
Eva – The Evolved Value Analysis plug-in

The Eva plug-in
20.0 (Calcium)

David Bühler, Pascal Cuoq and Boris Yakobowski.
With Matthieu Lemerre, André Maroneze, Valentin Perrelle and Virgile Prevosto

This work is licensed under a Creative Commons “Attribution-
ShareAlike 4.0 International” license.

CEA LIST, Software Reliability Laboratory, Saclay, F-91191

©2011-2019 CEA LIST
This work has been supported by the ANR project U3CAT (ANR-08-SEGI-021-01).

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

CONTENTS

Contents

1 Introduction 9
1.1 First contact . 9
1.2 Run-time errors and the absence thereof . 10
1.3 From Value Analysis to Eva . 11
1.4 Other analyses based on Eva . 11

2 Tutorial 13
2.1 Introduction . 13
2.2 Target code: Skein-256 . 14
2.3 Using Eva for getting familiar with Skein . 15

2.3.1 Writing a test . 15
2.3.2 First try at an analysis using Eva . 16
2.3.3 Missing functions . 17
2.3.4 Interpreting the output of the analysis 18
2.3.5 Increasing analysis precision in loops 20
2.3.6 Increasing precision . 21
2.3.7 Inspecting alarms in the GUI . 22
2.3.8 Finding and fixing bugs . 23

2.4 Guaranteeing the absence of bugs . 24
2.4.1 Generalizing the analysis to arbitrary messages of fixed length 24
2.4.2 Verifying functional dependencies . 25
2.4.3 Generalizing to arbitrary numbers of Update calls 27

3 What Eva provides 29
3.1 Values . 29

3.1.1 Variation domains for expressions . 29
3.1.2 Memory contents . 30
3.1.3 Interpreting the variation domains . 31
3.1.4 Origins of approximations . 31

5

CONTENTS

3.2 What is checked by Eva . 33
3.3 Log messages emitted by Eva . 41

3.3.1 Results . 41
3.3.2 Informational messages regarding propagation 41
3.3.3 Analysis summary . 42

3.4 About these alarms the user is supposed to check. 43
3.5 API . 44

3.5.1 Eva API overview . 44

4 Graphical interface (GUI) 45
4.1 A general view of the GUI . 46
4.2 Detecting and understanding non-termination 47
4.3 Values Panel . 48

4.3.1 Filtering non-terminating callstacks 50
4.4 Finding origins of alarms and imprecisions via the Studia plug-in 51
4.5 Detecting branches abandoned because of red alarms 51

5 Limitations and specificities 55
5.1 Prospective features . 55

5.1.1 Strict aliasing rules . 55
5.1.2 Const attribute inside aggregate types 56
5.1.3 Alignment of memory accesses . 56

5.2 Loops . 56
5.3 Functions . 57
5.4 Analyzing a partial or a complete application 57

5.4.1 Entry point of a complete application 57
5.4.2 Entry point of an incomplete application 58
5.4.3 Library functions . 58
5.4.4 Choosing between complete and partial application mode 58
5.4.5 Applications relying on software interrupts 59

5.5 Conventions not specified by the ISO standard 60
5.5.1 The C standard and its practice . 60

5.6 Memory model – Bases separation . 61
5.6.1 Base address . 61
5.6.2 Address . 61
5.6.3 Bases separation . 61
5.6.4 Dynamic allocation . 62

5.7 What Eva does not provide . 63

6

CONTENTS

6 Parameterizing the analysis 65
6.1 Three-step approach . 65

6.2 Command line . 66

6.2.1 Analyzed files and preprocessing . 66

6.2.2 Activating Eva . 67

6.2.3 Saving the result of an analysis . 67

6.2.4 Controlling the output . 67

6.3 Describing the analysis context . 68

6.3.1 Specification of the entry point . 68

6.3.2 Analysis of a complete application . 68

6.3.3 Analysis of an incomplete application 69

6.3.4 Tweaking the automatic generation of initial values 69

6.3.5 State of the IEEE 754 environment . 71

6.3.6 Setting compilation parameters . 72

6.3.7 Parameterizing the modeling of the C language 72

6.3.8 Dealing with library functions . 73

6.3.9 Using the specification of a function instead of its body 74

6.4 Improving precision in loops . 74

6.4.1 Loop unrolling . 74

6.4.2 Widening hints and loop invariants . 78

6.5 Improving precision with case-based reasoning 80

6.5.1 Automatic partitioning on conditional structures 81

6.5.2 Value partitioning . 81

6.6 Controlling approximations . 83

6.6.1 Cutoff between integer sets and integer intervals 83

6.6.2 Maximum number of precise items in arrays 83

6.7 Advanced analyses . 84

6.7.1 Symbolic equalities . 84

6.7.2 Reused left-values . 85

6.7.3 Gauges . 85

6.7.4 Octagons . 86

6.7.5 Bitwise values . 87

6.7.6 Binding to APRON . 87

6.7.7 Numerors . 88

6.8 Non-termination . 88

6.9 Analysis scripts and templates . 89

7

CONTENTS

7 Inputs, outputs and dependencies 91
7.1 Dependencies . 91
7.2 Imperative inputs . 92
7.3 Imperative outputs . 93
7.4 Operational inputs . 93

8 Annotations 95
8.1 Preconditions, postconditions and assertions 95

8.1.1 Truth value of a property . 95
8.1.2 Reduction of the state by a property 96
8.1.3 An example: evaluating postconditions 98

8.2 Assigns clauses . 98
8.3 Specifications for functions of the standard library 101

9 Primitives 103
9.1 Standard C library . 103

9.1.1 malloc, calloc, realloc and free functions 104
9.2 Parameterizing the analysis . 105

9.2.1 Adding non-determinism . 105
9.3 Observing intermediate results . 106

9.3.1 Displaying the value of an expression 106
9.3.2 Displaying the entire memory state . 107
9.3.3 Displaying internal properties about expressions 107

9.4 Table of builtins . 108
9.4.1 Floating-point operations . 108
9.4.2 String operations . 108
9.4.3 Memory manipulation . 108
9.4.4 Dynamic allocation . 108
9.4.5 State-splitting builtins . 108

10 FAQ 111

8

Chapter 1

Introduction

Frama-C is a modular static analysis framework for the C language.
This manual documents the Eva (for Evolved Value Analysis) plug-in of Frama-C.

The Eva plug-in automatically computes sets of possible values for the variables of an analyzed
program. Eva warns about possible run-time errors in the analyzed program. Lastly, synthetic
information about each analyzed function can be computed automatically from the values
provided by Eva: these functionalities (input variables, output variables, and information
flow) are also documented here.

The framework, the Eva plug-in and the other plug-ins documented here are all Open Source
software. They can be downloaded from http://frama-c.com/.

In technical terms, Eva is context-sensitive and path-sensitive. In non-technical terms, this
means that it tries to offer precise results for a large set of C programs. Heterogeneous pointer
casts, function pointers, and floating-point computations are handled.

1.1 First contact

Frama-C comes with two interfaces: batch and interactive. The interactive graphical interface
of Frama-C displays a normalized version of the analyzed source code. In this interface, the Eva
plug-in allows the user to select an expression in the code and observe an over-approximation
of the set of values this expression can take at run-time.
Here is a simple C example:

introduction.c
1 int y, z=1;
2 int f(int x) {

9

http://frama-c.com/

CHAPTER 1. INTRODUCTION

3 y = x + 1;
4 return y;
5 }
6

7 void main(void) {
8 for (y=0; y<2+2; y++)
9 z=f(y);

10 }

If either interface of Frama-C is launched with options -eva introduction.c, the Eva plug-in
is able to guarantee that at each passage through the return statement of function f, the
global variables y and z each contain either 1 or 3. At the end of function main, it indicates
that y necessarily contains 4, and the value of z is again 1 or 3.

When the plug-in indicates the value of y is 1 or 3 at the end of function f, it implicitly
computes the union of all the values in y at each passage through this program point throughout
any execution. In an actual execution of this deterministic program, there is only one passage
though the end of function main, and therefore only one value for z at this point. The answer
given by Eva is approximated but correct (the actual value, 3, is among the proposed values).

The theoretical framework on which Eva is founded is called Abstract Interpretation and has
been the subject of extensive research during the last forty years.

1.2 Run-time errors and the absence thereof

An analyzed application may contain run-time errors: divisions by zero, invalid pointer
accesses,. . .

rte.c
1 int i,t[10];
2

3 void main(void) {
4 for (i=0; i<=8+2; i++)
5 t[i]=i;
6 }

When launched with frama-c -eva rte.c, Eva emits a warning about an out-of-bound access
at line 5:

[eva:alarm] rte.c:5: Warning: accessing out of bounds index. assert i < 10;

There is in fact an out-of-bounds access at this line in the program. It can also happen that,
because of approximations during its computations, Frama-C emits warnings for constructs
that do not cause any run-time errors. These are called “false alarms”. On the other hand,
the fact that Eva computes correct, over-approximated sets of possible values prevents it
from remaining silent on a program that contains a run-time error. For instance, a particular
division in the analyzed program is the object of a warning as soon as the set of possible
values for the divisor contains zero. Only if the set of possible values computed by Eva does
not contain zero is the warning omitted, and that means that the divisor really cannot be
null at run-time.

10

1.3. FROM VALUE ANALYSIS TO EVA

1.3 From Value Analysis to Eva

The Eva plug-in was previously called the Value Analysis plug-in. Following major changes
in its expressivity and overall precision, the plugin was subsequently renamed to Evolved
Value Analysis, or Eva for short. Those changes were first made available with the Aluminium
version of Frama-C. They are presented in section 6.7.

1.4 Other analyses based on Eva

Frama-C also provides synthetic information on the behavior of analyzed functions: inputs,
outputs, and dependencies. This information is computed from the results of the Eva plug-in,
and therefore some familiarity with Eva is necessary to get the most of these computations.

11

Chapter 2

Tutorial

Some use cases for Eva. . .

2.1 Introduction

Throughout this tutorial, we will see on a single example how to use Eva for the following
tasks :

1. to get familiar with foreign code,

2. to produce documentation automatically,

3. to search for bugs,

4. to guarantee the absence of bugs.

It is useful to stick to a single example in this tutorial, and there is a natural progression to
the list of results above, but in real life, a single person would generally focus on only one
or two of these four tasks for a given codebase. For instance, if you need Frama-C’s help to
reverse engineer the code as in tasks 1 and 2, you have probably not been provided with the
quantity of documentation and specifications that is appropriate for meaningfully carrying
out task 4.
Frama-C helps you to achieve tasks 1-3 in less time than you would need to get the same
results using the traditional approach of writing tests cases. Task 4, formally guaranteeing the
absence of bugs, can in the strictest sense not be achieved at all using tests for two reasons.
Firstly, many forms of bugs that occur in a C program (including buffer overflows) may cause
the behavior of the program to be non-deterministic. As a consequence, even when a test
suite comes across a bug, the faulty program may appear to work correctly during tests and

13

CHAPTER 2. TUTORIAL

fail later, after it has been deployed. Secondly, the notion of coverage of a test suite in itself
is an invention made necessary because tests aren’t usually exhaustive. Assume a function’s
only inputs are two 32-bit integers, each allowed to take the full range of their possible values.
Further assume that this function only takes a billionth of a second to run (a couple of cycles
on a 2GHz processor). A pencil and the back of an envelope show that this function would
take 600 years to test exhaustively. Testing coverage criteria can help decide a test suite is
“good enough”, but there is an implicit assumption in this reasoning. The assumption is that
a test suite that satisfies the coverage criteria finds all the bugs that need to be found, and
this assumption is justified empirically only.

2.2 Target code: Skein-256

A single piece of code, the reference implementation for the Skein hash function, is used as an
example throughout this document. As of this writing, this implementation is available at
http://www.schneier.com/code/skein.zip. The Skein function is Niels Ferguson, Stefan
Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse
Walker’s entry in the NIST cryptographic hash algorithm competition for SHA-3.

Cryptographic hash functions are one of the basic building blocks from which cryptographic
protocols are designed. Many cryptographic protocols are designed with the assumption that
an implementation for a function h from strings to fixed-width integers is available with the
following two properties:

• it is difficult to find two distinct, arbitrary strings s1 and s2 such that h(s1) = h(s2),

• for a given integer i, it is difficult to build a string s such that h(s) = i.

A function with the above two properties is called a cryptographic hash function. It is of the
utmost importance that the function actually chosen in the implementation of a cryptographic
application satisfies the above properties! Any weakness in the hash function can be exploited
to corrupt the application.

Proofs of security for cryptographic hash functions are complicated mathematical affairs.
These proofs are made using a mathematical definition of the function. Using static analysis
for verifying that a piece of code corresponds to the mathematical model which was the object
of the security proofs is an interesting topic but is outside the scope of this tutorial. In this
document, we will not be using Eva for verifying cryptographic properties.

We will, however, use Eva to familiarize ourselves with Skein’s reference implementation, and
we will see that it can be a more useful tool than, say, a C compiler, to this effect. We
will also use Eva to look for bugs in the implementation of Skein, and finally prove that the
functions that implement Skein may never cause a run-time error for a general use pattern.
Because of the numerous pitfalls of the C programming language, any amount of work at the
mathematical level cannot exclude the possibility of problems such as buffer overflows in the
implementation. It is a good thing to be able to rule these out with Eva.

Eva is most useful for embedded or embedded-like code. Although the Skein library does not
exactly fall in this category, it does not demand dynamic allocation and uses few functions
from external libraries, so it is well suited to this analysis.

14

http://www.schneier.com/code/skein.zip

2.3. USING EVA FOR GETTING FAMILIAR WITH SKEIN

2.3 Using Eva for getting familiar with Skein

2.3.1 Writing a test

After extracting the archive skein_NIST_CD_010509.zip, listing the files in
NIST/CD/Reference_Implementation shows:

1 SHA3api_ref.c
2 SHA3api_ref.h
3 brg_endian.h
4 brg_types.h
5 skein.c
6 skein.h
7 skein_block.c
8 skein_debug.c
9 skein_debug.h

10 skein_port.h

The most natural place to go next is the file skein.h, since its name hints that this is the
header with the function declarations that should be called from outside the library. Scanning
the file quickly, we may notice declarations such as

typedef struct /* 256-bit Skein hash context structure */
{

[...]
} Skein_256_Ctxt_t;

/* Skein APIs for (incremental) "straight hashing" */
int Skein_256_Init (Skein_256_Ctxt_t *ctx, size_t hashBitLen);
[...]
int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg,

size_t msgByteCnt);
[...]
int Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

The impression we get at first glance is that the hash of an 80-char message containing the string
“People of Earth, your attention, please” can be computed as simply as declaring a variable
of type Skein_256_Ctxt_t, letting Skein_256_Init initialize it, passing Skein_256_Update a
representation of the string, and calling Skein_256_Final with the address of a buffer where
to write the hash value. Let us write a C program that does just that:

main_1.c
1 #include "skein.h"
2 #include <stdio.h>
3

4 #define HASHLEN (8)
5

6 u08b_t msg[80]="People of Earth, your attention, please";
7

8 int main(void)
9 {

10 u08b_t hash[HASHLEN];
11 int i;
12 Skein_256_Ctxt_t skein_context;
13 Skein_256_Init(&skein_context, HASHLEN);

15

CHAPTER 2. TUTORIAL

14 Skein_256_Update(&skein_context, msg, 80);
15 Skein_256_Final(&skein_context, hash);
16 for (i=0; i<HASHLEN; i++)
17 printf("%d\n", hash[i]);
18 return 0;
19 }

In order to make the test useful, we have to print the obtained hash value. Because the result
we are interested in is an 8-byte number, represented as a char array of arbitrary characters
(some of them non-printable), we cannot use string-printing functions, hence the for loop at
lines 17-18.
With luck, the compilation goes smoothly and we obtain a hash value:

gcc *.c
./a.out

215
215
189
207
196
124
124
13

Your actual result may differ from the one above; this will be explained later.

2.3.2 First try at an analysis using Eva

Let us now see how Eva works on the same example. Eva can be launched with the following
command. The analysis should not take more than a few seconds:

frama-c -eva main_1.c >log

Frama-C has its own model of the target platform (the default target is a little-endian 32-bit
platform). It also uses the host system’s preprocessor. If you want to do the analysis for
a different platform than the host platform, you need to provide Frama-C with a way to
pre-process the files as they would be during an actual compilation.
There are analyses where the influence of host platform parameters is not noticeable. The
analysis we are embarking on is not one of them. If you pre-process the Skein source code
with a 64-bit compiler and then analyze it with Frama-C targeting its default 32-bit platform,
the analysis will be meaningless and you won’t be able to make sense of this tutorial. If you
are using a 64-bit compiler, simply match Frama-C’s target platform with your host header
files by systematically adding the option -machdep x86_64 to all commands in this tutorial.
The “>log” part of the command sends all the messages emitted by Frama-C into a file named
“log”. Eva is verbose for a number of reasons that will become clearer later in this tutorial.
The best way to make sense of the information produced by the analysis is to send it to a log
file.
There is also a Graphical User Interface for creating analysis projects and visualizing the
results. Note that you cannot edit the source code in the GUI, only visualize it. Most of the
information present in the console is also available in the GUI, but presented differently. Each
interface (terminal or GUI) is better suited for a specific set of tasks.

16

2.3. USING EVA FOR GETTING FAMILIAR WITH SKEIN

One way to create an analysis project in the GUI is to pass the command frama-c-gui
the same options that would be passed to frama-c. In this first example, the command
frama-c-gui -eva main_1.c launches the same analysis and then opens the GUI for inspection
of the results.
For simple projects like this tutorial, running everything at once is perfectly suitable; however,
for larger analyses, we recommend the three-step approach presented in section 6.1.

The initial syntactic analysis and symbolic link phases of Frama-C may find issues such
as inconsistent types for the same symbol in different files. Because of the way separate
compilation is implemented, the issues are not detected by standard C compilers. It is a good
idea to check for these issues in the first lines of the log.

2.3.3 Missing functions

Since we are trying out the library for the first time, something else to look for in the log file
is the list of functions for which the source code is missing. Eva requires either a body or a
specification for each function it analyzes.

grep "Neither code nor specification" log

This should match lines indicating functions that are both undefined (without source) and
that have no specification in Frama-C’s standard library. In our example, we obtain the
following lines in the log:

[kernel:annot:missing-spec] main_1.c:13: Warning:
Neither code nor specification for function Skein_256_Init,
generating default assigns from the prototype

[eva] using specification for function Skein_256_Init

The same messages are produced for functions Skein_256_Update and Skein_256_Final.
For each function, there are two messages: first, a warning about the absence of either code
or ACSL specification for the function, stating that an assigns clause will be generated for
the function (the assigns clause will be explained in detail later, in section 8.2). Second, a
message stating that Eva will use a specification for the missing function.

What happens is that, without code or specification, Frama-C can only guess what each
function does from the function’s prototype, which is both inaccurate and likely incorrect.
Eva needs a specification for each function without body reached during the analysis, so one
is created on the fly and then used, but results are likely to be unsatisfactory.

Absence of code or ACSL specification is a major issue which often renders the analysis
incorrect. For this reason, we recommend converting this warning into an error, in order to
spot it immediately. The analysis script templates, to be presented in section 6.9, already
include this change.

To fix the issue, we only need to give Frama-C all of the C sources in the directory:

frama-c -eva *.c >log

No further warnings about missing functions are emitted. We can now focus on functions
without bodies:

grep "using specification for function" log
[eva] using specification for function printf_va_1

17

CHAPTER 2. TUTORIAL

This printf_va_1 function is not present directly in the source code; it is a specialization
of a call to the variadic function printf. This specialization is performed by the Variadic
plugin1. All we need to know for now is that the plugin handles calls to variadic functions
and produces sound specifications for them, which are then used by Eva. This call to printf
has no observable effects for the analysis anyway, so we do not have anything to be concerned
with. It is still a good idea to check the specification of each function without body used
during the analysis, since the overall correctness depends on them. This can be done using the
GUI or, in the command line, with option -print, which outputs the Frama-C normalized
source code, including ACSL specifications and transformations performed by the Variadic
plugin.
It is also possible to obtain a list of missing function definitions by using the command:

frama-c -metrics *.c

This command computes, among other pieces of information, a list of missing functions (under
the listing “Undefined functions”) using a syntactic analysis produced by the Metrics plugin.
It is not exactly equivalent to grepping the log of Eva because it lists all the functions that
are missing, while the log of Eva only cites the functions that would have been necessary to
an analysis. When analyzing a small part of a large codebase, the latter list may be much
shorter than the former. In this case, relying on the information displayed by -metrics means
spending time hunting for functions that are not actually necessary.
By default, Metrics does not list functions from the standard C library. This can be done by
adding option -metrics-libc, which would produce something similar to:

Undefined functions (90)
=======================
[...]
memcpy (21 calls); memmove (0 call); memset (27 calls); pclose (0 call);
perror (0 call); popen (0 call); printf_va_1 (1 call); putc (0 call);

Besides printf_va_1, only functions memcpy and memset are called. These functions are
already specified in the Frama-C libc. However, when running Eva, they result in an output
similar to the following:

[eva] FRAMAC_SHARE/libc/string.h:118:
cannot evaluate ACSL term, unsupported ACSL construct: logic function memset

Note that this message is not a warning (it does not begin with the word “Warning”) neither
an alarm (it is not prefixed with [eva:alarm]). It is an informative message related to
Frama-C’s libc specifications that can be safely ignored2 and will likely disappear in future
Frama-C releases.

2.3.4 Interpreting the output of the analysis

By default, Eva’s log emits several messages during the analysis, which are essential for a
deep understanding of the issues which may happen, but on overview, these are the main
components of the log:

• parsing and related messages (in our case, simply the list of files being parsed);
1The Variadic plugin is described in more detail in the Frama-C User Manual [CCK+].
2For the interested reader: some of the more thorough ACSL specifications in Frama-C’s <string.h> are

useful for plugins such as WP, but are not yet fully interpreted by Eva. Instead, Eva has builtins to correctly
interpret these libc functions without only relying on their specification.

18

2.3. USING EVA FOR GETTING FAMILIAR WITH SKEIN

• start of the analysis by Eva, with the initial values of global variables;

• messages emitted during the analysis, such as warnings, alarms and informative feedback;

• values for all variables at the end of each function;

• an analysis summary, with coverage and the number of errors, warnings, alarms and
logical properties.

If we focus on the initial values of variables, we notice that, apart from the variables defined
in the source code, there is a rather strange variable named Skein_Swap64_ONE and containing
1. Searching the source code reveals that this variable is in fact variable ONE, declared static
inside function Skein_Swap64. Frama-C can display the value of static variables, something
that is annoying to do when using a C compiler for testing. The GUI displays the original
source code alongside the transformed one, and allows navigating between uses of a variable
and its declaration.

