
150 @ ms.packed ==>
151 @ (valid_memory_block(ms->block) && ms->block->slice == ms
152 @ && (ms->chunks == \null
153 @ || valid_complete_chunk_list(ms->chunks, ms->block))) ;
154 @
155 @ predicate valid_memory_slice(memory_slice* ms) =
156 @ \valid (ms) && ms->packed ;
157 @*/
158

159 /* A memory slice list links memory slices, to form a memory pool.
160 */
161 typedef struct _memory_slice_list {

113

APPENDIX A. APPENDICES

162 //@ ghost boolean packed;
163 // ghost field [packed] is meant to be used as a guard that tells when
164 // the invariant of a structure of type [memory_slice_list] holds
165 memory_slice* slice;
166 // current list element
167 struct _memory_slice_list* next;
168 // tail of the list
169 } memory_slice_list;
170

171 /*@ logic memory_slice_list* next_slice(memory_slice_list* ptr) =
172 @ ptr->next ;
173 @
174 @ strong type invariant inv_memory_slice_list(memory_slice_list* msl) =
175 @ msl.packed ==>
176 @ (valid_memory_slice(msl->slice)
177 @ && (msl->next == \null ||
178 @ valid_memory_slice_list(msl->next))
179 @ && finite_list(next_slice, msl)) ;
180 @
181 @ predicate valid_memory_slice_list(memory_slice_list* msl) =
182 @ \valid (msl) && msl->packed ;
183 @
184 @ predicate slice_lower_length(memory_slice_list* ptr1,
185 @ memory_slice_list* ptr2) =
186 @ lower_length(next_slice, ptr1, ptr2)
187 @ } */
188

189 typedef memory_slice_list* memory_pool;
190

191 /*@ type invariant valid_memory_pool(memory_pool *mp) =
192 @ \valid (mp) && valid_memory_slice_list(*mp) ;
193 @*/
194

195 /*@ behavior zero_size:
196 @ assumes s == 0;
197 @ assigns \nothing;
198 @ ensures \result == 0;
199 @
200 @ behavior positive_size:
201 @ assumes s > 0;
202 @ requires valid_memory_pool(arena);
203 @ ensures \result == 0
204 @ || (valid_memory_chunk(\result,s) &&
205 @ used_memory_chunk(*\result));
206 @ */
207 memory_chunk* memory_alloc(memory_pool* arena, unsigned int s) {
208 memory_slice_list *msl = *arena;
209 memory_chunk_list *mcl;
210 memory_slice *ms;
211 memory_block *mb;
212 memory_chunk *mc;
213 unsigned int mb_size;
214 //@ ghost unsigned int mcl_offset;
215 char *mb_data;
216 // guard condition
217 if (s == 0) return 0;

114

A.7. ILLUSTRATIVE EXAMPLE

218 // iterate through memory blocks (or slices)
219 /*@
220 @ loop invariant valid_memory_slice_list(msl);
221 @ loop variant msl for slice_lower_length;
222 @ */
223 while (msl != 0) {
224 ms = msl->slice;
225 mb = ms->block;
226 mcl = ms->chunks;
227 // does [mb] contain enough free space?
228 if (s <= mb->size - mb->next) {
229 //@ ghost ms->ghost = false; // unpack the slice
230 // allocate a new chunk
231 mc = (memory_chunk*)malloc(sizeof(memory_chunk));
232 if (mc == 0) return 0;
233 mc->offset = mb->next;
234 mc->size = s;
235 mc->free = false;
236 mc->block = mb;
237 //@ ghost mc->ghost = true; // pack the chunk
238 // update block accordingly
239 //@ ghost mb->ghost = false; // unpack the block
240 mb->next += s;
241 mb->used += s;
242 //@ ghost mb->ghost = true; // pack the block
243 // add the new chunk to the list
244 mcl = (memory_chunk_list*)malloc(sizeof(memory_chunk_list));
245 if (mcl == 0) return 0;
246 mcl->chunk = mc;
247 mcl->next = ms->chunks;
248 ms->chunks = mcl;
249 //@ ghost ms->ghost = true; // pack the slice
250 return mc;
251 }
252 // iterate through memory chunks
253 /*@
254 @ loop invariant valid_memory_chunk_list(mcl,mb);
255 @ loop variant mcl for chunk_lower_length;
256 @ */
257 while (mcl != 0) {
258 mc = mcl->chunk;
259 // is [mc] free and large enough?
260 if (mc->free && s <= mc->size) {
261 mc->free = false;
262 mb->used += mc->size;
263 return mc;
264 }
265 // try next chunk
266 mcl = mcl->next;
267 }
268 msl = msl->next;
269 }
270 // allocate a new block
271 mb_size = (DEFAULT_BLOCK_SIZE < s) ? s : DEFAULT_BLOCK_SIZE;
272 mb_data = (char*)malloc(mb_size);
273 if (mb_data == 0) return 0;