A quick inspection shows that the Skein functions use variable ONE to detect endianness.
Frama-C assumes a little-endian architecture by default, so Eva is only analyzing the little-
endian version of the library (Frama-C also assumes an IA-32 architecture, so we are only
analyzing the library as compiled and run on this architecture). The big-endian version of the
library could be analyzed by reproducing the same steps we are taking here for a big-endian
configuration of Frama-C.

You may also see variable names prefixed by __fc_, __FC_ and S___fc_. These are variables
coming from ACSL specifications in the Frama-C standard library.

After the initial values, the analysis log contains some lines such as:

[eva] skein_block.c:56: starting to merge loop iterations

This means that Eva has encountered a loop and is performing an approximation. These
messages can be ignored for now.

Arguably some of the most important messages in the analysis are alarms, such as the one
below:

[eva:alarm] skein_block.c:69: Warning:
accessing uninitialized left-value. assert \initialized(&ks[i]);

As we will find out later in this tutorial, this alarm is a false alarm, an indication of a potential
problem in a place where there is in fact none. However, Eva never remains silent when
a risk of run-time error is present, unlike many other static analysis tools. The important
consequence is that if you get the tool to remain silent, you have formally verified that no
run-time error could happen when running the program.

The alarm means that Eva could not prove that the value ks[i] accessed in skein_block.c:69
was definitely initialized before being read. Reading an initialized value is an undefined behavior
according to the ISO C99 standard (and can even lead to security vulnerabilities).

As is often the case, this alarm is related to the approximation introduced in skein_block.c:56,
which is the loop responsible for initializing the values of array ks[i]. The order of the
messages during the analysis thus provides some hints about what is happening, and also
some ideas about how to solve them.

19

CHAPTER 2. TUTORIAL

2.3.5 Increasing analysis precision in loops

The previous alarm is just one of several related to variable initialization. Before we spend
any of our time looking at each of these alarms, trying to determine whether they are true or
false, it is a good idea to make the analyzer spend more of its time trying to determine the
same thing. There are different settings that influence the trade-off between precision and
resource consumption.
When dealing with bounded loops, option -eva-auto-loop-unroll N automatically unrolls
simple loops that have less than N iterations. This option is based on syntactic heuristics to
improve the precision at a low cost, and will not handle complex loops. It should be enabled
in most analyses.
If automatic loop unrolling is insufficient, the next best approach consists in using an ACSL
annotation, //@ loop unroll N, to direct Eva to analyze precisely the N first iterations of
the loop before approximating the results.
Note: both approaches can be combined to enable automatic loop unrolling except in
a few chosen loops: since the @loop unroll annotation takes precedence over other op-
tions, adding @loop unroll 0; to a loop will prevent it from being unrolled, even when
-eva-auto-loop-unroll is active.
Frama-C’s graphical interface can help estimating loop bounds by inspecting the values taken
by the loop counter, as in the example below:

Figure 2.1: Estimating loop unroll bounds in the GUI

In this case, WCNT has a constant value (4), so it could also be used to estimate the loop
bounds.
We can then Ctrl+click on the loop condition in the original source view (right panel) to open
an editor3 centered on the loop, and then add the loop unroll annotation, as follows:

//@ loop unroll 4;
for (i=0;i < WCNT; i++)

{
ks[i] = ctx->X[i];
ks[WCNT] ^= ctx->X[i]; /* compute overall parity */

3The external code editor used by the GUI can be defined via the menu File - Preferences.

20

2.3. USING EVA FOR GETTING FAMILIAR WITH SKEIN

}

The value 4 is sufficient to completely unroll the loop, even though i ranges from 0 to 4 (5
values in total). One way to confirm the unrolling is complete is to check that “starting to
merge loop iterations” is no longer emitted when entering the loop. Also, when a loop unroll
annotation is present but insufficient to unroll the loop, a message is emitted:

[eva:loop-unroll] skein_block.c:57: loop not completely unrolled

Once a loop is completely unrolled, any “leftovers” are ignored, so it incurs no extra cost.
Using a value larger than necessary is therefore not an issue.
The practical effect of adding this annotation and then re-running Eva is the elimination of
3 alarms in the analysis. Thanks to the extra precision allowed by the annotation (with a
minimal increase in analysis time), Eva is now able to prove there are no initialization errors
in more places than before.

2.3.6 Increasing precision

Option -eva-precision allows setting a global trade-off between precision and analysis time.
By default, Eva is tuned to a low precision to ensure a fast initial analysis. Especially for
smaller code bases, it is often useful to increase this precision, to dismiss “easy” alarms.
Precision can be set between 0 and 11, the higher the value, the more precise the analysis.
The default value of Eva is somewhere between 0 and 1, so that setting -eva-precision 0
potentially allows it to go even faster (only useful for large or very complex code bases).
-eva-precision is in fact a meta-option, whose only purpose is to set the values of other
options to a set of predefined values. This avoids the user having to know all of them, and
which values are reasonable. Think of it as a “knob” to perform a coarse adjustment of the
analysis, before fine-tuning it more precisely with other options.
-eva-precision displays a message when it is used, stating which options are affected and
the value given to them. If one of those options is already specified by the user, that value
takes priority over the one chosen by -eva-precision.
Among the options set by -eva-precision, there is -eva-slevel, which can be thought of
as some kind of “fuel” to be consumed during the analysis: as long as there is some slevel,
the analysis will keep states separated and maintain precision at the cost of extra analysis
time; when all of it is consumed, further states are merged, avoiding increase in analysis
time but approximating the results. It can also be specified separately for each function
(-eva-slevel-function f:n).
For complex code bases, however, -eva-slevel lacks in stability and predictability: it is
very hard to determine exactly how it is used. It can be consumed in the presence of loops,
branches, disjunctions; in nested loops, it is consumed by both inner and outer loops. In
loops with branches, its consumption may become exponential. And once a satisfactory value
is found, later changes to the source code, ACSL specifications, Eva’s algorithms or other
parameters can affect it, requiring a new parametrization.
In our example, we can quickly try a few values of -eva-precision, such as 1, 2 and 3:

frama-c -eva-precision 3 -eva *.c >log

Now, the analysis goes rather far without finding any alarm, but when it is almost done (after
the analysis of function Skein_256_Final), it produces:

21

CHAPTER 2. TUTORIAL

...
[eva] using specification for function printf_va_1
[eva:alarm] main_1.c:17: Warning:

accessing uninitialized left-value. assert \initialized(&hash[i]);
[eva] done for function main
...

There remains an alarm about initialization, but all the others have been removed. Trying
larger values for precision or slevel does not change this. In this case, we can afford to spend
some time looking at it in more detail.

2.3.7 Inspecting alarms in the GUI

Instead of running frama-c, let us use frama-c-gui:
frama-c-gui -eva-precision 3 -eva *.c >log

The GUI allows the user to navigate the source code, to inspect the sets of values inferred by
the analysis and to get a feeling of how it works. Right-clicking on the function name at a
call site brings a contextual menu to jump to the function’s definition. In order to return to
the caller, right-clicking on the name of the current function at the top brings a contextual
menu with a list of callers. You can also use the Back button (left arrow) in the toolbar. The
Information panel also offers navigation possibilities between variables and their definitions.
In the graphical interface, three panels (displayed below the source code) are very useful for
Eva: Properties, Values, and Red Alarms. Further details about the GUI are presented in
chapter 4. For now, it suffices to say that:

• Properties displays (among others) the list of alarms in the program;

• Values displays the inferred values for the expression selected in the Frama-C normalized
source code (highlighted in green);

• Red Alarms displays some special cases of alarms that should be considered first.

In the GUI, each alarm is represented with a “bullet” to its left. Red bullets mean “this always
happens”; yellow bullets mean “this may happen (but I am not sure, due to approximations)”.
When there are several alarms, some strategies allow prioritizing which alarms are more likely
to correspond to actual issues.
The overall rule of thumb when inspecting alarms in the GUI4 is the following:

• inspect red alarms in the Properties panel; these correspond to situations where the
analysis is certain that a problem has arrived; either an actual bug in the code, or
some issue in the analysis that needs to be addressed (e.g. due to missing or incorrect
specifications);

• inspect the cases present in the Red Alarms panel; these are situations which are likely
to correspond to definitive problems, and thus should be treated before others5;

4The first time the Frama-C GUI is run, the Properties panel displays several kinds of properties. For Eva,
the most useful view consists in selecting the “Reset ’Status’ filters to show only unproved/invalid” option,
using the button next to “Refresh” in the Properties panel.

5The exact meaning of such red alarms is too complex to be presented here; as a first approximation, these
can be seen as intermediate between red and yellow alarms.

22

2.3. USING EVA FOR GETTING FAMILIAR WITH SKEIN

• inspect remaining cases (yellow alarms) in the Properties panel.

In the case of our remaining alarm, it is yellow, but it appears in the Red Alarms panel. This
indicates it is more likely to correspond to a real issue.

Extra information can be observed by clicking the alarm in the Red Alarms tab, which
highlights it in the source code, then selecting expression hash in line 17 and reading the
Values tab:

[0] ∈ {200}
[1..7] ∈ UNINITIALIZED

This means that element hash[0] has value 200, but elements 1 to 7 are definitely uninitialized.
Therefore the first iteration of the loop proceeds as expected, but on the second iteration, the
analysis of the branch is stopped, because from the point of view of the analyzer, reading
an uninitialized value should be a fatal error. And there are no other execution branches
that reach the end of this loop, which is why the analyzer finds that function main does not
terminate (the log contains the message “NON TERMINATING FUNCTION”).

2.3.8 Finding and fixing bugs

We found a real issue in the code, but to find the exact cause it is necessary to investigate
the code. Looking again at the header file skein.h, we may now notice that in function
Skein_256_Init, the formal parameter for the desired hash length is named hashBitLen. This
parameter should certainly be expressed in bits! We were inadvertently asking for a 1-char
hash of the message since the beginning, and the test that we ran as our first step failed to
notice it.

The bug can be fixed by passing 8*HASHLEN instead of HASHLEN as the second argument
of Skein_256_Init. With this fix in place, the analysis with -eva-precision 3 produces no
alarms and gives the following result:

Values for function main:
hash[0] ∈ {40}

[1] ∈ {234}
[2] ∈ {138}
[3] ∈ {230}
[4] ∈ {134}
[5] ∈ {120}
[6] ∈ {37}
[7] ∈ {35}

i ∈ {8}

Meanwhile, compiling and executing the fixed test produces the result:

40
234
138
230
134
120
37
35

23

CHAPTER 2. TUTORIAL

2.4 Guaranteeing the absence of bugs

2.4.1 Generalizing the analysis to arbitrary messages of fixed length

The analysis we have done so far is very satisfying because it finds problems that are not
detected by a C compiler or by testing. The results of this analysis only prove the absence of
run-time errors6 when the particular message that we chose is being hashed, though. It would
be much more useful to have the assurance that there are no run-time errors for any input
message, especially since the library might be under consideration for embedding in a device
where anyone (possibly a malicious user) will be able to choose the message to hash.
A first generalization of the previous analysis is to include in the subject matter the hashing
of all possible 80-character messages. We can do this by separating the analyzed program in
two distinct phases, the first one being the construction of a generalized analysis context and
the second one being made of the sequence of function calls that we wish to study:

main_2.c
1 #include "skein.h"
2 #include "__fc_builtin.h"
3

4 #define HASHLEN (8)
5

6 u08b_t msg[80];
7

8 int Frama_C_interval(int,int);
9

10 void main(void)
11 {
12 int i;
13 u08b_t hash[HASHLEN];
14 Skein_256_Ctxt_t skein_context;
15

16 for (i=0; i<80; i++) msg[i]=Frama_C_interval(0, 255);
17

18 Skein_256_Init(&skein_context, HASHLEN * 8);
19 Skein_256_Update(&skein_context, msg, 80);
20 Skein_256_Final(&skein_context, hash);
21 }

From this point onward the program is no longer executable because of the call to builtin
primitives such as Frama_C_interval. We therefore dispense with the final calls to printf,
since Eva offers simpler ways to observe intermediate and final results. Note that we in-
cluded __fc_builtin.h, a file that comes from the Frama-C distribution and which defines
Frama_C_interval. Running Frama-C on this file (without main_1.c in the same directory, to
avoid having two definitions for main):

frama-c -eva-precision 3 -eva *.c >log 2>&1

This time, the absence of actual alarms is starting to be really interesting: it means that it is
formally excluded that the functions Skein_256_Init, Skein_256_Update, and Skein_256_Final
produce a run-time error when they are used, in this order, to initialize a local variable of type

6and the absence of conditions that should be run-time errors – like the uninitialized access already
encountered

24

2.4. GUARANTEEING THE ABSENCE OF BUGS

Skein_256_Ctxt_t (with argument 64 for the size), parse an arbitrary message and produce a
hash in a local u08b_t array of size 8.

2.4.2 Verifying functional dependencies

If we had written a formal specification for function Skein, we would soon have expressed that
we expected it to modify the buffer hash that is passed to Skein_256_Final (all 8 bytes of the
buffer), to compute the new contents of this buffer from the contents of the input buffer msg
(all 80 bytes of it), and from nothing else.
During Eva’s analysis, we have seen that all of the buffer hash was always modified in the
conditions of the analysis: the reason is that this buffer was uninitialized before the sequence
of calls, and guaranteed to be initialized after them.
We can get the complete list of locations that may be modified by each function by adding
the option -out to the other options we were already using. These locations are computed in
a quick analysis that comes after Eva. In the results of this analysis, we find:

[inout] Out (internal) for function main:
Frama_C_entropy_source; msg[0..79]; i; hash[0..7]; skein_context; tmp

The “(internal)” reminds us that this list includes the local variables of main that have been
modified. Indeed, all the variables that we could expect to appear in the list are here: the
input buffer, that we initialized to all possible arbitrary 80-char messages; the loop index that
we used in doing so; the output buffer for receiving the hash; and Skein’s internal state, that
was indirectly modified by us when we called the functions Init, Update and Final.
If we want the outputs of the sequence to appear more clearly, without the variables we used
for instrumenting, we can put it in its own function:

1 u08b_t hash[HASHLEN];
2

3 void do_Skein_256(void)
4 {
5 Skein_256_Ctxt_t skein_context;
6 Skein_256_Init(&skein_context, HASHLEN * 8);
7 Skein_256_Update(&skein_context, msg, 80);
8 Skein_256_Final(&skein_context, hash);
9 }

10

11 void main(void)
12 {
13 int i;
14

15 for (i=0; i<80; i++) msg[i]=Frama_C_interval(0, 255);
16

17 do_Skein_256();
18 }

Using option -out-external in order to obtain lists of locations that exclude each function’s
local variables, we get:

[inout] Out (external) for function do_Skein_256:
hash[0..7]

This means that no location other than hash[0..7] was modified by the sequence of calls
to Skein-256 functions. It doesn’t mean that each of the cells of the array was overwritten:

25

CHAPTER 2. TUTORIAL

we have to rely on the results of Eva when hash was a local variable for that result. But it
means that when used in conformance with the pattern in this program, the functions do not
accidentally modify a global variable. We can conclude from this analysis that the functions
are re-entrant as long as the concurrent computations are being made with separate contexts
and destination buffers.

Keeping the convenient function do_Skein_256 for modeling the sequence, let us now compute
the functional dependencies of each function. Functional dependencies list, for each output
location, the input locations that influence the final contents of this output location:

frama-c -eva *.c -eva-precision 3 -deps

Function Skein_256_Init:
skein_context.h.hashBitLen FROM ctx; hashBitLen

.h{.bCnt; .T[0..1]; } FROM ctx

.X[0..3] FROM msg[0..63];
skein_context{.X[0..3]; .b[0..31]; }; ctx;
hashBitLen; Skein_Swap64_ONE[bits 0 to 7] (and SELF)

.b[0..31] FROM ctx (and SELF)
\ result FROM \nothing

Function Skein_256_Update:
skein_context.h.bCnt FROM skein_context.h.bCnt; ctx; msgByteCnt

.h.T[0] FROM skein_context.h{.bCnt; .T[0]; }; ctx; msgByteCnt

.h.T[1] FROM skein_context{.h.bCnt; .h.T[1]; }; ctx;
msgByteCnt

{.X[0..3]; .b[0..15]; } FROM msg[0..79];
skein_context{.h{.bCnt; .T[0..1]; };

.X[0..3]; .b[0..31]; };
ctx; msg_0; msgByteCnt (and SELF)

\ result FROM \nothing

Function Skein_256_Final:
hash[0..7] FROM msg[0..79]; skein_context; ctx;

hashVal; Skein_Swap64_ONE[bits 0 to 7] (and SELF)
skein_context.h.bCnt FROM skein_context.h.hashBitLen; ctx (and SELF)

.h.T[0] FROM skein_context.h{.hashBitLen; .bCnt; .T[0]; }; ctx

.h.T[1] FROM skein_context{.h.hashBitLen; .h.T[1]; }; ctx
{.X[0..3]; .b[0..15]; } FROM msg[0..79]; skein_context;

ctx; Skein_Swap64_ONE[bits 0 to 7] (and SELF)
.b[16..31] FROM skein_context.h.bCnt; ctx (and SELF)

\ result FROM \nothing

The functional dependencies for the functions Init, Update and Final are quite cryptic. They
refer to fields of the struct skein_context. We have not had to look at this struct yet, but its
type Skein_256_Ctxt_t is declared in file skein.h.

In the results, the mention (and SELF) means that parts of the output location may keep
their previous values. Conversely, absence of this mention means that the output location is
guaranteed to have been completely over-written when the function returns. For instance,
the field skein_context.h.T[0] is guaranteed to be over-written with a value that depends
only on various other subfields of skein_context.h. On the other hand, the -deps analysis
does not guarantee that all cells of hash are over-written — but we previously saw we could
deduce this information from Eva’s results.
Since we don’t know how the functions are supposed to work, it is difficult to tell if these

26

2.4. GUARANTEEING THE ABSENCE OF BUGS

dependencies are normal or reveal a problem. Let us move on to the functional dependencies
of do_Skein_256:

Function do_Skein_256:
hash[0..7] FROM msg[0..79]; Skein_Swap64_ONE[bits 0 to 7] (and SELF)

These dependencies make the effect of the functions clearer. The FROM msg[0..79] part is
what we expect. The and SELF mention is an unfortunate approximation. The dependency
on global variable Skein_Swap64_ONE reveals an implementation detail of the library (the
variable is used to detect endianness dynamically). Finding out about this variable is a good
thing: it shows that a possibility for a malicious programmer to corrupt the implementation
into hashing the same message to different digests would be to try to change the value of
Skein_Swap64_ONE between computations. Checking the source code for mentions of variable
Skein_Swap64_ONE, we can see it is used to detect endianness and is declared const. On an
MMU-equipped platform, there is little risk that this variable could be modified maliciously
from the outside. However, this is a vivid example of how static analysis, and especially
correct analyses as provided in Frama-C, can complement code reviews in improving trust in
existing C code.
Assuming that variable Skein_Swap64_ONE keeps its value, a same input message is guaranteed
always to be hashed by this sequence of calls to the same digest, because option -deps says
that there is no other memory location hash is computed from, not even an internal state.
A stronger property to verify would be that the sequence Init(...), Update(...,80), Final(...)
computes the same hash as when the same message is passed in two calls Update(...,40).
This property is beyond the reach of Eva. In the advanced tutorial, we show how to verify
easier properties for sequences of calls that include several calls to Update.

2.4.3 Generalizing to arbitrary numbers of Update calls

As an exercise, try to verify that there cannot be a run-time error when hashing arbitrary
contents by calling Update(...,80) an arbitrary number of times between Init and Final.
The general strategy is to modify the C analysis context we have already written in a way
such that it is evident that it captures all such sequences of calls, and also in a way that
launched with adequate options, Eva does not emit any warning.
The latter condition is harder than the former. Observing results (with the GUI or observation
functions described in section 9.3) can help to iterate towards a solution. Be creative. The
continuation of this tutorial can be found online at http://blog.frama-c.com/index.php?
tag/skein7 ; read available posts in chronological order.

7Note that some messages and options have changed since the tutorial was posted. Using an older Frama-C
version may be necessary to obtain similar results.

27

http://blog.frama-c.com/index.php?tag/skein
http://blog.frama-c.com/index.php?tag/skein

Chapter 3

What Eva provides

Here begins the reference section of this manual.
This chapter categorizes and describes the outputs of Eva.

3.1 Values

The Eva plug-in accepts queries for the value of a variable x at a given program point. It
answers such a query with an over-approximation of the set of values possibly taken by x at
the designated point for all possible executions.

3.1.1 Variation domains for expressions

The variation domain of a variable or expression can take one of the shapes described below.

A set of integers
The analyzer may have determined the variation domain of a variable is a set of integers. This
usually happens for variables of an integer type, but may happen for other variables if the
application contains unions or casts. A set of integers can be represented as:

• an enumeration, {v1; . . . vn},

• an interval, [l..u], that represents all the integers comprised between l and u. If “--”
appears as the lower bound l (resp. the upper bound u), it means that the lower bound
(resp upper bound) is −∞ (resp. +∞),

• an interval with periodicity information, [l..u],r%m, that represents the set of values
comprised between l and u whose remainder in the Euclidean division by m is equal to
r. For instance, [2..42],2%10, represents the set that contains 2, 12, 22, 32, and 42.

29

CHAPTER 3. WHAT EVA PROVIDES

A floating-point value or interval

A location in memory (typically a floating-point variable) may also contain a floating-point
number or an interval of floating-point numbers:

• f for the non-zero floating-point number f (the floating-point number +0.0 has the same
representation as the integer 0 and is identified with it),

• [fl .. fu] for the interval from fl to fu inclusive.

A set of addresses

A variation domain (for instance for a pointer variable) may be a set of addresses, denoted by
{{a1; . . . an}}. Each ai is of the form:

• &x + D, where &x is the base address corresponding to the variable x, and D is in the
domain of integer values and represents the possible offsets expressed in bytes with
respect to the base address &x. When x is an array or an aggregate, and D corresponds
to the offset(s) of a field or an array cell, a concrete C-like syntax may be used, i.e.
&t{[1].i1, [2].i2}.

• NULL + D, which denotes absolute addresses (seen as offsets with respect to the base
address NULL).

• "foo" + D, which denotes offsets from a literal string with contents “foo”.

In all three cases, “ + D” is omitted if D is {0}, that is, when there is no offset.

An imprecise mix of addresses

If the application involves, or seems to involve, unusual arithmetic operations over addresses,
many of the variation domains provided by the analysis may be imprecise sets of the form
garbled mix of &{x1; . . . xn}. This expression denotes an unknown value built from
applying arithmetic operations to the addresses of variables x1,. . . ,xn and to integers.

Absolutely anything

You should not observe it in practice, but sometimes the analyzer is not able to deduce
any information at all on the value of a variable, in which case it displays ANYTHING for the
variation domain of this variable.

3.1.2 Memory contents

Memory locations can contain, in addition to the above sets of values, uninitialized data and
dangling pointers. It is illegal to use these special values in computations, which is why they
are not listed as possible values for an expression. Reading from a variable that appears to
be uninitialized causes an alarm to be emitted, and then the set of values for the variable is
made of those initialized values that were found at the memory location.

30

3.1. VALUES

3.1.3 Interpreting the variation domains

Most modern C compilation platforms unify integer values and absolute addresses: there is no
difference between the encoding of the integer 256 and that of the address (char*)0x00000100.
Therefore, Eva does not distinguish between these two values either. It is partly for this reason
that offsets D are expressed in bytes in domains of the form {{&x + D; . . . }}.

Examples of variation domains
• {3, 8, 11} represents exactly the integers 3, 8 and 11.

• [1..256] represents the set of integers comprised between 1 and 256, each of which can
also be interpreted as an absolute address between 0x1 and 0x100.

• [0..256],0%2 represents the set of even integers comprised between 0 and 256. This set
is also the set of the addresses of the first 129 aligned 16-bit words in memory.

• [1..255],1%2 represents the odd integers comprised between 1 and 255.

• [--..--] represents the set of all (possibly negative) integers that fit within the type of
the variable or expression that is being printed.

• {3.} represents the floating-point number 3.0.

• [-3. .. 9.] represents the interval of floating-point values comprised between -3.0 and
9.0.

• [-3. .. 9.] ∪ {NaN} represents the same interval as above, plus NaN.

• [-inf .. 3.4] represents the interval of floating-point values comprised between −∞
and 3.4.

• [-inf .. inf] ∪ {NaN} represents all possible floating-point values.

• {{ &x }} represents the address of the variable x.

• {{ &x + { 0; 1 } }} represents the address of one of the first two bytes of variable x –
assuming x is of a type at least 2 bytes in size. Otherwise, this notation represents a set
containing the address of x and an invalid address.

• {{ &x ; &y }} represents the addresses of x and y.

• {{ &t + [0..256],0%4 }}, in an application where t is declared as an array of 32-bit
integers, represents the addresses of locations t[0], t[1], . . . , t[64].

• {{ &t + [0..256] }} represents the same values as the expression (char*)t+i where the
variable i has an integer value comprised between 0 and 256.

• {{ &t + [--..--] }} represents all the addresses obtained by shifting t, including some
misaligned and invalid ones.

3.1.4 Origins of approximations

Approximated values may contain information about the origin of the approximations. In
this case the value is shown as “garbled mix of &{x1; . . . xn} (origin: ...)”. The text
provided after “origin:” indicates the location and the cause of some of these approximations.

31

CHAPTER 3. WHAT EVA PROVIDES

Most origins are of the form Cause L, where L is an (optional) line or the application indicating
where the approximation took place. Origin causes are one of the following:

Misaligned read
The origin Misaligned L indicates that misaligned reads prevented the computation to be
precise. A misaligned read is a memory read-access where the bits read were not previously
written as a single write that modified the whole set of bits exactly.
An example of a program leading to a misaligned read is the following:

1 int x,y;
2 int *t[2] = { &x, &y };
3

4 int main(void)
5 {
6 return 1 + (int) * (int*) ((int) t + 2);
7 }

The value returned by the function main is
{{ garbled mix of &{ x; y } (origin: Misaligned { misa.c:6 }) }}.
The analyzer is by default configured for a 32-bit architecture, and that consequently the read
memory access is not an out-of-bound access. If it was, an alarm would be emitted, and the
analysis would go in a different direction.
With the default target platform, the read access remains within the bounds of array t, but
due to the offset of two bytes, the 32-bit word read is made of the last two bytes from t[0]
and the first two bytes from t[1].

Call to an unknown function
The origin Library function L is used for the result of recursive functions or calls to function
pointers whose value is not known precisely.

Fusion of values with different alignments
The notation Merge L that memory states with incompatible alignments are fused together.
In the example below, the memory states from the then branch and from the else branch
contain in the array t some 32-bit addresses with incompatible alignments.

1 int x,y;
2 char t[8];
3

4 int main(int c)
5 {
6 if (c)
7 * (int**) t = &x;
8 else
9 * (int**) (t+2) = &y;

10 x = t[2];
11 return x;
12 }

The value returned by function main is
{{ garbled mix of &{ x; y } (origin: Merge { merge.c:10 }) }}.

32

3.2. WHAT IS CHECKED BY EVA

Well value
When generating an initial state to start the analysis from (see section 6.3.3 for details),
the analyzer has to generate a set of possible values for a variable with only its type for
information. Some recursive or deeply chained types may force the generated contents for the
variable to contain imprecise, absorbing values called well values.
Computations that are imprecise because of a well value are marked as origin: Well.

Arithmetic operation
The origin Arithmetic L indicates that arithmetic operations take place without the analyzer
being able to represent the result precisely.

1 int x,y;
2 int f(void)
3 {
4 return (int) &x + (int) &y;
5 }

In this example, the return value for f is
{{ garbled mix of &{ x; y } (origin: Arithmetic { ari.c:4 }) }}.

3.2 What is checked by Eva

Eva warns about possible run-time errors in the analyzed program, through the means of
proof obligations: the errors that cannot be proved by the Eva plug-in are left to be proved
by other plug-ins. These proof obligations are displayed as messages that contain the word
assert in the textual log. Within Frama-C’s AST, they are also available ACSL predicates.
(Frama-C comes with a common specification language for all plug-ins, called ACSL, described
at http://frama-c.com/acsl.html.)
When using the GUI version of Frama-C, proof obligations are inserted in the normalized
source code. With the batch version, option -print produces a version of the analyzed source
code annotated with the proofs obligations. The companion option -ocode <file.c> allows
to specify a filename for the annotated source code to be written to.

Invalid memory accesses
Whenever Eva is not able to establish that a dereferenced pointer is valid, it emits an alarm
that expresses that the pointer needs to be valid at that point. Likewise, direct array accesses
that may be invalid are flagged.

1 int i, t[10], *p;
2 void main()
3 {
4 for (i=0; i<=10; i++)
5 if (unknownfun()) t[i] = i;
6 p = t + 12;
7 if (unknownfun()) *p = i;
8 p[-6] = i;
9 }

In the above example, the analysis is not able to guarantee that the memory accesses t[i]
and *p are valid, so it emits a proof obligation for each:

33

http://frama-c.com/acsl.html

CHAPTER 3. WHAT EVA PROVIDES

invalid.c:5: ... accessing out of bounds index. assert i < 10;
invalid.c:7: ... out of bounds write. assert \valid(p);

(Notice that no alarm assert 0 <= i is emitted, as the analysis is able to guarantee that this
always holds.)
The choice between these two kinds of alarms is influenced by option -unsafe-arrays, as
described page 73.
Note that line 6 or 8 in this example could be considered as problematic in the strictest
interpretation of the standard. Eva omits warnings for these two lines according to the attitude
described in 5.5.1. An option to warn about these lines could happen if there was demand for
this feature.

Division by zero
When dividing by an expression that the analysis is not able to guarantee non-null, a proof
obligation is emitted. This obligation expresses that the divisor is different from zero at this
point of the code.
In the particular case where zero is the only possible value for the divisor, the analysis stops
the propagation of this execution path. If the divisor seems to be able to take non-null values,
the analyzer is allowed to take into account the property that the divisor is different from
zero when it continues the analysis after this point. The property expressed by an alarm may
also not be taken into account when it is not easy to do so.

1 int A, B;
2 void main(int x, int y)
3 {
4 A = 100 / (x * y);
5 B = 333 % x;
6 }

div.c:4: ... division by zero. assert (int)(x*y) != 0;
div.c:5: ... division by zero. assert x != 0;

In the above example, there is no way for the analyzer to guarantee that x*y is not null, so it
emits an alarm at line 4. In theory, it could avoid emitting the alarm x != 0 at line 5 because
this property is a consequence of the property emitted as an alarm at line 4. Redundant
alarms happen – even in cases simpler than this one. Do not be surprised by them.

Undefined logical shift
Another arithmetic alarm is the alarm emitted for logical shift operations on integers where
the second operand may be larger than the size in bits of the first operand’s type. Such an
operation is left undefined by the ISO/IEC 9899:1999 standard, and indeed, processors are
often built in a way that such an operation does not produce the 0 or -1 result that could
have been expected. Here is an example of program with such an issue, and the resulting
alarm:

1 void main(int c){
2 int x;
3 c = c ? 1 : 8 * sizeof(int);
4 x = 1 << c;
5 }

34

3.2. WHAT IS CHECKED BY EVA

shift .c:4: ... invalid RHS operand for shift. assert 0 <= c < 32;

Eva also detects shifts on negative integers. Left-shifting a negative integer is an undefined
behavior according to the ISO C99 standard, and leads to an alarm by default. These alarms
can be disabled by using the option -no-warn-left-shift-negative. Right-shifting a negative
integer is an implementation-defined operation, and does not lead to an alarm by default.
However, the option -warn-right-shift-negative can be used to enable such alarms.

1 void main(int c){
2 int x;
3 x = -7,
4 x = x << 2;
5 }

[eva:alarm] lshift.c:4: Warning: invalid LHS operand for left shift. assert 0 <= x;

Overflow in integer arithmetic
By default, Eva emits alarms for — and reduces the sets of possible results of — signed
arithmetic computations where the possibility of an overflow exists. Indeed, such overflows have
an undefined behavior according to paragraph 6.5.5 of the ISO/IEC 9899:1999 standard. If
useful, it is also possible to assume that signed integers overflow according to a 2’s complement
representation. The option -no-warn-signed-overflow can be used to this end. A reminder
warning is nevertheless emitted on operations that are detected as potentially overflowing.
This warning can also be disabled by option -eva-warn-key signed-overflow=inactive.
By default, no alarm is emitted for arithmetic operations on unsigned integers for which an
overflow may happen, since such operations have defined semantics according to the ISO/IEC
9899:1999 standard. If one wishes to signal and prevent such unsigned overflows, option
-warn-unsigned-overflow can be used.
Finally, by default, no alarm is emitted for downcasts to signed or unsigned integers. In
the signed case, the least significant bits of the original value are used, and are interpreted
according to 2’s complement representation. Frama-C’s options -warn-signed-downcast and
-warn-unsigned-downcast can be used to emit alarms on signed or unsigned downcasts that
may exceed the destination range.

Overflow in conversion from floating-point to integer
An alarm is emitted when a floating-point value appears to exceed the range of the integer
type it is converted to.

1 #include "__fc_builtin.h"
2

3 int main()
4 {
5 float f = Frama_C_float_interval(2e9, 3e9);
6 return (int) f;
7 }

...
[eva:alarm] ov_float_int.c:6: Warning: overflow in conversion from floating-point
to integer. assert f < 2147483648;

[eva] Values at end of function main:

35

CHAPTER 3. WHAT EVA PROVIDES

f ∈ [2000000000. .. 3000000000.]
__retres ∈ [2000000000..2147483647]

Floating-point alarms

By default, Eva emits an alarm whenever a floating-point operation can result in a NaN or
infinite value, and continues the analysis with a finite interval representing the result obtained
if excluding these possibilities. This interval, like any other result, may be over-approximated.
An example of this first kind of alarm can be seen in the following example.

1 double sum(double a, double b)
2 {
3 return a+b;
4 }

frama-c -eva -main sum double_op_res.c

[eva:alarm] double_op_res.c:3: Warning: non-finite double value.
assert \ is_finite ((double)(a+b));

An alarm is also emitted when the program uses as argument to a floating-point operation
a value from memory that does not ostensibly represent a floating-point number. This can
happen with a union type with both int and float fields, or in the case of a conversion from
int* to float *. The emitted alarm excludes the possibility of the bit sequence used as a the
argument representing NaN, an infinite, or an address. See the example below.

1 union { int i ; float f ; } bits;
2

3 float r;
4

5 int main () {
6 bits.i = unknown_fun();
7 r = 1.0 + bits.f;
8 return r > 0.;
9 }

frama-c -eva double_op_arg.c

[eva:alarm] double_op_arg.c:7: Warning: non-finite float value.
assert \ is_finite (bits.f);

These floating-point alarms can be disabled — thus allowing NaN and infinite values for the
analysis — by setting the -warn-special-float option:

• -warn-special-float non-finite: NaN and infinite values are forbidden. This is the
default mode of Eva.

• -warn-special-float nan: only NaN are forbidden; infinite values are allowed, and do
not raise alarms.

• -warn-special-float none: both NaN and infinite values are allowed: they are simply
propagated during the analysis, without leading to special alarms.

36

3.2. WHAT IS CHECKED BY EVA

Uninitialized variables and dangling pointers to local variables
An alarm may be emitted if the application appears to read the value of a local variable that
has not been initialized, or if it appears to manipulate the address of a local variable outside
of the scope of said variable. Both issues occur in the following example:

1 int *f(int c)
2 {
3 int r, t, *p;
4 if (c) r = 2;
5 t = r + 3;
6 return &t;
7 }
8

9 int main(int c)
10 {
11 int *p;
12 p = f(c);
13 return *p;
14 }

Eva emits alarms for lines 5 (variable r may be uninitialized) and 13 (a dangling pointer to
local variable t is used).

uninitialized.c:5: ... accessing uninitialized left-value. assert \initialized(&r);
uninitialized.c:13: ... accessing left-value that contains escaping addresses.

assert !\dangling(&p);

By default, Eva does not emit an alarm for a copy from memory to memory when the copied
values include dangling addresses or uninitialized contents. This behavior is safe because
Eva warns later, as soon as an unsafe value is used in a computation –either directly or after
having been copied from another location. The copy operations for which alarms are not
emitted are assignments from lvalues to lvalues (lv1 = lv2;), passing lvalues as arguments to
functions (f(lv1);), and returning lvalues (return lv1;). An exception is made for lvalues
passed as arguments to library functions: in this case, because the function’s code is missing,
there is no chance to catch the undefined access later; the analyzer emits an alarm at the
point of the call.

The behavior documented above was implemented to avoid spurious warnings where the
copied lvalues are structs or unions. In some cases, it may be normal for some fields in a
struct or union to contain such dangerous contents.

Option -eva-warn-copy-indeterminate can be used to obtain a more aggressive behavior on
scalar variables. Specifying -eva-warn-copy-indeterminate f on the command-line will cause
the analyzer to also emit an alarm on all dangerous copy operations occurring in function f,
as long as the copied lvalues are not structs or unions. The syntax @all can also be used to
activate this behavior for all functions.

Trap representations of _Bool values
By default, Eva emits an alarm whenever a trap representation might be read from an lvalue
of type _Bool. According to the ISO/IEC 9899:1999 standard, the _Bool type contains
the values 0 and 1, but any other value might be a trap representation, that is, an object
representation that does not represent a valid value of the type. Trap representations can be
created through unions or pointer casts.

37

CHAPTER 3. WHAT EVA PROVIDES

1

2 union u_bool { _Bool b; unsigned char c; } ub;
3 void main () {
4 ub.c = 42;
5 _Bool b = ub.b;
6 }

frama-c -eva invalid_bool.c

[eva:alarm] invalid_bool.c:5: Warning:
trap representation of a _Bool lvalue. assert ub.b == 0 \/ ub.b == 1;

The option -no-warn-invalid-bool can be used to disable alarms on _Bool trap representations,
in which case they are handled as correct _Bool values.

Undefined pointer comparison alarms
Proof obligations can also be emitted for pointer comparisons whose results may vary from
one compilation to another, such as &a < &b or &x+2 != NULL. These alarms do not necessarily
correspond to run-time errors, but relying on an undefined behavior of the compiler is in
general undesirable (although this one is rather benign for current compilation platforms).
Although these alarms may seem unimportant, they should still be checked, because Eva
may reduce the propagated states accordingly to the emitted alarm. For instance, for the
&x+2 != NULL comparison, after emitting the alarm that the quantity &x+2 must be reliably
comparable to 0, the analysis assumes that the result of the comparison is 1. The consequences
are visible when analyzing the following example:

1 int x,y,*p;
2 main(){
3 p = &x;
4 while (p++ != &y);
5 }

Eva finds that this program does not terminate. This seems incorrect because an actual
execution will terminate on most architectures. However, Eva’s conclusion is conditioned by
an alarm emitted for the pointer comparison.
Eva only allows pointer comparisons that give reproducible results — that is, the possibility
of obtaining an unspecified result for a pointer comparison is considered as an unwanted error,
and is excluded by the emission of an alarm.
The analyzer can be instructed to propagate past these undefined pointer comparisons with
option -eva-undefined-pointer-comparison-propagate-all. With this option, in the example
program above, the values 0 and 1 are considered as results for the condition as soon as
p becomes an invalid address. Therefore, Eva does not predict that the program does not
terminate.
Conversely, verifications for undefined pointer comparisons can be deactivated using option
-eva-warn-undefined-pointer-comparison. The possible settings are:

• none: never emit a pointer comparison alarm;

• pointer: emit an alarm only when the arguments of the comparison have pointer type;

• all: emit an alarm in all cases, including when comparing scalars that the analysis has
inferred as possibly containing pointers.

38

3.2. WHAT IS CHECKED BY EVA

Undefined side-effects in expressions
The C language allows compact notations for modifying a variable that is being accessed
(for instance, y = x++;). The effect of these pre- or post-increment (or decrement) operators
is undefined when the variable is accessed elsewhere in the same statement. For instance,
y = x + x++; is undefined: the code generated by the compiler may have any effect, and
especially not the effect expected by the programmer.
Sometimes, it is not obvious whether the increment operation is defined. In the example
y = *p + x++;, the post-increment is defined as long as *p does not have any bits in common
with x.

1 int x, y, z, t, *p, *q;
2 void main(int c)
3 {
4 if (c&1)
5 y = x + x++;
6 p = c&2 ? &x : &t;
7 y = *p + x++;
8 q = c&4 ? &z : &t;
9 y = *q + x++;

10 }

frama-c -eva se.c -unspecified-access

With option -unspecified-access, three warnings are emitted during parsing. Each of these
only mean that an expression with side-effects will require checking after the Abstract Syntax
Tree has been elaborated. For instance, the first of these warnings is:

[kernel] se.c:5: Warning: Unspecified sequence with side effect:
/* <- */
tmp = x;
/* x <- */
x ++;
/* y <- x tmp */
y = x + tmp;

Then Eva is run on the program. In the example at hand, the analysis finds problems at lines
5 and 7.

[eva:alarm] se.c:5: Warning: undefined multiple accesses in expression.
assert \separated(&x, &x);

[eva:alarm] se.c:7: Warning: undefined multiple accesses in expression.
assert \separated(&x, p);

At line 5, it can guarantee that an undefined behavior exists, and the analysis is halted. For
line 7, it is not able to guarantee that p does not point to x, so it emits a proof obligation.
Since it cannot guarantee that p always points to x either, the analysis continues. Finally,
it does not warn for line 9, because it is able to determine that *q is z or t, and that the
expression *q + x++ is well defined.
Another example of statement which deserves an alarm is y = f() + g();. For this statement,
it is unspecified which function will be called first. If one of them modifies global variables
that are read by the other, different results can be obtained depending on factors outside the
programmer’s control. At this time, Eva does not check if these circumstances occur, and
silently chooses an order for calling f and g. The statement y = f() + x++; does not emit
any warning either, although it would be desirable to do so if f reads or writes into variable x.
These limitations will be addressed in a future version.

39

CHAPTER 3. WHAT EVA PROVIDES

Partially overlapping lvalue assignment
Vaguely related to, but different from, undefined side-effects in expressions, Eva warns about
the following program:

1 struct S { int a; int b; int c; };
2

3 struct T { int p; struct S s; };
4

5 union U { struct S s; struct T t; } u;
6

7 void copy(struct S *p, struct S *q)
8 {
9 *p = *q;

10 }
11

12 int main(int c, char **v){
13 u.s.b = 1;
14 copy(&u.t.s, &u.s);
15 return u.t.s.a + u.t.s.b + u.t.s.c;
16 }

The programmer thought implementation-defined behavior was invoked in the above program,
using an union to type-pun between structs S and T. Unfortunately, this program returns
1 when compiled with clang -m32; it returns 2 when compiled with clang -m32 -O2, and it
returns 0 when compiled with gcc -m32.
For a program as simple as the above, all these compilers are supposed to implement the same
implementation-defined choices. Which compiler, if we may ask such a rhetorical question,
is right? They all are, because the program is undefined. When function copy() is called
from main(), the assignment *p = *q; breaks C99’s 6.5.16.1:3 rule. This rule states that in
an assignment from lvalue to lvalue, the left and right lvalues must overlap either exactly or
not at all.
The program breaking this rule means compilers neither have to emit warnings (none of the
above did) nor produce code that does what the programmer intended, whatever that was.
Launched on the above program, Eva says:

partially overlapping lvalue assignment. assert p == q || \separated(p, q);

By choice, Eva does not emit alarms for overlapping assignments of size less than int , for
which reading and writing are deemed atomic operations. Finding the exact cut-off point
for these warnings would require choosing a specific compiler and looking at the assembly it
generates for a large number of C constructs. Contact us if you need such fine-tuning of the
analyzer for a specific target platform and compiler.

Invalid function pointer access
When Eva encounters a statement of the form (*e)(x); and is unable to guarantee that
expression e evaluates to a valid function address, an alarm is emitted. This includes invalid
pointers (such as NULL), or pointers to a function with an incompatible type. In the latter
case, an alarm is emitted, but Eva may nevertheless proceed with the analysis if it can give
some meaning to the call. This is meant to account for frequent misconceptions on type
compatibility (e.g. void * and int * are not compatible).

1 extern void * f1();

40

3.3. LOG MESSAGES EMITTED BY EVA

2 extern void f2(int);
3

4 void main(int c) {
5 int * (*p)(int);
6 void *x, *y;
7

8 p = &f1;
9 x = (*p)(c); // Alarm, but the analysis proceeds

10

11 p = &f2;
12 y = (*p)(c); // Call deemed entirely invalid
13 }

[eva:alarm] valid_function.c:9: Warning:
pointer to function with incompatible type. assert \valid_function(p);

[kernel:annot:missing-spec] valid_function.c:9: Warning:
Neither code nor specification for function f1, generating default assigns
from the prototype

[eva] using specification for function f1
[eva:alarm] valid_function.c:12: Warning:

pointer to function with incompatible type. assert \valid_function(p);
[eva] valid_function.c:12:

assertion 'Eva,function_pointer' got final status invalid.