115

APPENDIX A. APPENDICES

274 mb = (memory_block*)malloc(sizeof(memory_block));
275 if (mb == 0) return 0;
276 mb->size = mb_size;
277 mb->next = s;
278 mb->used = s;
279 mb->data = mb_data;
280 //@ ghost mb->ghost = true; // pack the block
281 // allocate a new chunk
282 mc = (memory_chunk*)malloc(sizeof(memory_chunk));
283 if (mc == 0) return 0;
284 mc->offset = 0;
285 mc->size = s;
286 mc->free = false;
287 mc->block = mb;
288 //@ ghost mc->ghost = true; // pack the chunk
289 // allocate a new chunk list
290 mcl = (memory_chunk_list*)malloc(sizeof(memory_chunk_list));
291 if (mcl == 0) return 0;
292 //@ ghost mcl->offset = 0;
293 mcl->chunk = mc;
294 mcl->next = 0;
295 // allocate a new slice
296 ms = (memory_slice*)malloc(sizeof(memory_slice));
297 if (ms == 0) return 0;
298 ms->block = mb;
299 ms->chunks = mcl;
300 //@ ghost ms->ghost = true; // pack the slice
301 // update the block accordingly
302 mb->slice = ms;
303 // add the new slice to the list
304 msl = (memory_slice_list*)malloc(sizeof(memory_slice_list));
305 if (msl == 0) return 0;
306 msl->slice = ms;
307 msl->next = *arena;
308 //@ ghost msl->ghost = true; // pack the slice list
309 *arena = msl;
310 return mc;
311 }
312

313 /*@ behavior null_chunk:
314 @ assumes chunk == \null;
315 @ assigns \nothing;
316 @
317 @ behavior valid_chunk:
318 @ assumes chunk != \null;
319 @ requires valid_memory_pool(arena);
320 @ requires valid_memory_chunk(chunk,chunk->size);
321 @ requires used_memory_chunk(chunk);
322 @ ensures
323 @ // if it is not the last chunk in the block, mark it as free
324 @ (valid_memory_chunk(chunk,chunk->size)
325 @ && freed_memory_chunk(chunk))
326 @ ||
327 @ // if it is the last chunk in the block, deallocate the block
328 @ ! \valid(chunk);
329 @ */

116

A.7. ILLUSTRATIVE EXAMPLE

330 void memory_free(memory_pool* arena, memory_chunk* chunk) {
331 memory_slice_list *msl = *arena;
332 memory_block *mb = chunk->block;
333 memory_slice *ms = mb->slice;
334 memory_chunk_list *mcl;
335 memory_chunk *mc;
336 // is it the last chunk in use in the block?
337 if (mb->used == chunk->size) {
338 // remove the corresponding slice from the memory pool
339 // case it is the first slice
340 if (msl->slice == ms) {
341 *arena = msl->next;
342 //@ ghost msl->ghost = false; // unpack the slice list
343 free(msl);
344 }
345 // case it is not the first slice
346 while (msl != 0) {
347 if (msl->next != 0 && msl->next->slice == ms) {
348 memory_slice_list* msl_next = msl->next;
349 msl->next = msl->next->next;
350 // unpack the slice list
351 //@ ghost msl_next->ghost = false;
352 free(msl_next);
353 break;
354 }
355 msl = msl->next;
356 }
357 //@ ghost ms->ghost = false; // unpack the slice
358 // deallocate all chunks in the block
359 mcl = ms->chunks;
360 // iterate through memory chunks
361 /*@
362 @ loop invariant valid_memory_chunk_list(mcl,mb);
363 @ loop variant mcl for chunk_lower_length;
364 @ */
365 while (mcl != 0) {
366 memory_chunk_list *mcl_next = mcl->next;
367 mc = mcl->chunk;
368 //@ ghost mc->ghost = false; // unpack the chunk
369 free(mc);
370 free(mcl);
371 mcl = mcl_next;
372 }
373 mb->next = 0;
374 mb->used = 0;
375 // deallocate the memory block and its data
376 //@ ghost mb->ghost = false; // unpack the block
377 free(mb->data);
378 free(mb);
379 // deallocate the corresponding slice
380 free(ms);
381 return;
382 }
383 // mark the chunk as freed
384 chunk->free = true;
385 // update the block accordingly