3.3 Log messages emitted by Eva

This section categorizes the non-alarms related messages displayed by Eva in frama-c, the
batch version of the analyzer. When using frama-c-gui (the graphical interface), the messages
are directed to different panels in the bottom right of the main window for easier access.

3.3.1 Results

With the batch version of Frama-C, all computation results, messages and warnings are
displayed on the standard output. However, a compromise regarding verbosity had to be
reached. Although variation domains for variables are available for any point in the execution
of the analyzed application, the batch version only displays, for each function, the values that
hold whenever the end of this function is reached.

3.3.2 Informational messages regarding propagation

Some messages warn that the analysis is making an operation likely to cause loss of precision.
Other messages warn the user that unusual circumstances have been encountered by Eva.
In both these cases, the messages are not proof obligations and it is not mandatory for the
user to act on them. They can be distinguished from proof obligations by the fact that they
do not use the word “assert”. These messages are intended to help the user trace the results
of the analysis, and give as much information as possible in order to help them find when and
why the analysis becomes imprecise. These messages are only useful when it is important to
analyze the application with precision. Eva remains correct even when it is imprecise.

Examples of messages that result from the apparition of imprecision in the analysis are:

41

CHAPTER 3. WHAT EVA PROVIDES

[eva] origin.c:14:
Assigning imprecise value to pa1.
The imprecision originates from Arithmetic {origin.c:14}

[eva] origin.c:15:
writing somewhere in {ta1} because of Arithmetic {origin.c:14}.

Examples of messages that correspond to unusual circumstances are:
[kernel] alloc.c:20: Warning:

all target addresses were invalid. This path is assumed to be dead.

[eva:locals-escaping] origin.i:86: Warning:
locals {x} escaping the scope of local_escape_1 through esc2

Note that a few messages are prefixed with [kernel] instead of [eva], for technical reasons,
but it is the analysis by Eva which causes them to be emitted.

3.3.3 Analysis summary

At the end of the analysis, Eva produces a summary such as the following:
[eva:summary] ====== ANALYSIS SUMMARY ======

--
6 functions analyzed (out of 44): 13% coverage.
In these functions, 588 statements reached (out of 626): 93% coverage.
--
No errors or warnings raised during the analysis.
--
143 alarms generated by the analysis:

71 integer overflows
64 accesses to uninitialized left-values
8 illegal conversions from floating-point to integer

--
Evaluation of the logical properties reached by the analysis:

Assertions 0 valid 0 unknown 0 invalid 0 total
Preconditions 11 valid 0 unknown 0 invalid 11 total

100% of the logical properties reached have been proven.
--

It contains:

• semantic coverage metrics, with the number of functions and statements analyzed;

• total number of errors and warnings, pointing out potential issues that could jeopardize
the correction of the analysis;

• total number of alarms emitted by the analysis, grouped by kind;

• total number of logical properties (assertions and preconditions at each call-site) proven
by the analysis. Note that this only indicates the logical statuses evaluated by Eva;
some logical properties may have been proven by other plugins.

The summary provides a quick glance at the analysis, being especially useful for side-by-side
comparisons of different parametrizations. It also allows one to quickly determine whether

42

3.4. ABOUT THESE ALARMS THE USER IS SUPPOSED TO CHECK. . .

there remain issues to be resolved. More detailed information is provided through the graphical
interface and by the Report plugin.
The summary display can be disabled by using option -eva-msg-key=-summary.

3.4 About these alarms the user is supposed to check. . .

When writing a Frama-C plug-in to assist in reverse-engineering source code, it does not really
make sense to expect the user to check the alarms that are emitted by Eva. Consider for
instance Frama-C’s slicing plug-in. This plug-in produces a simplified version of a program.
It is often applied to large unfamiliar codebases; if the user is at the point where they need a
slicer to make sense of the codebase, it’s probably a bad time to require them to check alarms
on the original unsliced version.
The slicer and other code comprehension plug-ins work around this problem by defining the
results they provide as “valid for well-defined executions”. In the case of the slicer, this is
really the only definition that makes sense. Consider the following code snippet:

1 x = a;
2 y = *p;
3 x = x+1;
4 // slice for the value of x here.

This piece of program is begging for its second line to be removed, but if p can be the NULL
pointer, the sliced program behaves differently from the original: the original program exits
abruptly on most architectures, whereas the sliced version computes the value of x.
It is fine to ignore alarms in this context, but the user of a code comprehension plug-in based
on Eva should study the categorization of alarms in section 3.2 with particular care. Because
Eva is more aggressive in trying to extract precise information from the program than other
analyzers, the user is more likely to observe incorrect results if there is a misunderstanding
between him and the tool about what assumptions should be made.
Everybody agrees that accessing an invalid pointer is an unwanted behavior, but what about
comparing two pointers with <= in an undefined manner or assuming that a signed overflow
wraps around in 2’s complement representation? Function memmove, for instance, typically
does the former when applied to two addresses with different bases. Yet, currently, if there
appears to be an undefined pointer comparison, Eva propagates a state that may contain only
“optimistic” (assuming the undefined circumstances do not occur) results for the comparison
result and for the pointers.1

It is possible to take advantage of Eva for program comprehension, and all existing program
comprehension tools need to make assumptions about undefined behaviors. Most tools do not
tell whether they had to make assumptions or not. Eva does: each alarm, in general, is also
an assumption. Still, as implementation progresses and Eva becomes able to extract more
information from the alarms it emits, one or several options to configure it either not to emit
some alarms, or not to make the corresponding assumptions, will certainly become necessary.
This is a consequence of the nature of the C language, very partially defined by a standard
that also tries to act as lowest common denominator of existing implementations, and at
the same time used for low-level programming where strong hypotheses on the underlying
architecture are needed.

1As explained earlier, in this particular case, it is possible to get all possible behaviors using option
-eva-undefined-pointer-comparison-propagate-all.

43

CHAPTER 3. WHAT EVA PROVIDES

3.5 API

Both the user (through the GUI) or a Frama-C plug-in can request the evaluation, at a specific
statement, of an lvalue (or an arbitrary expression). The variation domain thus obtained
contains all the values that this lvalue or expression may have anytime an actual execution
reaches the selected statement.
In fact, from the point view of Eva, the graphical interface that allows to observe the values
of variables in the program is very much an ordinary Frama-C plug-in. It uses the same
functions (registered in module Db.Value) as other plug-ins that interface with Eva. This API
is not very well documented yet, but one early external plug-in author used the GUI to get
a feeling of what Eva could provide, and then used the OCaml source code of the GUI as a
reference for obtaining this information programmatically.

3.5.1 Eva API overview

The function !Db.Value.access is one of the functions provided to custom plug-ins. It
takes a program point (of type Cil_types.kinstr), the representation of an lvalue (of type
Cil_types.lval) and returns a representation of the possible values for the lvalue at the
program point.
Another function, !Db.Value.lval_to_loc, translates the representation of an lvalue into a
location (of type Locations.location), which is the analyzer’s abstract representation for
a place in memory. The location returned by this function is free of memory accesses or
arithmetic. The provided program point is used for instantiating the values of variables that
appear in expressions inside the lvalue (array indices, dereferenced expressions). Thanks to
this and similar functions, a custom plug-in may reason entirely in terms of abstract locations,
and completely avoid the problems of pointers and aliasing.
The Frama-C Plug-in Development Guide contains more information about developing a
custom plug-in.

44

Chapter 4

Graphical interface (GUI)

45

CHAPTER 4. GRAPHICAL INTERFACE (GUI)

This chapter presents some aspects of the graphical interface of Eva. More information can
be found in the Frama-C blog, under the keyword tutorial. Some examples shown in this
section are taken from the Monocypher tutorial, presented in the blog.

A caveat. As a general recommendation, do not start your analyses within the GUI. Use
the command-line. You should consider Frama-C/Eva as a command-line tool with a viewer
(the GUI). The Frama-C GUI is not an IDE (e.g. you cannot edit code with it), and Eva does
not use the GUI for anything else other than rendering its results. It is recommended to run
the value analysis using the command line, and then saving the result to a Frama-C save file
(see Section 6.1).

4.1 A general view of the GUI

After running the value analysis and saving your results, it is a good time to check what the
result looks like, using the GUI:

frama-c-gui -load value.sav

In the screenshot of Figure 4.1, we indicate some parts of the GUI that are useful when
inspecting Eva results (besides the source view). We also indicate some parts that are never
(or rarely) used with Eva.

Not used by EVA

Navigation history buttons

Syntactic information (e.g. type)

 Alarms and warnings (sorted chronologically)

Alarms (sorted by function)

Values computed by EVA

Figure 4.1: Frama-C GUI for Eva

Note that the Properties tab (between Console and Values) is not updated automatically: you
need to click on the Refresh button before it outputs anything, and after changing filters.
Like many GUI-integrated plug-ins, Eva also has a side panel that is displayed below the
globals list, on the lower left corner of the GUI. This panel can be folded/unfolded using the

46

4.2. DETECTING AND UNDERSTANDING NON-TERMINATION

Figure 4.2: GUI side panel for Eva

arrow button on the left, and when unfolded (Figure 4.2) it displays some controls. The Run
button runs (or re-runs) the analysis, using the specified slevel and with the specified main
function. This is useful only for small examples and rarely used in practice. Also, notice
that emitted warnings are persistent in the GUI, so even if a new run of the value analysis
(e.g. with higher slevel) produces less alarms, the previous warnings will still be displayed in
the Messages panel.

The checkbox Show list of red alarms shows or hides the Red alarms panel, described in
Section 4.5.

4.2 Detecting and understanding non-termination

Assume that the log of your analysis contains the NON TERMINATING FUNCTION message for
the main function. We know that at some point in the program we will have red statements
in the GUI, which indicate unreachable code.

By scrolling down from the main function, we reach the non-terminating statement, which in
our example is a call to test_x25519 (Figure 4.3).

Figure 4.3: Unreachable code in the Frama-C GUI

47

CHAPTER 4. GRAPHICAL INTERFACE (GUI)

Note the red semicolon at the end of the statement, and the fact that the statements that
follow it are also red. If we click on the statement, the Information panel says that This call
never terminates.
You can right-click on the function and Go to the definition of test_x25519, and you will
find the same thing inside, this time a call to crypto_x25519_public_key, and so on, until
you reach fe_tobytes, which is slightly different: it contains a for loop (defined via a macro
FOR), after which all statements are red, but the loop itself is not an infinite loop: it simply
iterates i from 0 to 5. How can this be non-terminating?
The answer, albeit non-intuitive, is simple: there is one statement inside the loop which is
non-terminating, but not during the first iteration of the loop. Because the GUI colors are
related to the consolidated result of all callstacks (i.e., if there is at least one path which
reaches a statement, it is marked as reachable), it cannot show precisely which callstack led
to the non-termination.

4.3 Values Panel

The Values panel, depicted in Figure 4.4, is arguably the most powerful inspection tool for
the Eva plug-in in the Frama-C GUI.
The values displayed in this panel are related to the green highlighted zone in the Cil source.
This zone can be a statement, an expression, an ACSL annotation, etc. Composite expressions
can be selected by clicking on or near their operators. Each kind of selected expression has
a set of associated context menus. For instance, an expression corresponding to a variable
contains a Go to definition context menu when right-clicked on.
The Ctrl+E shortcut is equivalent to highlighting a statement, then right-clicking Evaluate
ACSL term. This opens a dialog (Figure 4.5) where you can enter an arbitrary ACSL term.
Its value will be evaluated in the current statement and displayed in the Values panel.
The Ctrl+Shift+E shortcut is slightly more powerful: it also evaluates predicates, such as
\valid(p). This command is not available from any menu.
The Multiple selections checkbox allows adding several expressions to be compared side-by-side.
When checked, highlighting an expression in the same statement adds a column with its value.
Note that highlighting a different statement results in resetting all columns.
The three checkboxes to the right are seldom used (their default values are fine most of the
time): Expand rows simply expands all callstacks (but generates visual clutter); Consolidated
value displays the row all (union of all callstacks); and Per callstack displays a row for each
separate callstack.
The callstacks display has several contextual menus that can be accessed via right-clicks
(Figure 4.6).
Let us start from the bottom: right-clicking on a callstack shows a popup menu that allows
you to focus on a given callstack. This focus modifies the display in the Cil code viewer:
reachability will only be displayed for the focused callstack(s). We will come back to that
later.
Right-clicking on a cell containing a value allows filtering on all callstacks for which the
expression has the same value. This is often used, for instance, to focus on all callstacks in
which a predicate evaluates to invalid or unknown.
Finally, clicking on the column headers allows filtering columns.

48

4.3. VALUES PANEL

Figure 4.4: Values panel

Figure 4.5: Evaluate ACSL term dialog, accessible via a context menu or by pressing Ctrl+E.

49

CHAPTER 4. GRAPHICAL INTERFACE (GUI)

Figure 4.6: Callstacks display

Note that the Callstacks column header displays a pipette icon when a filter is being applied,
to remind you that other callstacks exist.

4.3.1 Filtering non-terminating callstacks

In our code, despite the existence of 40 callstacks, only one of them is non-terminating. If you
highlight the 0 ≤ c5 expression before statement h5 -= c5 << 25, you will see that only
a single callstack displays invalid in the column 0 ≤ c5. Focus on this callstack using the
popup menu, then highlight expression c5 in the Cil code. You will obtain the result displayed
in Figure 4.7.

Figure 4.7: Focused on a non-terminating callstack

As you can see, the GUI now displays the statements following h5 -= c5 << 25 in red,
indicating thay they are unreachable in the currently focused callstacks. The exact value that
caused this is shown in column c5: -1. The C standard considers the left-shift of a negative

50

4.4. FINDING ORIGINS OF ALARMS AND IMPRECISIONS VIA THE STUDIA PLUG-IN

number as undefined behavior. Because -1 is the only possible value in this callstack, the
reduction caused by the alarm leads to a post-state that is <BOTTOM>.

4.4 Finding origins of alarms and imprecisions via the Studia
plug-in

The Studia1 plug-in is used to track the origins of values computed by Eva. For a given lvalue,
it highlights all statements that may have written/read it.
Studia is invoked by right-clicking on a lvalue, selecting the Studia menu, then the Writes or
Reads menu (see Figure 4.8). This will highlight all the instructions that may have defined (or
read) the selected lvalue. Studia can also be used on arbitrary lvalues: when called through
the right-click menu with no lvalue selected, Studia displays a dialog box in which an arbitrary
lvalue can be typed.
When a lvalue is highlighted, a new column (Studia) appears on the file tree. It shows a check
mark next to each function that directly writes/reads the highlighted lvalue, and an arrow
next to each function that indirectly writes/reads the chosen value, that is, the callers of the
functions marked with a check mark.
Each statement writing/reading the chosen value is highlighted in orange in the Cil code.
Different shades of orange are used to distinguish between direct and indirect accesses.

Figure 4.8: Studia elements in the GUI

Typical usage of Studia consists in: starting the GUI, selecting an alarm (for instance, a
possibly invalid memory access), inspecting the lvalue that causes the alarm (usually an
imprecise value), then using Studia to find where the lvalue was defined. To find the root
cause of a given loss of precision, it may be necessary to reiterate the process.

4.5 Detecting branches abandoned because of red alarms

When analyzing code, the value analysis sometimes encounters undefined behaviors so severe
that the analysis cannot proceed afterwards. This is the case in the code fragment below:

1The name Studia is related to its applicability to case studies.

51

CHAPTER 4. GRAPHICAL INTERFACE (GUI)

no state remains to be propagated after the addition, because the uninitialized access is
guaranteed.

int x;
int y = x + 1;

This example is marked as non-terminating, both in the textual log and in the GUI. However,
things are not always as clear-cut. Replace x by a pointer access, and imagine that only in
some contexts the memory location is uninitialized.

void f(int *p) {
if (rand ()) {
int y = *p + 1;

}
}

void main() {
int x = 1, y;
f(&x);
f(&y);

}

In this example, all intructions “terminate” in the sense of Section 4.2. Yet, one branch is cut
abruptly in the analysis of f.
Even more insidious is a loop where an operation fails only in the last iterations. In the
example below, accessing t[i] with i==10 is always invalid, but this is neither reflected in the
Properties panel nor in the Values panel.

void main() {
int i, t[10];
for (i=0; i<10; i++) {

t[i] = i;
}
int j = 0;
for (i=0; i<=10; i++) {

j += t[i];
if (rand ()) break;

}
}

The Red alarms panel (Figure 4.9) can be used to detect such kinds of severe alarms. The
semantics it implements is the following: if in at least one analysis context, the alarm received
an Invalid status (the ACSL property does not hold), then the alarm is present in the panel.
Back to our second example, \initialized (p) is false. The Nb contexts column indicates in
how many callstacks such an Invalid status was emitted during the analysis.
Information on non-terminating branches is also available through the Values panel (Fig-
ure 4.10). Once you have selected a property listed in the Red alarms panel, a new column
appears, which displays red indicators. The way to read this information is: “in this context,
the property evaluated to false at least once”.

52

4.5. DETECTING BRANCHES ABANDONED BECAUSE OF RED ALARMS

Figure 4.9: Red alarms panel

Figure 4.10: Indicators of red alarms in the Values panel

53

Chapter 5

Limitations and specificities

Nobody is perfect.

This chapter describes how the difficult constructs in the C language are handled in Eva. The
constructs listed here are difficult for all static analyzers in general. Different static analysis
techniques can often be positioned with respect to each other by looking only at how they
handle loops, function calls and partial codebases.

Eva works best on embedded code or embedded-like code without multithreading, although
it is usable (with modeling work from the user) on applications that include it. Dynamic
allocation is supported in limited form, but imprecisions may accumulate quickly (e.g. linked
lists often lead to suboptimal results).

5.1 Prospective features

Eva does not check all the properties that could be expected of it1. Support for each of
these missing features could arrive if the need was expressed. Below are some of the existing
limitations.

5.1.1 Strict aliasing rules

Eva does not check that the analyzed program uses pointer casts in a way that is compatible
with strict aliasing rules. This is one of the major current issues of the C world because
compilers only recently began to take advantage of these rules for optimization purposes.
However, the issue has passed unnoticed for critical embedded code, because for various
reasons including traceability, this code is compiled with most optimizations disabled.

1There are 245 unspecified or undefined behaviors in Annex J of the ISO C99 standard.

55

CHAPTER 5. LIMITATIONS AND SPECIFICITIES

5.1.2 Const attribute inside aggregate types

Some memory locations can be read from but not written to. An example of such a memory
location is a constant string literal ("foo"). The ACSL specification language sports a predicate
\valid_read to express that a memory location is valid for reading but does not have to be
valid for writing. Accordingly, Eva emits alarms using \valid_read(lv) when an lvalue lv is
read from, and \valid (lv) when lv is written to.

Variables with a const-qualified type are among the memory locations that Eva knows to be
good to read from but forbidden to write to. However, the const type qualifier is currently
only handled when placed at the top-level of the type of a global variable or formal argument.
Other const locations are considered writable.

5.1.3 Alignment of memory accesses

Eva currently does not check that memory accesses are properly aligned in memory. It assumes
that non-aligned accesses have only a small time penalty (instead of causing an exception)
and that the programmer is aware of this penalty and is accessing (or seems to be accessing)
memory in a misaligned way on purpose.

5.2 Loops

The analysis of a source program always takes a finite time. The fact that the source code
contains loops, and that some of these loops do not terminate, can never induce the analyzer
itself to loop forever. In order to guarantee this property, the analyzer may need to introduce
approximations when analyzing a loop.

Let us assume, in the following lines, that the function c is unknown:

1 n=100;
2 i=0;
3 y=0;
4 do
5 {
6 i++;
7 if (c(i))
8 y = 2*i;
9 }

10 while (i<n);

The Eva plug-in could provide the best possible sets of values if the user explicitly instructed
it to study step by step each of the hundred loop iterations. Without any such instruction,
it analyses the body of the loop much less than one hundred times. It is able to provide
the approximated, but correct, information that after the loop, y contains an even number
between 0 and 256. This is an over-approximation of the most precise correct result, which is
“an even number between 0 and 200”. Section 6.4 introduces different ways for the user to
influence the analyzer’s strategy with respect to loops.

56

5.3. FUNCTIONS

5.3 Functions

Without special instructions from the user, function calls are handled as if the body of the
function had been expanded at the call site. In the following example, the body of f is
analyzed again at each analysis of the body of the loop. The result of the analysis is as precise
as the result obtained for the example in section 5.2.

1 int n, y;
2 void f(int x) { y = x; }
3

4 void main_1(void) {
5 int i;
6

7 n=100;
8 i=0;
9 y=0;

10 do
11 {
12 i++;
13 if (c(i))
14 f(2*i);
15 }
16 while (i<n);
17

18 }

Calls to variadic functions are handled by the Variadic plug-in, which translates calls to variadic
functions into semantically-equivalent calls, either using arrays as arguments or via calls to
specialized variants of the function. Such translations are enabled by default whenever the
corresponding prototypes (e.g. stdio.h for printf) are included. Calls to variadic functions
in the C standard library also include ACSL specifications, which Eva uses to interpret their
behavior.
Recursive functions are allowed in Frama-C, but they are not handled in the current version
of the Eva plug-in.

5.4 Analyzing a partial or a complete application

The default behavior of the Eva plug-in allows to analyze complete applications, that is,
applications for which the source code is entirely available. In practice, it is sometimes
desirable to limit the analysis to critical subparts of the application, by using other entry
points than the actual one (the main function). Besides, the source code of some of the
functions used by the application may not be available (library functions for instance). The
plug-in can be used, usually with more work, in all these circumstances. The options for
specifying the entry point of the analysis are detailed in this manual, section 6.3.9.

5.4.1 Entry point of a complete application

When the source code for the analyzed application is entirely available, the only additional
information expected by the plug-in is the name of the function that the analysis should start
from. Specifying the wrong entry point can lead to incorrect results. For instance, let us

57

CHAPTER 5. LIMITATIONS AND SPECIFICITIES

assume that the actual entry point for the example of section 5.3 is not the function main_1
but the following main_main function:

17 void main_main(void) {
18 f(15);
19 main_1();
20 }

If the user specifies the wrong entry point main_1, the plug-in will provide the same answer
for variable y at the end of function f as in sections 5.2 and 5.3: the set of even numbers
between 0 and 256. This set is not the expected answer if the actual entry point is the function
main_main, because it does not contain the value 15.
The entry point of the analyzed application can be specified on the command line using the
option -main (section 6.3.1). In the GUI, it is also possible to specify the name of the entry
point at the time of launching Eva.

5.4.2 Entry point of an incomplete application

It is possible to analyze an application without starting from its actual entry point. This
can be made necessary because the actual entry point is not available, for instance if the
analysis is concerned with a library. It can also be a deliberate choice as part of a modular
verification strategy. In this case, the option -lib-entry, described at section 6.3.3, should be
used together with the option -main that sets the entry point of the analysis. In this mode,
the plug-in does not assume that the global variables have kept their initial values (except for
the variables with the const attribute).

5.4.3 Library functions

Another category of functions whose code may be missing is composed of the operating system
primitives and functions from external libraries. These functions are called “library functions”.
The behavior of each library function can be specified through annotations (see chapter 8).
The specification of a library function can in particular be provided in terms of modified
variables, and of data dependencies between these variables and the inputs of the function
(section 8.2). An alternative way to specify a library function is to write C code that models
its behavior, so that its code is no longer missing from the point of view of the analyzer.
Frama-C provides a set of specifications for the most common functions in the C standard
library and for some POSIX functions, plus a few extensions (BSD, GNU, etc.). These
specifications allow the analysis of applications which use these libraries, but they become
part of the trusted computing base: it is the responsibility of the user to verify that these
specifications are correct with respect to the actual standard library implementation from the
actual execution environment.

5.4.4 Choosing between complete and partial application mode

This section uses a small example to illustrate the pitfalls that should be considered when
using Eva with an incomplete part of an application. This example is simplified but quite
typical. This is the pattern followed by the complete application:

1 int ok1;
2

58

5.4. ANALYZING A PARTIAL OR A COMPLETE APPLICATION

3 void init1(void) {
4 ...
5 if (error condition)
6 error_handling1();
7 else
8 ok1 = 1;
9 }

10

11 void init2(void) {
12 if (ok1) { ... }
13 }
14

15 void main(void) {
16 init1();
17 init2();
18 ...
19 }

If init2 is analyzed as the entry point of a complete application, or if the function init1 is
accidentally omitted, then at the time of analyzing init2, Eva will have no reason to believe
that the global variable ok1 has not kept its initial value 0. The analysis of init2 consists of
determining that the value of the if condition is always false, and to ignore all the code that
follows. Any possible run-time error in this function will therefore be missed by the analyzer.
However, as long as the user is aware of these pitfalls, the analysis of incomplete sources can
provide useful results. In this example, one way to analyze the function init2 is to use the
option -lib-entry described in section 6.3.3.
It is also possible to use annotations to describe the state in which the analysis should be
started as a precondition for the entry point function. The syntax and usage of preconditions
is described in section 8.1. The user should pay attention to the intrinsic limitations in the
way Eva interprets these properties (section 8.1.2). A simpler alternative for specifying an
initial state is to build it using the non-deterministic primitives described in section 9.2.1.
Despite these limitations, when the specifications the user wishes to provide are simple enough
to be interpreted by the plug-in, it becomes possible and useful to divide the application into
several parts, and to study each part separately (by taking each part as an entry point, with
the appropriate initial state). The division of the application into parts may follow the phases
in the application’s behavior (initialization followed by the permanent phase) or break it down
into elementary sub-pieces, the same way unit tests do.

5.4.5 Applications relying on software interrupts

The current version of the Eva plug-in is not able to take into account interrupts (auxiliary
function that can be executed at any time during the main computation). As things stand,
the plug-in may give answers that do not reflect reality if interrupts play a role in the behavior
of the analyzed application. There is preliminary support for using Eva in this context in the
form of support for volatile variables.
Unlike normal variables, the analyzer does not assume that the value read from a volatile
variable is identical to the last value written there. Instead, a volatile variable in which
only scalar values have been written is assumed to contain [--..--] when it is read from,
regardless of the precise value of the contents that were previously written. The values of
volatile pointers (i.e variables containing pointers and with volatile specifier) are an imprecise
form of the address that has previously been assigned to the pointer. Finally, the handling of

59

CHAPTER 5. LIMITATIONS AND SPECIFICITIES

(non-volatile) pointers to volatile locations is not finalized yet: it is not clear how the various
complicated situations that can arise in this case should be handled. For instance, pointers
to volatile locations may be pointing to locations that also have non-volatile access paths to
them.

5.5 Conventions not specified by the ISO standard

Eva can provide useful information even for low-level programs that rely on non-portable C
construct and that depend on the size of the word and the endianness of the target architecture.

5.5.1 The C standard and its practice

There exists constructs of the C language which the ISO standard does not specify, but which
are compiled in the same way by almost every compiler for almost every architecture. For some
of these constructs, the Eva plug-in assumes a reasonable compiler and target architecture.
This design choice makes it possible to obtain more information about the behavior of the
program than would be possible using only what is strictly guaranteed by the standard.

This stance is paradoxical for an analysis tool whose purpose is to compute only correct
approximations of program behaviors. Then notion of “correctness” is necessarily relative
to a definition of the semantics of the analyzed language. And, for the C language, the ISO
standard is the only available definition.
However, an experienced C programmer has a certain mental model of the working habits of
the compiler. This model has been acquired by experience, common sense, knowledge of the
underlying architectural constraints, and sometimes perusal of the generated assembly code.
Finally, the Application Binary Interface may constrain the compiler into using representations
that are not mandated by the C standard (and which the programmer should not, a priori,
have counted on). Since most compilers make equivalent choices, this model does not vary
much from one programmer to the other. The set of practices admitted by the majority of C
programmers composes a kind of informal, and unwritten, standard. For each C language
construct that is not completely specified by the standard, there may exist an alternative,
“portable” version. The portable version could be considered safer if the programmer did
not know exactly how the non-portable version will be translated by their compiler. But the
portable version may produce a code which is significantly slower and/or bigger. In practice,
the constraints imposed on embedded software often lead to choosing the non-portable version.
This is why, as often as possible, Eva uses the same standard as the one used by programmers,
the unwritten one. It is the experience gained on actual industrial software, during the
development of early versions of Frama-C as well as during the development of other tools,
that led to this choice.

The hypotheses discussed here have to do with the conversions between integers and pointers,
pointer arithmetic, the representation of enum types and the relations between the addresses
of the fields of a same struct . As a concrete example, Eva plug-in assumes two-complement
representation, which the standard does not guarantee, and whose consequences can be seen
when converting between signed and unsigned types or with signed arithmetic overflows.
These parameters are all fixed with the -machdep option as described in section 6.3.6.
Often, the ISO standard does not provide enough guarantees to ensure that the behaviors of
the compiler during the compilation of the auto-detection program and during the compilation

60

5.6. MEMORY MODEL – BASES SEPARATION

of the application are the same. It is the additional constraint that the compiler should
conform to a fixed ABI that ensures the reproducibility of compilation choices.

5.6 Memory model – Bases separation

This section introduces the abstract representation of the memory Eva relies on. It is necessary
to have at least a superficial idea of this representation in order to interact with the plug-in.

5.6.1 Base address

The memory model used by Eva relies on the classical notion of “base address”. Each variable,
be it local or global, defines one and only one base address.
For instance, the definitions

1 int x;
2 int t[12][12][12];
3 int *y;

define three base addresses, for x, t, and y respectively. The sub-arrays composing t share
the same base address. The variable y defines a base address that corresponds to a memory
location expected to contain an address. On the other hand, there is no base address for *y,
even though dynamically, at a given time of the execution, it is possible to refer to the base
address corresponding to the memory location pointed to by y.

5.6.2 Address

An address is represented as an offset (which is an integer) with respect to a base address.
For instance, the addresses of the sub-arrays of the array t defined above are expressed as
various offsets with respect to the same base address.

5.6.3 Bases separation

The strongest hypothesis that the plug-in relies on is about the representation of memory
and can be expressed in this way: it is possible to pass from one address to another
through the addition of an offset, if and only if the two addresses share the same
base address.

This hypothesis is not true in the C language itself: addresses are represented with a finite
number of bits, 32 for instance, and it is always possible to compute an offset to go from an
address to a second one by considering them as integers and subtracting the first one from
the second one. The plug-in generates all the alarms that ensure, if they are checked, that
the analyzed code fits in this hypothesis. On the following example, it generates a proof
obligation meaning that “the comparison on line 8 is safe only if p is a valid address or if the
base address of p is the same as that of &x”.

1 int x, y;
2 int *p = &y;
3

4 void main(int c) {
5 if (c)

61

CHAPTER 5. LIMITATIONS AND SPECIFICITIES

6 x = 2;
7 else {
8 while (p != &x) p++;
9 *p = 3;

10 }
11 }

It is mandatory to check this proof obligation. When analyzing this example, the analysis
infers that the loop never terminates (because p remains an offset version of the address of y
and can never be equal to the address of x). It concludes that the only possible value for x at
the end of function main is 2, but this answer is provided proviso quod the proof obligation is
verified through other means. Some actual executions of this example could lead to a state
where x contains 3 at the end of main: only the proof obligation generated by the plug-in and
verified by the user allows to exclude these executions.

In practice, the hypothesis of base separation is unavoidable in order to analyze efficiently
actual programs. For the programs that respect this hypothesis, the user should simply verify
the generated proof obligations to ensure the correctness of the analysis. For the programs that
voluntarily break this hypothesis, the plug-in produces proofs obligations that are impossible
to lift: this kind of program cannot be analyzed with the Eva plug-in.
Here is an example of code that voluntarily breaks the base separation hypothesis. Below
is the same function written in the way it should have been in order to be analyzable with
Frama-C.

1 int x,y,z,t,u;
2

3 void init_non_analyzable(void)
4 {
5 int *p;
6 // initialize variables with 52
7 for (p = &x; p <= &u; p++)
8 *p = 52;
9 }

10

11 void init_analyzable(void)
12 {
13 x = y = z = t = u = 52;
14 }

5.6.4 Dynamic allocation

Dynamic allocation is modeled by creating new bases. Each call to malloc and realloc
potentially creates a new base, depending on the builtins (described in section 9.1) used –
possibly resulting in an unbounded number of such bases. Dynamically allocated bases behave
mostly like statically allocated ones, except that they come in two flavors:

• strong bases, allocated once per call to the allocation function, which are precise but may
cause the analysis to diverge if they are called inside a loop. It is the responsibility
of the user to ensure that strong bases are not allocated inside loops.

• weak bases, allocated once per callstack, which may confound information from multiple
calls to the allocation function, overapproximating their contents. This results in a less

62

5.7. WHAT EVA DOES NOT PROVIDE

precise analysis, but maintains soundness and ensures termination. This is the safe
default approach for allocations which may be nested inside loops.

Details about how to create and use these bases are provided in section 9.1.1.

5.7 What Eva does not provide

Values that are valid even if something bad happens
Eva provides sets of possible values under the assumption that the alarms emitted during the
analysis have been verified by the user (if necessary, using other techniques). If during an
actual execution of the application, one of the assertions emitted by Eva is violated, values
other than those predicted by Eva may happen. See also questions 2 and 3 in chapter 10.

Termination or reachability properties
Although Eva sometimes detects that a function does not terminate, it cannot be used to
prove that a function terminates. Generally speaking, the fact that Eva provides non-empty
sets of values for a specific statement in the application does not imply that this statement is
reachable in a real execution. Currently, Eva is not designed to prove the termination of loops
or similar liveness properties. For instance, the following program does not terminate:

1 int x, y = 50;
2 void main()
3 {
4 while(y<100)
5 y = y + (100 - y)/2;
6 x = y;
7 }

If this program is analyzed with the default options of Eva, the analysis finds that every
time execution reaches the end of main, the value of x is ≥ 100. This does not mean that the
function always terminates or even that it may sometimes terminate (it does neither). When
Eva proposes an interval for x at a point P, it should always be interpreted as meaning that if
P is reached, then at that time x is in the proposed interval, and not as implying that P is
reached.

Propagation of the displayed states
The values available through the graphical and programmatic interfaces do not come from
a single propagated state but from the union of several states that the analyzer may have
propagated separately. As a consequence, it should not be assumed that the “state” displayed
at a particular program point has been propagated. In the following example, Eva did not
emit any alarm for the division at line 8. This means that the divisor was found never to be
null during an actual execution starting from the entry point. The values displayed at the
level of the comment should not be assumed to imply that (x - y) is never null for arbitrary
values x∈ {0; 1} and y∈ {0; 1}.

1 int x, y, z;
2 main(int c){
3 ...
4 ...
5 /* At this point Eva guarantees:

63

CHAPTER 5. LIMITATIONS AND SPECIFICITIES

6 x IN {0; 1}
7 y IN {0; 1}; */
8 z = 10 / (x - y);
9 }

With the option -eva-slevel described in section 6.4.1, the lines leading up to this situation
may for instance have been:

3 x = c ? 0 : 1;
4 y = x ? 0 : 1;

Identically, the final states displayed by the batch version of Frama-C for each function are
an union of all the states that reached the end of the function when it was called during the
analysis. It should not be assumed that the state displayed for the end of a function f is the
state that was propagated back to a particular call point. The only guarantee is that the
state that was propagated back to the call point is included in the one displayed for the end
of the function.
The only way to be certain that Eva has propagated a specific state, and therefore guarantee
the absence of run-time errors under the assumptions encoded in that state, is to build the
intended state oneself, for instance with non-deterministic primitives (section 9.2.1). However,
the intermediate results displayed in the GUI can and should be used for cross-checking that
the state actually built looks like intended.

64

Chapter 6

Parameterizing the analysis

Eva is automatic but gives you a little bit of control. Just in case.

Parameterization of Eva involves two main kinds of options: correctness options and perfor-
mance tuning options. The former require understanding of their meaning and of the extra
hypotheses they entail; used incorrectly, they can lead to a wrong analysis. The latter control
the tradeoff between the quality of the results and the resources taken by the analyzer to
provide them (CPU time and memory usage). These options cannot be used wrongly, in the
sense that they do not affect the correctness of the results. However, using them efficiently is
essential for scalability of the analysis.
Section 6.1 presents the overall methodology recommended when using Eva, especially for
realistic code bases. Section 6.2 presents the general usage options of Eva in the command-line.
The options described in section 6.3 are correctness options, while the remaining sections (6.4,
6.5, 6.6 and 6.7) deal with performance tuning options. Section 6.8 presents a derived analysis
to obtain information about non-termination. Finally, section 6.9 presents some scripts and
templates to help bootstrap an analysis and automate some of its steps.

6.1 Three-step approach

For realistic code bases, an analysis with Eva requires several steps which are better performed
separately, for several reasons:

• errors are confined to each of the separate steps, instead of being mingled together;

• partial results can be saved and reused, avoiding unnecessary recomputations;

• it is clearer which options and changes affect which stages, leading to better understanding
of the process.

65

CHAPTER 6. PARAMETERIZING THE ANALYSIS

The recommended approach can be summarized as follows:

• parsing sources: frama-c <sources> -save parsed.sav;

• running Eva: frama-c -load parsed.sav -eva -save eva.sav;

• viewing its results on the GUI: frama-c-gui -load eva.sav.

The commands and options are detailed in the next section.

6.2 Command line

The parameters that determine Frama-C’s behavior can be set through the command line.
There are two main variants of Frama-C, one based on the command line (frama-c), and
one which launches a graphical interface (frama-c-gui). The options understood by the Eva
plug-in are described in this chapter. All options of Eva work identically for both the graphical
interface and for the command line.

The options documented in this manual can be listed, with short descriptions, from the
command line. Option -kernel-help lists options that affect all plug-ins. Option -eva-help
lists options specific to the Eva plug-in. The options -kernel-help and -eva-help also list
advanced options that are not documented in this manual.

Example:

frama-c -eva-help

. . .
-eva-slevel <n> superpose up to <n> states when unrolling control flow.

The larger n, the more precise and expensive the analysis
(defaults to 0)

. . .

Historically, Eva was called Value, and most of its options were prefixed with -val. All -val-*
options are aliased to equivalent -eva-* functions; negative options of the form -no-val-*
are aliased to -eva-no-*.

6.2.1 Analyzed files and preprocessing

The analyzed files should be syntactically correct C. The files that do not use the .i extension
are automatically pre-processed. The preprocessing command used by default is gcc -C -E -I.,
but another preprocessor may be employed.

It is possible that files without a .c extension fail to pass this stage. It is notably the case
with gcc, to which the option -x c should be passed in order to pre-process C files that do
not have a .c extension.

66

6.2. COMMAND LINE

Option -cpp-extra-args <options> allows giving additional options to the preprocessor, usu-
ally -D for defining macros and -I for including header directories.
In rare cases, you may need to use a different preprocessing command, via option -cpp-command <cmd>.
If the patterns %1 and %2 do not appear in the text of the command, Frama-C invokes the
preprocessor in the following way:

<cmd> -o <outputfile> <inputfile>

In the cases where it is not possible to invoke the preprocessor with this syntax, it is possible
to use the patterns %1 and %2 in the command’s text as place-holders for the input file
(respectively, the output file). Here are some examples of use of this option:

frama-c-gui -eva -cpp-command 'gcc -C -E -I. -x c' file1.src file2.i
frama-c-gui -eva -cpp-command 'gcc -C -E -I. -o %2 %1' file1.c file2.i
frama-c-gui -eva -cpp-command 'copy %1 %2' file1.c file2.i
frama-c-gui -eva -cpp-command 'cat %1 > %2' file1.c file2.i
frama-c-gui -eva -cpp-command 'CL.exe /C /E %1 > %2' file1.c file2.i

6.2.2 Activating Eva

Option -eva activates Eva. Sets of values for the program’s variables at the end of each
analyzed function are displayed on standard output.
Many functionalities provided by Frama-C rely on Eva’s results. Activating one of these
automatically activates Eva, without it being necessary to provide the -eva option on the
command-line. In this case, it should be kept in mind that all other options of Eva remain
available for parameterization.

6.2.3 Saving the result of an analysis

The option -save s saves the state of the analyzer, after the requested computations have
completed, in a file named s. The option -load s loads the state saved in file s back into
memory for visualization or further computations.

Example :
frama-c -eva -deps -out -save result.sav file1.c file2.c
frama-c-gui -load result.sav

There is no specific extension for Frama-C saved files; the usual convention is to use .sav.

Most options are saved when -save is used and do not need to be passed again when loading
it. It is therefore useful to separate parsing options from analysis options, the former to be
saved after parsing, the latter to be given after loading it.

6.2.4 Controlling the output

By default, Eva emits all the alarms it finds (section 3.2) as both ACSL assertions and
textual messages in the log. For big analyses, the log can become quite large. Since
ACSL assertions are stored by the Frama-C kernel, and can be output using plugins such
as Report, the textual output is partly redundant. Warning category1 alarm allows to

1See Frama-C User Manual [CCK+].

67

CHAPTER 6. PARAMETERIZING THE ANALYSIS

manage how these alarms are reported on the textual output. In particular, -eva-warn-key
alarm=inactive will completely disable their output, and -eva-warn-key alarm=feedback
will convert them into normal messages instead of warnings (equivalent to deprecated option
-eva-no-warn-on-alarms2).

6.3 Describing the analysis context

6.3.1 Specification of the entry point

The option -main f specifies that f should be used as the entry point for the analysis. If this
option is not specified, the analyzer uses the function called main as the entry point.

6.3.2 Analysis of a complete application

By default (when the option -lib-entry is not set), the analysis starts from a state in which
initialized global variables contain their initial values, and uninitialized ones contain zero.
This only makes sense if the entry point (see section 6.3.1) is the actual starting point of this
analyzed application. In the initial state, each formal argument of the entry point contains a
non-deterministic value that corresponds to its type. Representative locations are generated
for arguments with a pointer type, and the value of the pointer argument is the union of the
address of this location and of NULL. For chain-linked structures, these locations are allocated
only up to a fixed depth.
Example: for an application written for the POSIX interface, the prototype of main is:

int main(int argc, char **argv)

The types of arguments argc and argv translate into the following initial values:
argc ∈ [--..--]
argv ∈ {{ NULL ; &S_argv[0] }}
__retres ∈ UNINITIALIZED
S_argv[0] ∈ {{ NULL ; &S_0_S_argv[0] }}

[1] ∈ {{ NULL ; &S_1_S_argv[0] }}
S_0_S_argv[0..1] ∈ [--..--]
S_1_S_argv[0..1] ∈ [--..--]

This is generally not what is wanted, but then again, embedded applications are generally
not written against the POSIX interface. If the analyzed application expects command-line
arguments, you should probably write an alternative entry point that creates the appropriate
context before calling the actual entry point. That is, consider an example application whose
source code looks like this:

int main(int argc, char **argv)
{

if (argc != 2) usage();
...

}

void usage(void)
{

2Note that the use of -eva-no-warn-on-alarms -eva-msg-key=-alarm for completely deactivating the
output will not work anymore, as alarm is not a debug category anymore.

68

6.3. DESCRIBING THE ANALYSIS CONTEXT

printf("this application expects an argument between '0' and '9'\n");
exit(1);

}

Based on the informal specification provided in usage, you should make use of the non-
deterministic primitives described in section 9.2.1 to write an alternative entry point for the
analysis like this:

int eva_main(void)
{

char *argv[3];
char arg[2];
arg[0]=Frama_C_interval('0', '9');
arg[1]=0;
argv[0]="Analyzed application";
argv[1]=arg;
argv[2]=NULL;
return main(2, argv);

}

For this particular example, the initial state that was automatically generated includes the
desired one. This may however not always be the case. Even when it is the case, it is desirable
to write an analysis entry point that positions the values of argc and argv to improve the
relevance of the alarms emitted by Eva.
Although the above method is recommended for a complete application, it remains possible
to let the analysis automatically produce values for the arguments of the entry point. In this
case, the options described in section 6.3.4 below can be used to tweak the generation of these
values to some extent.

6.3.3 Analysis of an incomplete application

The option -lib-entry specifies that the analyzer should not use the initial values for globals
(except for those qualified with the keyword const). With this option, the analysis starts
with an initial state where the numerical components of global variables (without the const
qualifier) and arguments of the entry point are initialized with a non-deterministic value of
their respective type.
Global variables of pointer type contain the non-deterministic superposition of NULL and of
the addresses of locations allocated by the analyzer. The algorithm to generate those is the
same as for formal arguments of the entry point (see previous section). The same options can
be used to parameterize the generation of the pointed locations (see next section).

6.3.4 Tweaking the automatic generation of initial values

This sections describes the options that influence the automatic generation of initial values of
variables. The concerned variables are the arguments of the entry point and, in -lib-entry
mode, the non-const global variables.