117

APPENDIX A. APPENDICES

386 mb->used -= chunk->size;
387 return;
388 }

A.8 Changes

A.8.1 Version 1.17

• explicit role of check and admit requires clause with respect to complete and disjoint
clauses (section 2.3.3.1)

A.8.2 Version 1.16

• Slightly improve section 2.16, that was a bit rushed into the last version

• Introduce check and admit clause kinds (sections 2.3.2.3, 2.4.1, 2.4.2, 2.4.2.4, and 2.6.2).

A.8.3 Version 1.15

• Add section 2.17 for precising status of pre-processing directives and macros against
specifications

• Introduction of the \ghost qualifier (section 2.12)

A.8.4 Version 1.14

• Introduce check annotation (section 2.4.1)

A.8.5 Version 1.13

• New infix predicate \in for set membership (section 2.3.4)

• Fixes some typing error for constructs rejecting void* pointers (section 2.7.3.1)

• Notations added for real numbers π and e (section 2.2.5)

A.8.6 Version 1.12

• Fixes syntax rule for statement contracts in allowing completeness clauses (figure 2.13)

A.8.7 Version 1.11

• Functions related to infinites and the sign of floating-point value (section 2.2.5)

• New section for predicates related to well-typedness (section 2.15)

• Syntax for defining a set by giving explicitely its elements (section 2.3.4)

• Adding lists as first-class values (section 2.8.2)

118

A.8. CHANGES

• Change the associativity of bitwise operator --> to right, in accordance with the one of
==> operator

• Glyph used for ^^ operator (xor) fixed

A.8.8 Version 1.10

• Change keyword for importing libraries (section 2.6.11)

• Fix numerous typos reported by David Cok

• Disallow meaningless assigns \nothing \from x (section 2.10)

A.8.9 Version 1.9

• Fix typo in definition of \fresh predicate (section 2.7.3)

• Fix grammar inconsistencies

– use proper C rules names
– fix mismatch in non-terminal names

• Rename "Unspecified values" to "Dangling pointers" and precise it (section 2.14)

A.8.10 Version 1.8

• Mention binary literal constant typing

A.8.11 Version 1.7

• Added missing shift operators in figure 2.1

• Modified syntax for naming terms and predicates (figures 2.2 and 2.1)

• Added syntax rule for literal constants (figure 2.1)

A.8.12 Version 1.6

• Modified syntax for model fields (section 2.11.2)

• Added missing logical xor operator (figure 2.1).

• Addition of logical labels related to loops (section 2.4.3).

• Addition of labels to built-ins related to memory blocks (section 2.7.1)

• Introduction of \valid_read built-in and clarification of the notion of validity (sec-
tion 2.7.1).

• Introduction of built-in \allocable , \allocation , \freeable and \fresh (section 2.7.3).

• Introduction of allocates and frees clauses (section 2.7.3).

119

APPENDIX A. APPENDICES

• Clarify the semantics of assigns clauses into statement contract.

• Improvements to the volatile clause (section 2.12.1).

• Clarify the evaluation of arrays inside an at (section 2.4.3).

A.8.13 Version 1.5

• Clarify the status of loop invariant in presence of break or side-effects in the loop test.

• Introduction of \with keyword for functional updates.

• Added bnf entry for completeness of function behaviors.

• Order of clauses in statement contracts is now fixed.

• requires clauses are allowed before behaviors of statement contracts.

• Added explicit singleton construct for sets.

• Introduction of logical arrays.

• Operations over pointers and arrays have been precised.

• Predicate \initialized (section 2.13) now takes a set of pointers as argument.

A.8.14 Version 1.4

• Added UTF-8 counterparts for built-in types (integer , real , boolean).

• Fixed typos in the examples corresponding to features implemented in Frama-C.

• Order of clauses in function contracts is now fixed.

• Introduction of abrupt termination clauses.

• Introduction of axiomatic to gather predicates, logic functions, and their defining axioms.