Width of the generated tree
For a variable of a pointer type, there is no way for the analyzer to guess whether the pointer
should be assumed to be pointing to a single element or to be pointing at the beginning of

69

CHAPTER 6. PARAMETERIZING THE ANALYSIS

an array — or indeed, in the middle of an array, which would mean that it is legal to take
negative offsets of this pointer.
By default, a pointer type is assumed to point at the beginning of an array of two elements.
This number can be changed with option -eva-context-width.
Example: if the prototype for the entry point is void main(int *t), the analyzer assumes t
points to an array int S_t[2].
For an array type, non-aliasing subtrees of values are generated for the first few cells of the
array. All remaining cells are made to contain a non-deterministic superposition of the first
ones. The number of initial cells for which non-aliasing subtrees are generated is also decided
by the value of option -eva-context-width.
Example: with the default value 2 for option -eva-context-width, the declaration int *(t[5]);
causes the following array to be allocated:

t ∈ {{ NULL ; &S_t[0] }}
S_t[0] ∈ {{ NULL ; &S_0_S_t[0] }}

[1] ∈ {{ NULL ; &S_1_S_t[0] }}
[2..4] ∈ {{ NULL ; &S_0_S_t[0] ; &S_1_S_t[0] }}

S_0_S_t[0..1] ∈ [--..--]
S_1_S_t[0..1] ∈ [--..--]

Note that for both arrays of pointers and pointers to pointers, using option -eva-context-width 1
corresponds to a very strong assumption on the contents of the initial state with respect to
aliasing. You should only use the argument 1 for option -eva-context-width in special cases,
and use at least 2 for generic, relatively representative calling contexts.

Depth of the generated tree
For variables of a type pointer to pointers, the analyzer limits the depth up to which initial
chained structures are generated. This is necessary for recursive types such as follows.

struct S { int v; struct S *next; };

This limit may also be observed for non-recursive types if they are deep enough.
Option -eva-context-depth allows to specify this limit. The default value is 2. This number
is the depth at which additional variables named S_... are allocated, so two is plenty for most
programs.
For instance, here is the initial state displayed by Eva in -lib-entry mode if a global variable
s has type struct S defined above:

s.v ∈ [--..--]
.next ∈ {{ NULL ; &S_next_s[0] }}

S_next_s[0].v ∈ [--..--]
[0].next ∈ {{ NULL ; &S_next_0_S_next_s[0] }}
[1].v ∈ [--..--]
[1].next ∈ {{ NULL ; &S_next_1_S_next_s[0] }}

S_next_0_S_next_s[0].v ∈ [--..--]
[0].next ∈ {{ NULL ; &S_next_0_S_next_0_S_next_s[0] }}

[0].next ∈
{{ garbled mix of &{

WELL_next_0_S_next_0_S_next_0_S_next_s}
(origin: Well) }}

[1].v ∈ [--..--]

70

6.3. DESCRIBING THE ANALYSIS CONTEXT

In this case, if variable s is the only one which is automatically allocated, it makes sense
to set the option -eva-context-width to one. The value of the option -eva-context-depth
represents the length of the linked list which is modeled with precision. After this depth,
an imprecise value (called a well) captures all the possible continuations in a compact but
imprecise form.
Below are the initial contents for a variable s of type struct S with options -eva-context-width 1
-eva-context-depth 1:

s.v ∈ [--..--]
.next ∈ {{ NULL ; &S_next_s[0] }}

S_next_s[0].v ∈ [--..--]
[0].next ∈ {{ NULL ; &S_next_0_S_next_s[0] }}

S_next_0_S_next_s[0].v ∈ [--..--]
[0].next ∈
{{ garbled mix of &{WELL_next_0_S_next_0_S_next_s}
(origin: Well) }}

WELL_next_0_S_next_0_S_next_s[bits 0 to ..] ∈
{{ garbled mix of &{WELL_next_0_S_next_0_S_next_s}
(origin: Well) }}

The possibility of invalid pointers
In all the examples above, NULL was one of the possible values for all pointers, and the linked
list that was modeled ended with a well that imprecisely captured all continuations for the
list. Also, the context-width parameter for the generated memory areas has to be understood
as controlling the maximum width for which the analyzer assumes the pointed area may be
valid. However, in order to assume as little as possible on the calling context for the function,
the analyzer also considers the possibility that any part of the pointed area might not be
valid. Thus, by default, any attempt to access such an area results in an alarm signaling that
the access may have been invalid.3

The option -eva-context-valid-pointers causes those pointers to be assumed to be valid
(and NULL therefore to be omitted from the possible values) at depths that are less than the
context width. It also causes the list to end with a NULL value instead of a well.
When analyzed with options -eva-context-width 1 -eva-context-depth 1 -eva-context-valid-pointers,
a variable s of type struct S receives the following initial contents, modeling a chained list of
length exactly 3:

s.v ∈ [--..--]
.next ∈ {{ &S_next_s[0] }}

S_next_s[0].v ∈ [--..--]
[0].next ∈ {{ &S_next_0_S_next_s[0] }}

S_next_0_S_next_s[0].v ∈ [--..--]
[0].next ∈ {0}

6.3.5 State of the IEEE 754 environment

The IEEE 754 standard specifies a number of functioning modes for the hardware that
computes floating-point operations. These modes determine which arithmetic exceptions can
be produced and rounding direction for operations that are not exact.

3For technical reasons, this also means that it is not possible to reduce the values of those areas through
user-provided assertions (section 8.1.2).

71

CHAPTER 6. PARAMETERIZING THE ANALYSIS

By default, obtaining an infinite or NaN as result of a floating-point operation is treated as
an unwanted error. Consequently, FPU modes related to arithmetic exceptions are irrelevant
for the analysis. For non-default values of option -warn-special-float, the behavior of
changing the floating-point environment is currently unspecified.

The compilation of, and the set of floating-point operations used, define roughly three categories
of programs:

1. The program uses only double and float floating-point types, does not change the default
(nearest-even) floating-point rounding mode and is compiled with a compiler that neither
generates fmadd instructions nor generates extended precision computations (historical
x87 instruction set).

2. The compiler transforms floating-point computations as if floating-point addition or
multiplication were associative, or transforms divisions into a multiplication by the
inverse even when the inverse cannot be represented exactly as a floating-point number.

3. The program uses only double and float floating-point types, but either does not stay
during the whole execution in the “nearest” floating-point rounding mode, or is compiled
with a compiler that may silently insert fmadd instructions when only multiplications
and additions appear in the source code, or are compiled for the x87 FPU.

Currently, only programs of the first category can be soundly analyzed by Eva.

6.3.6 Setting compilation parameters

Using one of the pre-configured target platforms
The option -machdep platform sets a number of parameters for the low-level description of
the target platform, including the endianness of the target and size of each C type. The
option -machdep help provides a list of currently supported platforms. The default is x86_32,
an IA-32 processor with what are roughly the default compilation choices of gcc.

Targeting a different platform
If your target platform is not listed, please contact the developers. An auto-detection program
can be provided in order to check the hypotheses mentioned in section 5.5.1, as well as to detect
the parameters of your platform. It comes under the form of a C program of a few lines, which
should ideally be compiled with the same compiler as the one intended to compile the analyzed
application. If this is not possible, the analysis can also be parameterized manually with the
characteristics of the target architecture. The Frama-C Plugin Development Guide [SAC+15]
contains a section about customizing the machine model.

6.3.7 Parameterizing the modeling of the C language

The following options are more accurately described as pertaining to Frama-C’s modeling of
the C language than as a description of the target platform, but of course the distinction is
not always clear-cut. The important thing to remember is that these options, like the previous
one, are dangerous options that should be used, or omitted, carefully.

72

6.3. DESCRIBING THE ANALYSIS CONTEXT

Valid absolute addresses in memory
By default, Eva assumes that the absolute addresses in memory are all invalid. This assumption
can be too restrictive, because in some cases there exist a limited number of absolute
addresses which are intended to be accessed by the analyzed program, for instance in order to
communicate with hardware.
The option -absolute-valid-range m-M specifies that the only valid absolute addresses (for
reading or writing) are those comprised between m and M inclusive. This option currently
allows to specify only a single interval, although it could be improved to allow several intervals
in a future version.

Overflow in array accesses
Eva assumes that when an array access occurs in the analyzed program, the intention is that
the accessed address should be inside the array. If it can not determine that this is the case,
it emits an out of bounds index alarm. This leads to an alarm on the following example:

1 int t[10][10];
2

3 int main() {
4 return t[0][12];
5 }

Eva assumes that writing t[0][...], the programmer intended the memory access to be inside
t[0]. Consequently, it emits an alarm:

accessing out of bounds index. assert 12 < 10;

The option -unsafe-arrays tells Eva to warn only if the address as computed using its modeling
of pointer arithmetics is invalid. With the option, Eva does not warn about line 4 and assumes
that the programmer was referring to the cell t[1][2].
The default behavior is stricter than necessary but often produces more readable and useful
alarms. To reiterate, in this default behavior Eva gets hints from the syntactic shape of the
program. Even in the default mode, it does not warn for the following code.

4 int *p=&t[0][12];
5 return *p;
6 }

Option -safe-arrays also has an effect on the evaluation of the ACSL construct “..”. When t
is a known array, t[..] is strictly equivalent to t[0..s-1], where s is the number of elements
of t. Conversely, when option -unsafe-arrays is set, t[..] means t[-∞..+∞] – meaning
that the location overlaps with neighbouring zones when t is inside an array or struct.

6.3.8 Dealing with library functions

When the Eva plug-in encounters a call to a library function, it may need to make assumptions
about the effects of this call. The behavior of library functions can be described precisely by
writing a contract for the function (chapter 8), especially using an assigns clause (section 8.2).
If no ACSL contract is provided for the function, the analysis uses the type of the function as
its source of information for making informed assumptions. However, no guarantee is made
that those assumptions over-approximate the real behavior of the function. The inferred
contract should be verified carefully by the user.

73

CHAPTER 6. PARAMETERIZING THE ANALYSIS

6.3.9 Using the specification of a function instead of its body

In some cases, one can estimate that the analysis of a given function f takes too much time.
This can be caused by a very complex function, or because f is called many times during the
analysis. Another situation is when a function already has a functional specification, proved
for instance with the WP plug-in, and we do not want/need to analyze it with Eva.

In the cases above, a somewhat radical approach consists in replacing the entire body of the
function by an ACSL contract that describes its behavior. See for example section 8.2 for
how to specify which values the function reads and writes.

Alternatively, one can leave the body of the function untouched, but still write a contract. Then
it is possible to use the option -eva-use-spec f. This instructs Eva to use the specification
of f instead of its body each time a call to f is encountered. This is equivalent4 to deleting
the body of f for Eva, but not for the other plug-ins of Frama-C, that may study the body of
f on their own.

Notice that option -eva-use-spec f loses some guarantees. In particular, the body of f is
not studied at all by Eva. Neither are the functions that f calls, unless they are used by
some other functions than f. Moreover, Eva does not attempt to check that f conforms to
its specification. In particular, postconditions are marked as unknown with -eva-use-spec,
while they are considered valid for functions without body. It is the responsibility of the user
to verify those facts, for example by studying f on its own in a generic context.

6.4 Improving precision in loops

The default treatment of loops by the analyzer often produces results that are too approximate.
Fine-tuning loops is one of the main ways to improve precision in the analysis.

When encountering a loop, the analyzer tries to compute a state that contains all the possible
concrete states at run-time, including the initial concrete state just before entering the loop.
This enclosing state, by construction, is often imprecise: typically, if the analyzed loop is
initializing an array, the user does not expect to see the initial values of the array appear in the
state computed by the analyzer. The solution in this case is to either unroll loops, using one
of several available methods, or to add annotations (widening hints or loop invariants) that
enable the analyzer to maintain precision while ensuring the analysis time remains bounded.

6.4.1 Loop unrolling

Whenever a loop has a fixed number of iterations (or a known upper bound), Eva can precisely
analyze it by semantically unrolling each iteration, avoiding merging states from different
iterations. This leads to increased cost in terms of analysis, but usually the cost increase is
worth the improvement in precision.

Loop unrolling is often easy to apply, since it does not require much knowledge about the
loop, other than an estimate of the number of iterations. If the estimate is too low, precision
won’t improve; if it is too high, it may lead to unnecessary work; but under no circumstances
will it affect the correctness of the analysis.

4Except for a few properties, as described in the next paragraph.

74

6.4. IMPROVING PRECISION IN LOOPS

Automatic loop unrolling
Eva includes a syntactic heuristic to automatically unroll simple loops whose number of
iterations can be easily bounded. It is enabled via option -eva-auto-loop-unroll <n>, where
<n> is the maximum number of iterations to unroll: loops with less than <n> iterations will be
completely unrolled. If the analysis cannot infer that a loop terminates within less than <n>
iterations, then no unrolling is performed.
-eva-auto-loop-unroll is recommended as the first approach towards loop unrolling, due to its
low cost and ease of setup. An unrolling limit up to a few hundred seems suitable in most
cases.
If all loops in a program need to be unrolled, one way to do it quickly consists in using option
-eva-min-loop-unroll <n>, where <n> is the number of iterations to unroll in each loop. This
option is very expensive, and its use should be limited.
For a more fine-grained analysis and for non-trivial loops, annotations are available to
configure the loop unrolling on a case by case basis. These annotations take precedence over
the automatic loop unrolling mechanism and can be combined with them, e.g. to automatically
unroll all but a few loops.
With options -eva-auto-loop-unroll AUTO -eva-min-loop-unroll MIN:

• if a loop has a loop unroll annotation, it is unrolled accordingly;

• otherwise, if a loop has evidently less than AUTO iterations, it is completely unrolled;

• otherwise, the MIN first iterations of the loop are unrolled.

Loop unroll annotations
Individual loops can be unrolled by preceding them with a loop unroll <n> annotation, where
<n> is the number of iterations to unroll. Such annotations must be placed just before the
loop (i.e. before the while , for or do introducing the loop), and one annotation is required per
loop, including nested ones. For instance:

#define NROWS 10
void main(void)
{

int a[NROWS][20] = {0};
//@ loop unroll NROWS;
for (int i = 0; i < 10; i++) {

//@ loop unroll (10+10);
for (int j = 0; j < 20; j++) {

a[i][j] += i + j;
}

}
}

The annotations above will ensure that Eva will unroll the loops and keep the analysis precise;
otherwise, the array access a[i][j] might generate alarms due to imprecisions.
The loop unroll parameter can be any C expression evaluated to a single integer value by Eva
each time the analysis reaches the loop. Otherwise, the annotation is ignored and a warning
is issued. Constants obtained via #define macros, variables which always have a unique value
and arithmetic operators are suitable. For expressions that have several possible values, the
acceptability of the annotation depends on the precision of the analyzer. Note that there are

75

CHAPTER 6. PARAMETERIZING THE ANALYSIS

interesting cases of non-constant expressions for unrolling annotations. The example below
shows a function with two nested loops.

int t1[] = {1, 2, 3}, t2[] = {4, 5}, t3[] = {6, 7, 8, 9};
int *t[] = {t1, t2, t3};
int sizes[] = {3, 2, 4};
void main(void)
{

int S = 0;
//@ loop unroll 3;
for (int i = 0 ; i < 3 ; i++) {

//@ loop unroll sizes[i];
for (int j = 0 ; j < sizes[i] ; j++) {

S += t[i][j];
}

}
}

The number of iterations of the outer loop is constant while the number of iterations of the
inner loop depends on the current iteration of the outer one. As we have instructed Eva to
unroll the outer loop, it evaluates the parameter sizes[i] to a single possible integer for each
iteration of the outer loop, and thus the inner loop annotation is accepted. In this example, it
is also possible to use an upper bound like 4.
The unrolling mechanism is independent of -eva-slevel (see next subsection): annotated
loops are always unrolled at least the specified number of times. If the loop has not been
entirely unrolled, however, remaining -eva-slevel may be used to unroll more iterations.
While it is sometimes useful to unroll only the first iterations, the usual objective is full
unrolling; for this reason, the user is informed whenever the specified unrolling value is
insufficient to unroll the loop entirely:

void main()
{

//@ loop unroll 20; // should be 21
for (int i = 0 ; i <= 20 ; i ++) {
}

}

[eva:loop-unroll] loop-unroll-insuf.c:4: loop not completely unrolled

The message can be deactived via -eva-warn-key loop-unroll=inactive.
Note that using an unrolling parameter which is higher than the actual number of iterations
of a loop doesn’t generally have an effect on the analysis. The analyzer will usually detect
that further iterations are not useful.
Loop annotations can also be used to prevent the automatic loop unrolling for some specific
loops: adding loop unroll 0 before a loop ensures that no iteration of the loop will be unrolled.

Unrolling via option -eva-slevel
The option -eva-slevel n indicates that the analyzer is allowed to separate, in each point of
the analyzed code, up to n states from different execution paths before starting to compute
the unions of said states. An effect of this option is that the states corresponding to the first,
second,. . . iterations in a loop remain separated, as if the loop had been unrolled.

76

6.4. IMPROVING PRECISION IN LOOPS

Unlike with loop unroll annotations, the number n to use with -eva-slevel depends on the
nature of the control flow graph of the function to analyze. If the only control structure is
a loop of m iterations, then -eva-slevel m+1 allows to unroll the loop completely. The
presence of other loops or of if -then-else constructs multiplies the number of paths a state
may correspond to, and thus the number of states it is necessary to keep separated in order
to unroll a loop completely. For instance, the nested simple loops in the following example
require the option -eva-slevel 55 in order to be completely unrolled:

1 int i,j,t[5][10];
2

3 void main(void)
4 {
5 for (i=0;i<5;i++)
6 for (j=0;j<10;j++)
7 t[i][j]=1;
8 }

When the loops are sufficiently unrolled, the result obtained for the contents of array t are
the optimally precise:

t[0..4][0..9] ∈ {1}

The number to pass the option -eva-slevel is of the magnitude of the number of values for i
(the 6 integers between 0 and 5) times the number of possible values for j (the 11 integers
comprised between 0 and 10). If a value much lower than this is passed, the result of the
initialization of array t will only be precise for the first cells. The option -eva-slevel 28 gives
for instance the following result for array t:

t{[0..1][0..9]; [2][0..5]} ∈ {1}
{[2][6..9]; [3..4][0..9]} ∈ {0; 1}

In this result, the effects of the first iterations of the loops (for the whole of t[0], the whole
of t[1] and the first half of t[2]) have been computed precisely. The effects on the rest of t
were computed with approximations. Because of these approximations, the analyzer can not
tell whether each of those cells contains 1 or its original value 0. The value proposed for the
cells t[2][5] and following is imprecise but correct. The set {0; 1} does contain the actual
value 1 of the cells.
The option -eva-slevel-function f:n tells the analyzer to apply semantic unrolling level n to
function f. This fine-tuning option allows to force the analyzer to invest time precisely analyz-
ing functions that matter, for instance -eva-slevel-function crucial_initialization:2000.
Oppositely, options -eva-slevel 100 -eva-slevel-function trifle:0 can be used together
to avoid squandering resources over irrelevant parts of the analyzed application. The
-eva-slevel-function option can be used several times to set the semantic unrolling level of
several functions.
Overall, -eva-slevel has the advantage of being quick to setup. However, it is in many cases
superseded by -eva-precision, which controls other parameters related to analysis precision
and speed. Also, -eva-slevel does not allow fine grained control as loop unrolling annotations,
it is context-dependent (e.g. for nested loops), unstable (minor changes in control flow may
affect the usage of slevel) and hard to estimate in presence of complex control flows.

Syntactic unrolling
Syntactic unrolling (option -ulevel n, provided by the Frama-C kernel), while not recom-
mended when using Eva, is another way to unroll loops for a more precise analysis. The only

77

CHAPTER 6. PARAMETERIZING THE ANALYSIS

advantage of syntactic unrolling is that the GUI will show separate statements, allowing the
user to see the values of variables at each iteration. However, this method is slower and leads
to code which may become less readable, due to the introduction of extra variables, labels
and statements.

The value n is the number of times to unroll the loop before starting any analysis (if larger
than the number of loop iterations, the extra code will still be generated, but it may end up
being considered unreachable by Eva). In any case, a large value for n makes the analyzed
code larger, especially for nested loops. This may cause the analyzer to use more time and
memory.

It is possible to control syntactic unrolling for each loop in the analyzed code with the
annotation //@loop pragma UNROLL n;, placed before the loop.

6.4.2 Widening hints and loop invariants

Besides loop unrolling, another technique to improve precision in loops consists in using
the standard computation by accumulation mechanism present in tools based on abstract
interpretation. This mechanism requires a more involved setup, but can lead to more efficient
analyses.

As compared to loop unrolling, the advantage of the computation by accumulation is that
it generally requires less iterations than the number of iterations of the analyzed loop. The
number of iterations does not need to be known (for instance, it allows to analyze a while
loop with a complicated condition). In fact, this method can be used even if the termination
of the loop is unclear. These advantages are obtained thanks to a technique of successive
approximations. The approximations are applied individually to each memory location in the
state. This technique is called “widening”. Although the analyzer uses heuristics to figure
out the best parameters in the widening process, it may (rarely) be appropriate to help it by
providing it with the bounds that are likely to be reached, for a given variable modified inside
a loop.

Widening hints
The user may place an annotation //@ widen_hints v, e1, . . . , em ; to indicate the analyzer
should use preferably the values e1, . . . , em when widening the sets of values attached to
variable v.

Example:

1 int i,j;
2

3 void main(void)
4 {
5 int n = 13;
6 for (i=0; i<n; i++)
7 /*@ widen_hints i, 12, 13; */
8 j = 4 * i + 7;
9 }

e1, . . . , em (the hint thresholds) must evaluate to compilation-time constants. They may
contain numeric expressions and reference preprocessor macros and const int variables. Note
that several hints can be added to a single statement, as follows:

78

6.4. IMPROVING PRECISION IN LOOPS

/*@ widen_hints x, 10, 20, 30;
widen_hints y, 5, 25; */

The user may also annotate a loop with //@ loop widen_hints v, e1, . . . , em ;, in which case
v may reference loop iteration variables.
Adding label global before the variable name, as in //@ loop widen_hints global:n, e1, . . . , em ;,
makes the annotation affect all loops in all functions, including those from other compilation
units. It is useful for referencing variables in inner loops whose outer loop is defined in another
file.
Finally, the user may replace the variable name with "all" (including the double quotes) to
apply the widening hints to all variables.
Note that these annotations affect all statements in the function, including statements preceding
the one where the annotation is inserted.

Dynamic widening hints
widen_hints annotations accept not only variables, but more generally lvalues, such as *p and
a[i]->p. If the lvalue contains a dereference operator, then the widening hint is considered
dynamic: it is applied to every base pointed to by the lvalue at the statement where the hint
is applied. In other words, if the hint *p, 42 is inside a loop, and at each loop iteration *p
may point to a new base, then each new base has 42 added to its widening thresholds.
Dynamic hints are automatically global; the global prefix must not be applied to them.