• Added specification templates appendix for common specification issues.

• Use of sets as first-class term has been precised.

• Fixed semantics of predicate \separated .

A.8.15 Version 1.3

• Functional update of structures.

• Terminates clause in function behaviors.

• Typos reported by David Mentré.

A.8.16 Version 1.2

This is the first public release of this document.

120

BIBLIOGRAPHY

Bibliography

[1] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, 1996.

[2] Ali Ayad and Claude Marché. Behavioral properties of floating-point programs. Hisseo
publications, 2009. http://hisseo.saclay.inria.fr/ayad09.pdf.

[3] Sylvie Boldo and Jean-Christophe Filliâtre. Formal Verification of Floating-Point Pro-
grams. In 18th IEEE International Symposium on Computer Arithmetic, pages 187–194,
Montpellier, France, June 2007.

[4] Patrice Chalin. Reassessing JML’s logical foundation. In Proceedings of the 7th Workshop
on Formal Techniques for Java-like Programs (FTfJP’05), Glasgow, Scotland, July 2005.

[5] Patrice Chalin. A sound assertion semantics for the dependable systems evolution veri-
fying compiler. In Proceedings of the International Conference on Software Engineering
(ICSE’07), pages 23–33, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[6] David R. Cok. OpenJML: JML for Java 7 by Extending OpenJDK. In Mihaela Bobaru,
Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal Methods,
volume 6617 of Lecture Notes in Computer Science, pages 472–479. Springer Berlin /
Heidelberg, 2011. 10.1007/978-3-642-20398-5_35.

[7] David R. Cok. OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In F-IDE, pages 79–92, 2014.

[8] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress
and issues in building and using ESC/Java2, including a case study involving the use of
the tool to verify portions of an Internet voting tally system. In Gilles Barthe, Lilian
Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS 2004), volume
3362 of Lecture Notes in Computer Science, pages 108–128. Springer, 2005.

[9] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, andWestley Weimer.
Ccured in the real world. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 con-
ference on Programming language design and implementation, pages 232–244, 2003.

[10] Jeremy Paul Condit, Matthew Thomas Harren, Zachary Ryan Anderson, David Gay, and
George Necula. Dependent types for low-level programming. In ESOP ’07: Proceedings
of the 16th European Symposium on Programming, October 2006.

[11] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C programs.
In Jim Davies, Wolfram Schulte, and Mike Barnett, editors, 6th International Conference

121

http://hisseo.saclay.inria.fr/ayad09.pdf

BIBLIOGRAPHY

on Formal Engineering Methods, volume 3308 of Lecture Notes in Computer Science,
pages 15–29, Seattle, WA, USA, November 2004. Springer.

[12] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. In Werner Damm and Holger Hermanns, editors, 19th
International Conference on Computer Aided Verification, Lecture Notes in Computer
Science, Berlin, Germany, July 2007. Springer.

[13] The Frama-C framework for analysis of C code. http://frama-c.cea.fr/.

[14] A. Giorgetti and J. Groslambert. JAG: JML Annotation Generation for verifying tempo-
ral properties. In FASE’2006, Fundamental Approaches to Software Engineering, volume
3922 of LNCS, pages 373–376, Vienna, Austria, March 2006. Springer.

[15] John Hatcliff, Gary T. Leavens, K Rustan M Leino, Peter Müller, and Matthew Parkin-
son. Behavioral interface specification languages. ACM Computing Surveys (CSUR),
44(3):16, 2012.

[16] International Organization for Standardization (ISO). The ANSI C standard (C99).
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[17] Brian Kernighan and Dennis Ritchie. The C Programming Language (2nd Ed.). Prentice-
Hall, 1988.

[18] Gary Leavens. Jml. http://www.eecs.ucf.edu/~leavens/JML/.

[19] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06i, Iowa State
University, 2000.

[20] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification
challenges for sequential object-oriented programs. Form. Asp. Comput., 19(2):159–189,
2007.

[21] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
Minneapolis, Minnesota, pages 105–106, 2000.

[22] Claude Marché. Towards modular algebraic specifications for pointer programs: a case
study. In H. Comon-Lundh, C. Kirchner, and H. Kirchner, editors, Rewriting, Compu-
tation and Proof, volume 4600 of Lecture Notes in Computer Science, pages 235–258.
Springer-Verlag, 2007.