Deprecated: WIDEN_HINTS loop pragma

This syntax has been deprecated in favor of the previous one and it is kept here only for
reference.
The loop widen_hints annotation above has an obsoleted syntax:
//@ loop pragma WIDEN_HINTS v1, . . . , vn, e1, . . . , em ;
which serves the same purpose but has a few differences:

• it is restricted to loop annotations;

• more than one variable (v1, . . . , vn) can be specified in a single hint;

• if no variables are specified, it works as the special value "all", that is, all variables in
the loop are affected;

• it does not accept the global label.

Example:
1 int i,j;
2

3 void main(void)
4 {
5 int n = 13;
6 /*@ loop pragma WIDEN_HINTS i, 12, 13; */
7 for (i=0; i<n; i++)
8 j = 4 * i + 7;
9 }

79

CHAPTER 6. PARAMETERIZING THE ANALYSIS

Loop invariants
A last technique consists in using the loop invariant construct of ACSL. Loop invariants
describe some properties that hold at the beginning of each execution of a loop, as explained
in the ACSL specification, §2.4.2. They can be used to gain precision when analyzing loops in
the following way: when the analysis is about to widen the value of a variable, it intersects
the widened domain with the one inferred through the loop invariant. Thus, the invariant can
be used to limit the (possibly overly strong) approximation induced by the widening step.

1 #define N 10
2

3 void main (int c)
4 {
5 int t[N+5];
6 if (c >= 1 && c < N)
7 {
8 int *p=t;
9 /*@ loop invariant p < &t[N-1]; */

10 while(1)
11 {
12 *(++p) = 1;
13 if (p >= t+c)
14 break;
15 }
16 }
17 }

In the example above, without a loop invariant, the pointer p is determined to be in the range
&t + [4..60],0%4. In C terms, this means that p points between &t[0] and &t[15], inclusive.
In particular, the analysis is not able to prove that the access on line 9 is always valid.
Thanks to the loop invariant p < &t[N-1], the variable p is instead widened to the range
&t[0]..&t[N-2]. This means that the access to t through p at line 7 occurs within bounds5.
Thus, this technique is complementary to the use of WIDEN_HINTS, which only accepts integers
— hence not &t[N-1]. Compared to the use of -eva-slevel or -ulevel, the technique above
does not unroll the loop; thus the overall results are less precise, but the analysis can be faster.
Notice that, in the function above, a more precise loop invariant would be

5 /*@ loop invariant p < &t[c-1]; */

However, this annotation cannot be effectively used by Eva if the value for c is imprecise,
which is the case in our example. As a consequence, the analysis cannot prove this improved
invariant. We have effectively replaced an alarm, the possible out-of-bounds access at line 7,
by an invariant, that remains to be proven.

6.5 Improving precision with case-based reasoning

Some formal proofs about programs require to use case-based reasoning. Eva can perform such
reasonings through trace partitioning [RM07] techniques, which can be enabled globally or by
specific annotations. It is important to note that, whatever the method used, a partitioning
(and thus the case-based reasoning) currently stops at the end of a function, and can only be
extended past the function return if there is enough slevel in the calling function.

5And more precisely between t[1] and t[9], since p is incremented before the affectation to *p.

80

6.5. IMPROVING PRECISION WITH CASE-BASED REASONING

6.5.1 Automatic partitioning on conditional structures

It sometimes happens that the cases we want to reason on are exactly the cases distinguished
in the program by an if -then-else statement or a switch not far above, even if these blocks
are already closed at the point we need the case-based reasoning. Unless enough slevel
is available, the cases of a conditional structure are approximated together as soon as the
analyzer leaves the block. However, Eva can delay this approximation until after the statement
where the case-based reasoning is needed.

The global command-line parameter -eva-partition-history <n> delays the approximation
for all conditional structures of the whole program. The parameter <n> controls the delay: it
represents the number of junction points for which the incoming paths (the cases) are kept
separated. At a given point, Eva is then able to reason by cases on the <n> last if -then-else
statements closed before. A value of 1 means that Eva will reason by case on the previous
if -then-else, until another one is closed.

This option has a very high cost on the analysis, theoretically doubling the analysis time
for each increment of its parameter n. The cost can even be higher on switch statements.
However, it can remove false alarms in a fully automatic way. Thus, the trade off might often
be worth trying.

In practice, -eva-partition-history 1 seems to be sufficient in most cases, and a greater
value is rarely needed.

6.5.2 Value partitioning

A case-based reasoning on the possible values of an expression can be forced inside a function
by using split annotations. These annotations must be given an expression which values
correspond to the cases that need to be enumerated. The example below shows an usage of
this annotation.

int t1[] = {1, 2, 3}, t2[] = {4, 5}, t3[] = {6, 7, 8, 9};
int *t[] = {t1, t2, t3};
int sizes[] = {3, 2, 4};
/*@ requires 0 <= i < 3; */
int main(int i)
{

int S = 0;
//@ split i;
//@ loop unroll sizes[i];
for (int j = 0 ; j < sizes[i] ; j++)

S += t[i][j];

return S;
}

The split instructs Eva to enumerate all the possible values of i and to continue the analysis
separately for each of these values. Thereafter, the value of i is always evaluated by Eva as a
singleton in each case, which enables the use of a loop unroll annotation on i. This way, the
result of the function can be exactly computed as the set of three possible values instead of
an imprecise interval.

[eva:final-states] Values at end of function main:
S ∈ {6; 9; 30}

81

CHAPTER 6. PARAMETERIZING THE ANALYSIS

A split annotation can be used on any expression that evaluates to a small number of integer
values. In particular, the expression can be a C comparison like in the following example.

double fabs(double x)
{

return x < 0.0 ? -x : x;
}

double main(double y)
{

//@ split y < 0.0;
if (fabs(y) > 1.0)

y = y < 0 ? -1.0 : 1.0;
//@ merge y < 0.0;
return y;

}

This example requires the equality domain (enabled with option -eva-equality-domain, see
section 6.7.1) to be analyzed precisely, as we need the equality relations between the input
and the output of the function fabs, i.e. the relations x == \result or x == -\result . Then,
the split annotation before the call to fabs allows Eva to reason by case and to infer the
relevant equality in each case.

This example also illustrates the use of a merge annotation, which ends the case-based reasoning
started by a previous split annotation with the exact same expression. The use of merge
annotations is not mandatory, but they allow the user to mitigate the cost of split annotations.

Alternatively to annotations, it is possible to use the command-line to reason by case during the
whole analysis. The command line parameter -eva-partition-value <V> forces the analyzer
to reason at all times on single values of the global variable <V>.

There are four limitations to the value partitioning:

1. Splits can only be performed on integer expressions. Pointers and floating-point values
are not supported yet.

2. The expression on which the split is done must evaluate to a small set of integer values,
in order to limit the cost of the partitioning and ensure the termination of the analysis.
If the number of possible values infered for the expression exceeds a defined limit, Eva
cancels the split and emits a warning. The limit is 100 by default and can be changed
with option -eva-split-limit <n>.

3. While the number of simultaneous splits (whether local with annotations or global
through command line) is not bounded, there can be only one split per expression. If
two split annotations use the same expression, only the latest one encountered on the
path will be kept. Although it is a limitation, it can be used to define strategies where
a case-based reasoning is controlled accross the whole program.

4. When the expression is complex, the ability of Eva to reason precisely by cases depends
on the enabled abstract domains (see section 6.7) and their capability to learn from the
value of the expression. If Eva detects that the expression is too complex for the split to
be useful, it will cancel the split and warn the user.

82

6.6. CONTROLLING APPROXIMATIONS

6.6 Controlling approximations

6.6.1 Cutoff between integer sets and integer intervals

Option -eva-ilevel <n> is used to indicate the number of elements below which sets of
integers should be precisely represented as sets. Above the user-set limit, the sets are
represented as intervals with periodicity information, which can cause approximations.

Example:

1 #include "__fc_builtin.h"
2

3 int t[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31};
4

5 int main()
6 {
7 return t[Frama_C_interval(0, 11)];
8 }

With the default limit of 8 elements for sets of integers, the analysis of the program shows a
correct but approximated result:

__retres ∈ [2..31]

Studying the program, the user may decide to improve the precision of the result by adding
-eva-ilevel 16 to the command line. The analysis result then becomes:

__retres ∈ {2; 3; 5; 7; 11; 13; 17; 19; 23; 27; 29; 31}

6.6.2 Maximum number of precise items in arrays

Option -eva-plevel <n> is used to limit the number of elements in an array that can be
considered precisely during assignments. When assigning a value to an array element, if the
index is imprecise, it may be very costly to update each array element individually. Instead,
if the range of indices to be accessed is larger than plevel, some approximations are made and
a message is emitted:

[kernel] arrays.c:32:
more than 200(300) elements to enumerate. Approximating.

This message means that the array to be updated had 300 elements, and -eva-plevel was
set to 200 (the default value). In this case, it might be reasonable to increase the plevel to
300, especially if some alarms could be caused by the imprecision. In other cases, however,
there is little hope of obtaining a reasonable bound:

more than 200(0x20000000) elements to enumerate. Approximating.

In some cases, lowering the plevel can improve performance, but it is rarely a significant factor.
Most of the time, this option has little impact in the analysis, both in terms of precision and
performance. However, when dealing with large arrays and matrices, it is worth considering
its usage.

83

CHAPTER 6. PARAMETERIZING THE ANALYSIS

6.7 Advanced analyses

Starting from Frama-C Silicon, new analysis domains are available to improve the precision
on specific code constructs. They can (and probably should) be enabled at the beginning of
the analysis. Their only downside is that they increase the analysis time.

Restrictions:

• adding a new domain may interact with the slevel partitioning in unpredictable ways,
and new alarms may sometimes appear;

• the properties inferred by these domains cannot be easily viewed in the GUI; only a few
domains have their values printed in the Values tab.

However, the properties inferred by a specific domain at a program point may be inspected by
using the directive Frama_C_dump_each or Frama_C_domain_show_each in the analyzed source
code, and by enabling the log category of the given domain. These directives and domain log
categories are described in Section 9.3.

6.7.1 Symbolic equalities

Activating option -eva-equality-domain instructs Eva to perform a special analysis that
stores information about equalities found in the code. Those equalities may stem either
from conditions (e.g. if (x == y+1)), or assignments y = x+2;. Once an equality has been
inferred, it will be used when one of the expressions involved occurs later in the program.

int y = x+1;
// the equality y == x + 1 is inferred
if (y <= 2) {

// Thanks to the equality, x <= 1 is deduced
}

}

This domain should be activated by default. Indeed, the normalisation done by Frama-C for
expressions with side-effects introduces temporary variables, for which the equality domain is
useful to regain precision.

By default, the analysis is partially inter-procedural. At the end of a call, equalities inferred
in the called function are always propagated back to the caller. At the beginning of a
call, the option -eva-equality-through-calls controls which equalities from the caller are
propagated to the called function. Three global modes are available:

none No equality is propagated to called functions. Faster but less precise mode.

formals Default mode: only the equalities between the formal parameters and the actual
arguments of the call are used at the beginning of a function.

all All equalities from the call site are used when analyzing a called function. This slows
down the analysis, and should only be set for specific functions through the option
-eva-equality-through-calls-function.

84

6.7. ADVANCED ANALYSES

6.7.2 Reused left-values

Activating option -eva-symbolic-locations-domain instructs Eva to perform a special
analysis for reused left-values.

int t[10];

extern unsigned int u[10];

//@ requires i < 10;
void main(unsigned int i) {

if (u[i] < 8) {
t[u[i]] = 2;

}
}

On this code, Eva cannot represent precisely u[i], and “learns” nothing from the condition
u[i] < 8. Hence, Eva emits an alarm on the line t[u[i]] = 2, as it cannot prove that u[i] is
less than 10.

To allow learning information from such conditionals, the new analysis stores information
especially for u[i] itself. This analysis is of course correct in presence of pointers, in particular
when the left-value is written through an alias between two read accesses. All “compound”
left-values such as u[i], *p or q->t[i].v are handled.

Currently, the analysis is intra-procedural. The information known in the caller is not
propagated in the callee.

6.7.3 Gauges

Activating option -eva-gauges-domain instructs Eva to store relations between integer (or
pointer) variables modified by a loop, and the number of elapsed loop iterations. It is based
on the paper “The Gauge Domain: Scalable Analysis of Linear Inequality Invariants” [Ven12].

int y = 3;
int t[100];
int *p = &t[0];

for (int i=0; i<100; i++) {
y += 2; // y == 2*i + 5 holds. In particular, y <= 203
*p++ = i; // all accesses are in bound

}

This domain should be activated for programs in which finite loops increase multiple variables
simultaneously, in an affine way. It is not useful if the loop is fully unrolled by syntactic or
semantic means, or if the relation between variables is not affine (e.g. computing a square).

if (x++ <= 10) { ... }

// Transformed into

int tmp = x;
x++;
if (tmp <= 10) { // Nothing is learnt on x without the

// domain of equalities }

85

CHAPTER 6. PARAMETERIZING THE ANALYSIS

Currently, the analysis is intra-procedural only: no information flows from the caller to the
callee, or in the reverse direction. The relations inferred can only involve variables that are:

• local to a function (e.g. not a global), and not static;

• scalar (not a field of a struct, or a cell in an array).

Beware that the analysis works better when arithmetic overflows are reported as an alarm.
With the default options of Frama-C, this means that gauges can be inferred easily for signed
variables, but less so for unsigned ones. Indeed, the affine relations inferred by the domain
are no longer true once the variable exceeds e.g. INT_MAX and wraps. Code such as

unsigned int x = ...;
int y = ...;

while (--x > 0) {
y++;
[...]

}

cannot be analyzed precisely, because the relation between x and y is not affine.

6.7.4 Octagons

Activating option -eva-octagon-domain instructs Eva to infer relations between variables as
numerical constraints of the form l ≤ ±X ± Y ≤ u, where X and Y are program variables,
and l and u are constants.
These relations are then used to evaluate more precisely the possible values of an expression
involving X and Y , or to deduce a reduction of the possible values of X from a reduction of
the possible values of Y .
The following code is a minimal working example that illustrates the precision improvement
provided by the octagon domain.

void main (int y) {
int k = Frama_C_interval(0, 10);
int x = y + k; // x - y ∈ [0..10]
int r = x + 3 - y; // r ∈ [-7..3]
int t;
if (y > 15)

t = x; // t ∈ [6..∞]
}

Currently, the octagon domain is fast but has two strong limitations:

• The domain only infers relations between scalar variables of integer types. It ignores
pointers, arrays and structure fields.

• The domain only infers relations between pairs of variables occurring in the same
instruction, as x = y + k; or if (x < y + k). If an instruction involves 3 variables or
more, relations are inferred for each pair of variables.

The domain is intraprocedural by default: the inferred relations are local to the current
function and are lost when entering a function call or returning to its caller.

86

6.7. ADVANCED ANALYSES

The option -eva-octagon-through-calls makes the octagon domain interprocedural, which
is a more precise but slower mode where the inferred relations are propagated through function
calls. The analysis of a function can then use the relations inferred in the callers, and at the
end, the inferred relations are propagated back to the caller.

6.7.5 Bitwise values

This analysis is experimental.
Activating option -eva-bitwise-domain instructs Eva to store bitwise information in com-
plement to the usual, interval-based, information. This is mostly useful for programs that use
bitwise operators: &, |, ^ and ~, especially with bit-masks constants. The following program
is analyzed more precisely thanks to the bitwise domain (with -eva-slevel 2).

int isTopBit(unsigned something)
{

//@ assert something >= 0x80000000 || something < 0x80000000;
unsigned topBitOnly = something & 0x80000000;
something ^= topBitOnly;
if (something & 0x80000000) // More precision on this conditional { ... }

}

The current analysis is fully inter-procedural. All variables (including aggregates and arrays)
are handled. However, for conciseness, the domain tries not to track information which is
redundant with the intervals-based domain. In some cases, the domain is able to infer precise
information on the bits of a pointer address.

6.7.6 Binding to APRON

These bindings are proofs-of-concept.
They require the apron library, provided by opam.
Eva features a very experimental binding to the numerical domains of the APRON library
[JM09]. Assuming Frama-C has been compiled with support for Apron, the corresponding
options are:

-eva-apron-box : boxes/intervals

-eva-apron-oct : octagons

-eva-polka-equalities : linear equalities

-eva-polka-loose : loose polyhedra

-eva-polka-strict : strict polyhedra

The analysis is fully interprocedural. However, the binding is currently intended as a proof-
of-concept, and should probably be used on small examples–not on full-scale programs. In
particular, the following restrictions apply to the current implementation:

• only integer variables are tracked (pointers, floating-point values, and array cells or
aggregate fields are ignored);

• variables are not packed, which may result in a very large number of tracked variables.
Since relational domains are usually costly (cubic complexity for octagons, exponential
for polyhedra), this may result in very long analyses and/or massive memory usage.

87

CHAPTER 6. PARAMETERIZING THE ANALYSIS

6.7.7 Numerors

This domain is experimental and should only be used on toy examples.
It requires the mlgmpidl library with support of MPFR, provided by opam.
Eva provides a domain inferring ranges for the absolute and relative errors stemming from
floating-point computations. This domain can be enabled by the option -eva-numerors-domain.
The theory and core principles underlying this domain are described in [JPV18].
The errors inferred by the domain can be seen in the GUI, alongside the other values inferred
by Eva. For each selected floating-point variable or expression, the numerors domain shows
over-approximations of:

• its real value, computed by over-approximation of the mathematical semantics;

• its floating-point value, computed accordingly to the IEEE 754 standard;

• its absolute error, i.e. the possible difference between the real value and the floating-point
value;

• its relative error, i.e. the absolute error divided by the real value.

Current limitations The numerors domain does not handle loops, unless they are com-
pletely unrolled by the analysis. Floating-point computations occurring within loops are
interpreted as leading to any possible value.
Moreover, the domain only infers error values for scalar variables. Structure and union fields,
as well as arrays, are ignored.

6.8 Non-termination

The parameterization of Eva can lead to situations where the analysis stops abruptly due to
the absence of valid states. For instance, some primitives (section 9) may detect an invalid
precondition and stop propagating the current callstack, or a loop may become infinite if the
exit condition depends on invalid accesses.
The alarms generated in these situations may become Unknown if there are other callstacks
for which the analysis succeeded. Therefore, during the initial part of an analysis, they may
blend in with the sets of possibly false alarms. However, priority should be given to these
alarms, since they are likely to indicate an incorrect parameterization.
To help identify these situations, the Nonterm plug-in has been developed. It runs after Eva,
by adding -then -nonterm at the end of the command-line.
Nonterm emits warnings about non-terminating instructions in functions analyzed by Eva. It
operates on a per-callstack basis, and therefore displays more precise results than a visual
inspection on the GUI; in particular, if there are both terminating and non-terminating
callstacks for a given statement, the GUI will not color their successors red (because of the
terminating callstacks), but Nonterm will emit warnings for the non-terminating ones.
Nonterm only reports situations where Eva is able to guarantee non-termination. Because its
purpose is to prioritize warnings that are likely to indicate parameterization errors, it does
not consider callstacks where termination seems possible.

88

6.9. ANALYSIS SCRIPTS AND TEMPLATES

To avoid too much noise, you can use -nonterm-ignore f1,f2,f3,... to indicate functions
that should not be reported by the plug-in. By default, abort and exit are always ignored
(you can override this via -nonterm-ignore=-abort,-exit).
Also, option -nonterm-dead-code enables the emission of warnings related to syntactically
unreachable code, e.g. instructions that are unreachable due to gotos or unconditional breaks.
This can however generate a substantial amount of warnings and is rarely needed in practice.

6.9 Analysis scripts and templates

Setting up an analysis is a process that takes some time. Iterating an analysis (changing
the parametrization, adding annotations, etc.) is a process which can greatly benefit from a
structured approach, for instance to avoid reparsing the sources when only Eva-related options
are modified. For both tasks, Frama-C offers some templates and scripts to help the user.
The files themselves are located mostly in Frama-C’s share directory (FRAMAC_SHARE, when
running frama-c-config), but they can be accessed via the frama-c-script command,
among which we cite:

make-template : creates a Makefile template in the current directory. This template follows
the recommended three-step setup (section 6.1), tracks dependencies (e.g. re-running
parsing when source files are modified) and offers useful targets for the user.

find-fun : useful to find which source files declare/define a given function; for instance, when
there are multiple main functions.

flamegraph : opens a flamegraph6 (a graphical profiling tool) of the analysis performed by
Eva.

Running frama-c-script without arguments outputs the list of currently-available com-
mands7.

6See https://github.com/brendangregg/FlameGraph for details about flamegraphs.
7The list of commands is liable to change for each Frama-C release.

89

Chapter 7

Inputs, outputs and dependencies

Frama-C can compute and display the inputs (memory locations read from), outputs (memory
locations written to), and precise dependencies between outputs and inputs, for each function.
These computations use Eva for resolving array indices and pointers.

7.1 Dependencies

An example of dependencies as obtained with the option -deps is as follows:
y FROM x; z (and SELF)

This clause means that in this example, the variable y may have changed at the end of the
function, and that the variables x and z are used in order to compute the new value of y.
The text “(and SELF)” means that y might have been modified, and that if it had, its new
value would only depend on x and z, whereas the absence of such a mention means that y has
necessarily been overwritten.
The dependencies computed by -deps hold if and when the function terminates. The list of
variables given for an output y contains all variables whose initial values can influence the
final value of y.
Dependencies are illustrated in the following example:

1 int b,c,d,e;
2

3 void loop_branch(int a)
4 {
5 if (a)
6 b = c;
7 else
8 while (1) d = e;
9 }

91

CHAPTER 7. INPUTS, OUTPUTS AND DEPENDENCIES

The dependencies of function loop_branch are b FROM c, which means that when the function
terminates, the variable b has been modified and its new value depends on c. The variables
d and e do not appear in the dependencies of loop_branch because they are only used in
branches that do not terminate. A function for which the analyzer is able to infer that it does
not terminate has empty dependencies.
The set of variables that appear on the right-hand side of the dependencies of a function
are called the “functional inputs” of this function. In the example below, the dependency of
double_assign is a FROM c. The variable b is not a functional input because the final value of
a depends only on c.

1 int a, b, c;
2

3 void double_assign(void)
4 {
5 a = b;
6 a = c;
7 }

The dependencies of a function may also be listed as NO EFFECTS. This means that the function
has no effects when it terminates. There are various ways this can happen; in the example
below, all three functions f, g and h get categorized as having no effects. Function f does
it the intuitive way, by not having effects. Function g and h get categorized as not having
effects in a more subtle way: the only executions of g that terminate have no effects. Function
h never terminates at all, and neither *(char*)0 nor x and y need be counted as locations
modified on termination.