[23] Yannick Moy. Union and cast in deductive verification. Technical Report ICIS-R07015,
Radboud University Nijmegen, July 2007. http://www.lri.fr/~moy/union_and_cast/
union_and_cast.pdf.

[24] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe retrofitting
of legacy code. In Symposium on Principles of Programming Languages, pages 128–139,
2002.

[25] Arun D. Raghavan and Gary T. Leavens. Desugaring JML method specifications. Tech-
nical Report 00-03a, Iowa State University, 2000.

122

http://frama-c.cea.fr/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.eecs.ucf.edu/~leavens/JML/
http://www.lri.fr/~moy/union_and_cast/union_and_cast.pdf
http://www.lri.fr/~moy/union_and_cast/union_and_cast.pdf

BIBLIOGRAPHY

[26] David Stevenson et al. An american national standard: IEEE standard for binary floating
point arithmetic. ACM SIGPLAN Notices, 22(2):9–25, 1987.

[27] Wikipedia. First order logic. http://en.wikipedia.org/wiki/First_order_logic.

[28] Wikipedia. IEEE 754. http://en.wikipedia.org/wiki/IEEE_754-1985.

123

http://en.wikipedia.org/wiki/First_order_logic
http://en.wikipedia.org/wiki/IEEE_754-1985

LIST OF FIGURES

List of Figures

2.1 Grammar of terms. The terminals id, C-type-name, and various literals are
the same as the corresponding C lexical tokens (cf. §A.4). 17

2.2 Grammar of predicates . 18
2.3 The grammar of C type expressions, from the C standard 19
2.4 Grammar of binders and type expressions . 20
2.5 Operator precedence . 21
2.6 Grammar of function contracts . 31
2.7 \old and \result in terms . 31
2.8 Grammar for sets of memory locations . 38
2.9 Grammar for assertions . 41
2.10 Grammar for loop annotations . 42
2.11 Grammar for general inductive invariants . 44
2.12 Grammar for at construct . 48
2.13 Grammar for statement contracts . 50
2.14 Grammar for global logic definitions . 55
2.15 Grammar for inductive definitions . 55
2.16 Grammar for axiomatic declarations . 57
2.17 Grammar for higher-order constructs . 59
2.18 Grammar for concrete logic types and pattern-matching 61
2.19 Grammar for logic declarations with labels . 62
2.20 Grammar for logic declarations with reads clauses 63
2.21 Grammar extension of terms and predicates about memory 65
2.22 Grammar for dynamic allocations and deallocations 67
2.23 Notations for built-in list datatype . 73
2.24 Grammar of contracts about abrupt terminations 74
2.25 Grammar for dependencies information . 76
2.26 Grammar for declarations of data invariants 77
2.27 Grammar for declarations of model variables and fields 80
2.28 Grammar for ghost statements . 83

125

LIST OF FIGURES

2.29 Grammar for volatile constructs . 86
2.30 Grammar extensions regarding initialized and dangling memory 87
2.31 Grammar for predicates related to well-typedness 88
2.32 Grammar for ACSL attributes . 89

A.1 The grammar of C type expressions, from the C standard 107

126

INDEX

Index

?, 17, 18
_, 61

abrupt clause, 74
admit, 31
\allocable , 65, 68
allocates , 67, 76
allocation, 67
\allocation , 65, 67

allocation_status, 67
annotation, 40

loop, 40
as, 61
assert, 41
assertion, 40
assigns , 31, 32, 42, 50, 76
assumes, 31
\at, 46, 48
\automatic, 67
axiom, 57
axiomatic , 56, 57

\base_addr, 65
behavior , 31, 34, 50, 97
behaviors , 31
\block_length, 30, 65
boolean, 20, 22
breaks , 74

case, 55, 61
cast, 23–26
char, 19, 107
check, 31
complete, 31
complete behaviors, 36
comprehension, 39
\concat, 72
\Cons, 72
const, 19, 107
continues , 74
contract, 31, 40, 50, 97

\dangling , 87, 88
data invariant, 77
deallocation, 67
decreases , 31, 51
dependency, 76
disjoint , 31
disjoint behaviors, 37
double, 19, 107
\dynamic, 67
dynamic allocation, 67

else , 83
\empty, 38
ensures , 31, 32, 50, 74
enum, 19, 107
\eq_double, 26
\eq_float , 26
\exists , 18
\exit_status , 74, 75
exits, 74

\false , 17, 18, 22
float , 19, 107
for , 31, 41, 42, 44, 50
\forall , 18
formal parameter, 32, 34, 78
\freeable , 65, 68
frees , 67, 76
\fresh , 65, 68
\from, 76
function behavior, 34, 97
function contract, 31, 97
functional expression, 76

\ge_double, 26
\ge_float , 26
ghost, 82, 83
\ghost, 83
global , 77
global invariant, 77
grammar entries

C-abstract-declarator, 19, 107

127

INDEX

C-compound-statement, 41
C-constant-expression, 19, 107
C-declaration-specifier, 19, 107
C-declarator, 19, 107
C-direct-abstract-declarator, 19, 107
C-direct-declarator, 19, 83, 107
C-external-declaration, 55
C-parameter-declaration, 19, 107
C-parameter-type-list, 19, 107
C-pointer, 19, 107
C-postfix-expression, 83
C-specifier-qualifier, 19, 107
C-statement, 41, 42, 50, 83
C-struct-declaration, 83
C-type-expr, 19, 107
C-type-name, 19, 107
C-type-qualifier, 19, 83, 89, 107
C-type-specifier, 19, 83, 107
abrupt-clause-stmt, 74
abrupt-clause, 74
acsl-attribute, 89
allocation-clause, 67
assertion-kind, 41
assertion, 41, 44
assigns-clause, 31, 76
assumes-clause, 31
axiom-def, 57
axiomatic-decl, 57
behavior-body-stmt, 50
behavior-body, 31
bin-op, 17
binders, 20
binder, 20
breaks-clause, 74
built-in-logic-type, 20
clause-kind, 31
completeness-clause, 31
constructor, 61
continues-clause, 74
data-inv-def, 77
data-invariant, 77
decreases-clause, 31
dyn-allocation-addresses, 67
ensures-clause, 31
exits-clause, 74
ext-quantifier, 59
function-contract, 31
function-type, 61
ident, 17, 62

indcase, 55
inductive-def, 55
inv-strength, 77
label-binders, 62
label-id, 48
lemma-def, 55
literal, 17
location-address, 87
locations-list, 31
locations, 31
location, 31
logic-const-decl, 57
logic-const-def, 55
logic-decl, 57
logic-def, 55, 57, 61, 80, 83, 86
logic-function-decl, 57, 63
logic-function-def, 55, 63
logic-predicate-decl, 57, 63
logic-predicate-def, 55, 63
logic-type-decl, 57
logic-type-def, 61
logic-type-name, 20
logic-type, 57
loop-allocation, 67
loop-annot, 42
loop-assigns, 42
loop-behavior, 42
loop-clause, 42
loop-invariant, 42
loop-variant, 42
match-cases, 61
match-case, 61
named-behavior-stmt, 50
named-behavior, 31
one-label, 65
parameters, 55
parameter, 55
pat, 61
poly-id, 17, 55, 62
pred, 18, 31, 38, 48, 65, 87, 88
product-type, 61
range, 38
reads-clause, 63
record-type, 61
rel-op, 18
requires-clause, 31
returns-clause, 74
simple-clause-stmt, 50
simple-clause, 31

128

INDEX

statement-contract, 50
sum-type, 61
terminates-clause, 31
term, 17, 31, 48, 59, 61, 65, 73, 74
tset, 38
two-labels, 65
type-expr, 20, 55
type-invariant, 77
type-name, 20
type-var-binders, 55
type-var, 55
unary-op, 17
variable-ident, 20

\gt_double, 26
\gt_float , 26

Here, 47, 48, 74
hybrid

function, 60
predicate, 60

if , 83
\in, 38
inductive , 55
inductive definitions, 56
inductive predicates, 56
Init, 47, 48
\initialized , 87
int , 19, 107
integer , 20, 22
\inter , 38, 39
invariant, 44

data, 77
global, 77
loop, 41
strong, 77
type, 77
weak, 77

invariant , 42, 44, 77
\is_finite , 26
\is_infinite , 26
\is_minus_infinity , 26
\is_NaN, 26
\is_plus_infinity , 26

l-value, 37
\lambda, 58, 59
\le_double, 26
\le_float , 26
left-value, 97
lemma, 55

\length , 72
\let , 17, 18, 61
library, 64
\list , 72
location, 37, 71
logic , 55, 57, 63
logic specification, 54
long, 19, 107
loop

allocation, 70
annotation, 40
assigns, 41
behavior, 42
deallocation, 70
invariant, 41
variant, 43

loop, 42, 67
LoopCurrent, 47, 48
LoopEntry, 47, 48
\lt_double , 26
\lt_float , 26
lvalue, 97

\match, 61
\max, 58, 59
\min, 58, 59
model, 80
module, 64

\ne_double, 26
\ne_float , 26
\Nil , 72
\nothing, 31
\nth, 72
\null , 65, 66
\numof, 58, 59

\offset , 65, 66
Old, 47, 48, 74
\old, 31, 32, 47, 74, 75

polymorphism, 58
Post, 47, 48, 74
post-state, 97
Pre, 47, 48, 74
pre-state, 97
predicate, 16
predicate , 55, 57, 63
\product, 58, 59
pure expression, 97

129

INDEX

reads , 63, 86
real , 20, 22
real_of_double, 25
real_of_float, 25
recursion, 58
\register , 67
\repeat , 72
requires , 31, 32
\result , 31, 32, 74
returns , 74
\round_double, 26
\round_float , 26

\separated , 65, 66
set type, 71
short , 19, 107
\sign , 27
signed , 19, 107
sizeof , 17, 24
specification, 54
statement contract, 40, 50
\static , 67
strong , 77
struct , 19, 107
\subset , 38
\sum, 58, 59

term, 16
terminates , 31, 53
termination, 43, 51
\true , 17, 18, 22
type

concrete, 60
polymorphic, 58
record, 60, 61
sum, 60, 61

type, 57, 61, 77
type invariant, 77

\unallocated , 67
union, 19, 107
\union, 38, 39
unsigned, 19, 107

\valid , 65
valid_function, 88
\valid_function , 88
\valid_read , 65, 66
variant , 42, 43, 51
void, 19, 107
volatile , 19, 86, 107

weak, 77
\with, 17, 59
writes, 86

130

	Introduction
	Organization of this document
	Generalities about Annotations
	Kinds of annotations
	Parsing annotations in practice
	About preprocessing
	About keywords

	Notations for grammars

	Specification language
	Lexical rules
	Logic expressions
	Operators precedence
	Semantics
	Typing
	Integer arithmetic and machine integers
	Real numbers and floating point numbers
	C arrays and pointers
	Structures, Unions and Arrays in logic

	Function contracts
	Built-in constructs \old and \result
	Simple function contracts
	Contracts with named behaviors
	Memory locations and sets of values
	Default contracts, multiple contracts

	Statement annotations
	Assertions
	Loop annotations
	Built-in construct \at
	Statement contracts

	Termination
	Integer measures
	General measures
	Recursive function calls
	Non-terminating functions

	Logic specifications
	Predicate and function definitions
	Lemmas
	Inductive predicates
	Axiomatic definitions
	Polymorphic logic types
	Recursive logic definitions
	Higher-order logic constructions
	Concrete logic types
	Hybrid functions and predicates
	Memory footprint specification: reads clause
	Specification Modules

	Pointers and physical addressing
	Memory blocks and pointer dereferencing
	Separation
	Dynamic allocation and deallocation

	Sets and lists
	Finite sets
	Finite lists

	Abrupt termination
	Dependencies information
	Data invariants
	Semantics
	Model variables and model fields

	Ghost variables and statements
	Volatile variables

	Initialization and undefined values
	Dangling pointers
	Well-typed pointers
	Logic attribute annotations
	Preprocessing for ACSL

	Libraries
	Libraries of logic specifications
	Real numbers
	Finite lists
	Sets and Maps

	Jessie library: logical addressing of memory blocks
	Abstract level of pointer validity
	Strings

	Memory leaks

	Conclusion
	Appendices
	Glossary
	Builtin functions
	Comparison with JML
	Low-level language vs. inheritance-based one
	Deductive verification vs. RAC
	Syntactic differences

	C grammar elements
	Identifiers
	Literals
	C Type Expressions

	Typing rules
	Rules for terms
	Typing rules for sets

	Specification Templates
	Accessing a C variable that is masked

	Illustrative example
	Changes
	Version 1.17
	Version 1.16
	Version 1.15
	Version 1.14
	Version 1.13
	Version 1.12
	Version 1.11
	Version 1.10
	Version 1.9
	Version 1.8
	Version 1.7
	Version 1.6
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2

	Bibliography
	List of Figures
	Index