1 int x, y;
2

3 void f(void)
4 {
5 0;
6 }
7

8 void g(int c)
9 {

10 if (c)
11 {
12 x = 1;
13 while (x);
14 }
15 }
16

17 void h(void)
18 {
19 x = 1;
20 y = 2;
21 *(char*)0 = 3;
22 }

7.2 Imperative inputs

The imperative inputs of a function are the locations that may be read during the execution
of this function. The analyzer computes an over-approximation of the set of these locations

92

7.3. IMPERATIVE OUTPUTS

with the option -input. For the function double_assign of the previous section, Frama-C
offers b; c as imperative inputs, which is the exact answer.
A location is accounted for in the imperative inputs even if it is read only in a branch that does
not terminate. When asked to compute the imperative inputs of the function loop_branch of
the previous section, Frama-C answers c; e which is again the exact answer.
Variant -input omits function parameters from the displayed inputs.
Variant -input-with-formals leaves function parameters in the displayed inputs (if they
indeed seem to be accessed in the function).

7.3 Imperative outputs

The imperative outputs of a function are the locations that may be written to during the
execution of this function. The analyzer computes an over-approximation of this set with
the option -out. For the function loop_branch from above, Frama-C provides the imperative
outputs b; d which is the exact answer.
Variant -out includes local variables, and variant -out-external omits them.

7.4 Operational inputs

The name “operational inputs of a function” is given to the locations that are read without
having been previously written to. These are provided in two flavors: a superset of locations
that can be thus read in all terminating executions of the function, and a superset of the
locations thus read including non-terminating executions.
Operational inputs can for instance be used to decide which variables to initialize in order
to be able to execute the function. Both flavors of operational inputs are displayed with the
option -inout, as well as a list of locations that are guaranteed to have been over-written
when the function terminates; the latter is a by-product of the computation of operational
inputs that someone may find useful someday.

1 int b, c, d, e, *p;
2

3 void op(int a)
4 {
5 a = *p;
6 a = b;
7 if (a)
8 b = c;
9 else

10 while (1) d = e;
11 }

This example, when analyzed with the options -inout -lib-entry -main op, is found to have
on termination the operational inputs b; c; p; S_p[0] for function op. Operational inputs
for non-terminating executions add e, which is read inside an infinite loop, to this list.
Variable p is among the operational inputs, although it is not a functional input, because it is
read (in order to be dereferenced) without having been previously overwritten. The variable
a is not among the operational inputs because its value has been overwritten before being
read. This means that an actual execution of the function op requires to initialize p (which

93

CHAPTER 7. INPUTS, OUTPUTS AND DEPENDENCIES

influences the execution by causing, or not, an illicit memory access), whereas on the other
hand, the analyzer guarantees that initializing a is unnecessary.

94

Chapter 8

Annotations

Frama-C’s language for annotations is ACSL. Only a subset of the properties that can be
expressed in ACSL can effectively be of service to or be checked by the Eva plug-in.

8.1 Preconditions, postconditions and assertions

8.1.1 Truth value of a property

Each time it encounters a precondition, postcondition or user assertion, the analyzer evaluates
the truth value of the property in the state it is propagating. The result of this evaluation
can be:

• valid, indicating that the property is verified for the current state;

• invalid, indicating that the property is certainly false for the current state;

• unknown, indicating that the imprecision of the current state and/or the complexity of
the property do not allow to conclude in one way or the other.

If a property obtains the evaluation valid every time the analyzer goes through it, this means
that the property is valid under the hypotheses made by the analyzer.
When a property evaluates to invalid for some passages of the analysis, it does not necessarily
indicate a problem: the property is false only for the execution paths that the analyzer was
considering these times. It is possible that these paths do not occur for any real execution.
The fact that the analyzer is considering these paths may be a consequence of a previous
approximation. However, if the property evaluates to invalid for all passages of the analysis,
then the code at that point is either dead or always reached in a state that does not satisfy
the property, and the program should be examined more closely.

95

CHAPTER 8. ANNOTATIONS

The analysis log contains property statuses relative to the state currently propagated (this is
to help the user understand the conditions in which the property fails to verify). The same
property can appear several times in the log, for instance if its truth value is valid for some
passages of Eva and invalid for others.1

The graphical interface also displays a summary status for each property that encompasses
the truth values that have been obtained during all of the analysis.

8.1.2 Reduction of the state by a property

After displaying its estimation of the truth value of a property P , the analyzer uses P to
refine the propagated state. In other words, the analyzer relies on the fact that the user will
establish the validity of P through other means, even if it itself is not able to ensure that the
property P holds.
Let us consider for instance the following function.

1 int t[10],u[10];
2

3 void f(int x)
4 {
5 int i;
6 for (i=0; i<10; i++)
7 {
8 //@ assert x >= 0 && x < 10;
9 t[i] = u[x];

10 }
11 }

frama-c -eva -eva-slevel 12 -lib-entry -main f reduction.c

Eva emits the following two warnings:
reduction.c:8: warning: Assertion got status unknown.
reduction.c:8: warning: Assertion got status valid.

The first warning is emitted at the first iteration through the loop, with a state where it is
not certain that x is in the interval [0..9]. The second warning is for the following iterations.
For these iterations, the value of x is in the considered interval, because the property has
been taken into account at the first iteration and the variable x has not been modified since.
Similarly, there are no warnings for the memory access u[x] at line 9, because under the
hypothesis of the assertion at line 8, this access may not cause a run-time error. The only
property left to prove is therefore the assertion at line 8.

Case analysis
When using slevel-based unrolling (section 6.4.1), if an assertion is a disjunction, then the
reduction of the state by the assertion may be computed independently for each disjunct. This
multiplies the number of states to propagate in the same way that analyzing an if -then-else
construct does. Again, the analyzer keeps the states separate only if the limit (the numerical
value passed to option -eva-slevel) has not been reached yet in that point of the program.
This treatment often improves the precision of the analysis. It can be used with tautological
assertions to provide hints to the analyzer, as shown in the following example.

1Conversely, as Frama-C’s logging mechanism suppresses the printing of identical message, the property is
printed only once with each status.

96

8.1. PRECONDITIONS, POSTCONDITIONS AND ASSERTIONS

1 #include "__fc_builtin.h"
2

3 int main(void)
4 {
5 int x = Frama_C_interval(-10, 10);
6 //@ assert x <= 0 || x >= 0 ;
7 return x * x;
8 }

frama-c -eva -eva-slevel 2 sq.c

The analysis finds the result of this computation to be in [0..100]. Without the option
-eva-slevel 2, or without the annotation on line 4, the result found is [-100..100]. Both are
correct. The former is optimal considering the available information and the representation of
large sets as intervals, whereas the latter is approximated.

Limitations
Attention should be paid to the following two limitations:

• a precondition or assertion only adds constraints to the state, i.e. always makes it
smaller, not larger. In particular in the case of a precondition for a function analyzed
with option -lib-entry, the precondition can only reduce the generic state that the
analyzer would have used had there not been an annotation. It cannot make the state
more general. For instance, it is not possible to use a precondition to add more aliasing
in an initial state generated by option -lib-entry, because it would be a generalization,
as opposed to a restriction;

• the interpretation of an ACSL formula by Eva may be approximated. The state effectively
used after taking the annotation into account is a superset of the state described by the
user. In the worst case (for instance if the formula is too complicated for the analyzer
to exploit), this superset is the same as the original state. In this case, it appears as if
the annotation is not taken into account at all.

The two functions below illustrate both of these limitations:
1 //@ requires a == &b || a == &c;
2 int generalization(int *a, int b, int c)
3 {
4 b = 5;
5 c = 4;
6 *(int*)a = 3;
7 return b;
8 }
9

10 //@ requires d != 0;
11 int not_reduced(int d)
12 {
13 return d;
14 }

If the analyzer is launched with options -lib-entry -main generalization, the initial state
generated for the analysis of function generalization contains a pointer for the variable a in
a separated memory region.

97

CHAPTER 8. ANNOTATIONS

The precondition a == &b || a == &c will probably not have the effect expected by the user:
the intention appears to be to generalize the initial state, which is not possible.
If the analyzer is launched with options -main not_reduced, the result for variable d is the
same as if there was no precondition. The interval computed for the returned value, [--..--],
seems not to take the precondition into account because the analyzer cannot represent the set
of non-zero integers. The set of values computed by the analyzer remains correct, because it is
a superset of the set of the value that can effectively happen at run-time with the precondition.
When an annotation appears to be ignored for the reduction of the analyzer’s state, it is not
in a way that could lead to incorrect results.

8.1.3 An example: evaluating postconditions

To treat the postconditions of a function, the analysis proceeds as follows. Let us call B the
memory state that precedes a call to a function f , and A the state before the post-conditions2,
i.e the union of the states on all return statements. Postconditions are evaluated in succession.
Given a postcondition P , the analyzer computes the truth value V of P in the state A. Then:

• If V is valid, the analysis continues on the next postcondition, using state A.

• If V is unknown, the postcondition may be invalid for some states AI ⊂ A. The analyzer
attempts to reduce A according to P , as explained in section 8.1.2. The resulting state
AV is used to evaluate the subsequent postconditions. Notice that P does not necessarily
hold in AV , as reduction is not guaranteed to be complete.

• if V is invalid, the postcondition is invalid for all the real executions that are captured
by B, and reducing by P leads to an empty set of values. Thus, further postconditions
are skipped, and the analyzer assumes that the call did not terminate.
Notice that an invalid status can have three origins:

. The postcondition is not correct, i.e it does not accurately reflect what the body
of the function does. Either the postcondition or the body (or both!) can actually
be incorrect with respect to what the code is intended to do.

. The call to f never terminates, but the analyzer has not been able to deduce this
fact, due to approximations. Thus, the postcondition is evaluated on states A that
do not match any real execution.

. The entire call actually never takes place on a real execution (at least for the
states described by B). This is caused by an approximation in the statements that
preceded the call to f .

In all three cases, V is recorded by Frama-C’s kernel, for further consolidation.

8.2 Assigns clauses

An assigns clause in the contract of a function indicate which variables may be modified by
the function, and optionally the dependencies of the new values of these variables.
In the following example, the assigns clause indicates that the withdraw function does not
modify any memory cell other than p->balance. Furthermore, the final value of p->balance

2B and A stand respectively for before and after.

98

8.2. ASSIGNS CLAUSES

has been computed only through its initial value and the value of the parameter s. The
computation of p->balance indirectly requires reading p, as explained below.

1 typedef struct { int balance; } purse;
2

3 /*@ assigns p->balance \from p->balance, s, (indirect:p); */
4 void withdraw(purse *p,int s) {
5 p->balance = p->balance - s;
6 }

Direct and indirect from clauses Eva makes use of specifications that are more precise
than the ACSL language specifies in that it establishes a distinction between direct and indirect
dependencies. A dependency is direct if the value contained in the dependency impacts the
value of the lvalue referred to in the assign clause; a dependency is indirect if the value is used
only in a conditional or to compute an address. Indirect dependencies are distinguished by
an “indirect” label; other dependencies are direct. See for instance the valid ACSL contract
below.

1 /*@ assigns *b \from a, (indirect:c), (indirect:b); */
2 void f_valid(int a, int *b, int c){
3 if (c) {
4 *b = a;
5 }
6 else
7 *b = 0;
8 }

An assigns clause can describe the behavior of functions whose source code is not part of the
analysis project. This happens when the function is really not available (we call these “library
functions”) or if it was removed on purpose because it did something that was complicated
and unimportant for the analysis at hand.
Eva uses the assigns clauses provided for library functions. It does not take advantage of
the assigns clauses of functions whose implementation is also available, except when option
-eva-use-spec is used (section 6.3.9). The option -from-verify-assigns can be used to check
the assigns clauses, when dependencies computation is also activated (section 7.1).
The effect of an assigns clause assigns loc \from locD, (indirect:locI) on a memory state
S are modelled by the analyzer as follows:

1. the contents of locD in S are evaluated into a value v;

2. v is generalized into a value v′. Roughly speaking, scalar values (integer or floating-point)
are transformed into the set of all possible scalar values. Pointer values are transformed
into pointers on the same memory base, but with a completely imprecise offset.

3. loc is evaluated into a set of locations L;

4. each location l ∈ L of S is updated so that it contains the values present at l in S, but
also v′. This reflects the fact that l may have been overwritten.

5. furthermore, if loc and locD are distinct locations in S, the locations in L are updated
to contain exactly v′. Indeed, in this case, loc is necessarily overwritten.3

3A correct assigns clause for a function that either writes y into x, or leaves x unchanged, is
assigns x \from y, x;.

99

CHAPTER 8. ANNOTATIONS

Notice that the values written in loc1 are entirely determined by locD and S. Eva does not
attempt to “invent” generic values, and it is very important to write \from clauses that are
sufficiently broad to encompass all the real behaviors of the function.

Assigns clauses and derived analyses For the purposes of options -deps, -input, -out,
and -inout, the assigns clauses provided for library functions are assumed to be accurate
descriptions of what the function does. For the latter three options, there is a leap of faith in
the reasoning: an assigns clause only specifies functional outputs and inputs. As an example,
the contract assigns \nothing; can be verified for a function that reads global x to compute a
new value for global y, before restoring y to its initial value. Looking only at the prototype and
contract of such a function, one of the -input, -out, or -inout computation would mistakenly
assume that it has empty inputs and outputs. If this is a problem for your intended use of
these analyses, please contact the developers.

Postconditions of library functions When evaluating a function contract, Eva handles
the evaluation of a postcondition in two different ways, depending on whether the function f
being evaluated has a source body or just a specification.

Functions with a body First, the body of f is evaluated, in the memory state that precedes
the call. Then the analyzer evaluates the postconditions and computes their truth values,
following the approach outlined in section 8.1.3. The memory state obtained after the
evaluation of the body may also be reduced by the postconditions. After the evaluation
of each property, its truth value for this call is printed on the analysis log.

Functions with only a specification The analyzer evaluates the assigns ... \from ...
clauses of f , as explained at the beginning of this section. This results in a mem-
ory state S that corresponds to the one after the analysis of the hypothetical body of f .
Then, since postconditions cannot be proven correct without a body, they are assumed
correct, and Eva does not compute their truth values. Accordingly, no truth value is
output on the analysis log, except when we suspect the postcondition of being incorrect.
Although the analyzer does not use the postconditions to create the final memory state,
it interprets them in order to reduce. Hence, it becomes possible to constrain a posteriori
the very broad state S. A typical contract for a function successor4 would be

1 /*@ assigns \result \from x;
2 ensures \result == x + 1; */
3 int succ(int x);

Note that postconditions are used solely to reduce S, but cannot be used to express the
changes of a variable; thus it is very important to write assigns ... \from ... clauses
that are correct (broad enough). Without them, the postcondition would apply on the
initial values of the variable when the function is called, not on values produced by the
function. For instance, forgetting to write the assign clause for p in function f would
stop the evaluation (the postcondition of f is false if p is not assigned).

1 int y; int *p;
2 /*@ ensures p == &y; */
3 void f(void);
4 void main(void){ f(); }

4Ignoring problems related to integer overflow.

100

8.3. SPECIFICATIONS FOR FUNCTIONS OF THE STANDARD LIBRARY

Similarly, forgetting the \from clause in the contract for g would stop the evaluation
(without knowing where the value of p comes from, Eva assumes that it points to a
constant address).

1 int y; int *p;
2 /*@ assigns p \from q;
3 ensures p == &y; */
4 void g(int *q);
5 void main(void){ g(&y); }

A tricky example is the specification of a function that needs to return the address of a
global variable.

1 int x;
2

3 void *addr_x(); // Returns (void*)&x;

The specification assigns \result \from &x; is unfortunately incorrect, as \from clauses
can only contain lvalues. Instead, the following workaround can be used:

1 int x;
2 int * const __p_x = &x;
3

4 /*@ assigns \result \from __p_x;
5 ensures \result == &x; */
6 void *addr_x();

8.3 Specifications for functions of the standard library

Basic implementations are provided for some functions of the C standard library, within the
files $SHARE/frama-c/libc/*.c. Specifications are also available for those functions in the
files $SHARE/frama-c/libc/**.h. When analyzing a program where both the specification
and the implementation are available, the implementation “takes precedence”. That is,
specifications are completely ignored by Eva. Indeed, the analysis of the body is usually
more precise. Also, in some cases, the specifications use involved ACSL constructs that are
currently not understood by Eva.
It is possible to change this behavior, and to analyze both the implementation and the
specification, using option -eva-no-skip-stdlib-specs. Beware that when this option is not
set, even user-written specifications are skipped (for functions of the standard library).

101

Chapter 9

Primitives

It is possible to interact with the analyzer through insertion in the analyzed code of calls to
pre-defined functions.

There are three reasons to use primitive functions: emulating standard C library functions,
transmitting analysis parameters to the plug-in, and observing results of the analysis that
wouldn’t otherwise be displayed.

9.1 Standard C library

The application under analysis may call functions such as malloc, strncpy, atan,. . . The
source code for these functions is not necessarily available, as they are part of the system
rather than of the application itself. In theory, it would be possible for the user to give a C
implementation of these functions, but those implementations might prove difficult to analyze
for the Eva plug-in. A more pragmatic solution is to use a primitive function of the analyzer
for each standard library call that would model as precisely as possible the effects of the call.
Currently, the primitive functions available this way are all inspired from the POSIX interface.
It would however be possible to model other system interfaces. Existing primitives are
described in the rest of this section.
Builtins are enabled by default. The currently available builtins include some string functions
(e.g. strlen and strnlen), some floating-point mathematical functions (e.g. sin and pow), and
functions for dynamic memory allocation (malloc, calloc, realloc and free). The complete
list of builtins for Eva (including builtins unrelated to the standard C library) is presented in
section 9.4. You can also use option -eva-builtins-list to obtain the list of function names
mapped to builtins, as well as the list of all builtins.
You can also manually specify each builtin to be used with option -eva-builtin, which takes
pairs of functions: the function to be replaced, and the name of the builtin that replaces it.

103

CHAPTER 9. PRIMITIVES

For instance, option -eva-builtin malloc:Frama_C_malloc_fresh,free:Frama_C_free enables
builtins for the malloc and free functions of the standard library. Note that even if a builtin
is specified this way, the function still needs to be declared to be used. Also, note that
existing implementations are ignored for functions replaced with builtins. If you want Eva
to use your own definition of a function such as strlen, for instance, you need to use option
-eva-no-builtins-auto. You can then manually enable -eva-builtin for each builtin that you
do wish to activate.

Specifications for replaced functions. For the verification to be complete, functions
replaced by builtins must come with the preconditions and assigns /from clauses1 that accom-
pany them in the standard library of Frama-C. Eva will then evaluate them, and set validity
statuses on them (Section 8). When standard headers are used, this is done automatically. If
you use option -no-frama-c-stdlib, and/or write yourself the prototypes of the C functions,
you must duplicate the relevant part of the specification. For most functions, this is immedi-
ate. However, for a few functions –such as string-related ones– you must also duplicate the
definitions of the logic predicates used to write the preconditions, as shown below:

#define __PUSH_FC_STDLIB #pragma fc_stdlib(push,__FILE__)
#define __POP_FC_STDLIB #pragma fc_stdlib(pop)

__PUSH_FC_STDLIB

/*@ axiomatic StrLen {
@ logic real strlen{L}(char *s) reads s[0..];
@ }

*/

/*@ predicate valid_read_string{L}(char *s) =
@ 0 <= strlen(s) && \valid_read(s+(0..strlen(s)));

*/

__POP_FC_STDLIB

/*@ requires valid_read_string(str);
assigns \result \from str[0..]; */

size_t strlen(const char * str);

9.1.1 malloc, calloc, realloc and free functions

Several builtins for modeling dynamic allocation are available in Frama-C. Different variants
are provided to allow precise results when possible, and convergence (termination) when
needed. Some differences between the strong and weak bases allocated by these builtins are
explained in section 5.6.4.

Note that function free has a single builtin for both cases.

Generally speaking, the safest approach is to start with the builtins on the left (weak), to
ensure that the analysis will terminate. If the results are imprecise, and the allocation function
is not called inside a loop, then the strong variant may be tried. If you are mistaken, and the
analysis starts diverging, it will print (by default) several messages of this form:

1All other kind of clauses, including post-conditions, are ignored.

104

9.2. PARAMETERIZING THE ANALYSIS

C library function Weak (always terminates) Strong (more precise)
malloc Frama_C_malloc_by_stack Frama_C_malloc_fresh
calloc Frama_C_calloc_by_stack Frama_C_calloc_fresh
realloc Frama_C_realloc Frama_C_realloc_multiple
free Frama_C_free

Table 9.1: Frama-C builtins for dynamic allocation functions

[eva] allocating variable __malloc_main_l42_2981
[eva] allocating variable __malloc_main_l42_2982

This indicates that new bases are being created. You must then manually interrupt the
analysis and either unroll the loop entirely (see Section 6.4.1) or use a weak variant.
By default, weak builtins are used, but usage of -eva-builtin takes precedence over preexisting
associations. Another possibility is to call e.g. Frama_C_malloc_fresh manually, for the
allocations that are guaranteed to occur a finite number of times.

Multiple locations per callstack Option -eva-mlevel (default 0) sets the maximum
number of calls to malloc (and similar functions) per call stack for which the weak version of
the builtins will return a precise fresh location. Afterwards, the locations will be reused to
ensure termination of the analysis – but leading to spurious aliasing and possible imprecision.
In other words, setting -eva-mlevel N means that up to N + 1 different locations will be
created for each call stack. This allows, for instance, loops with known bounds ≤ N to remain
precise, while ensuring termination for other loops.

Memory allocation failure By default, the memory allocation builtins in Eva consider
that the allocation may fail, thus NULL is always returned as a possible value. To change this
behavior (supposing that these functions never fail), use option -eva-no-alloc-returns-null.

9.2 Parameterizing the analysis

9.2.1 Adding non-determinism

The following functions, declared in share/libc/__fc_builtin.h, allow to introduce some
non-determinism in the analysis. The results given by Eva are valid for all values proposed
by the user, as opposed to what a test-generation tool would typically do. A tool based
on testing techniques would indeed necessarily pick only a subset of the billions of possible
entries to execute the application.

int Frama_C_nondet(int a, int b);
/* returns either a or b */

void *Frama_C_nondet_ptr(void *a, void *b);
/* returns either a or b */

int Frama_C_interval(int min, int max);
/* returns any value in the interval from min to max inclusive */

float Frama_C_float_interval(float min, float max);

105

CHAPTER 9. PRIMITIVES

/* returns any value in the interval from min to max inclusive */

double Frama_C_double_interval(double min, double max);
/* returns any value in the interval from min to max inclusive */

The implementation of these functions might change in future versions of Frama-C, but their
types and their behavior will stay the same.
Example of use of the functions introducing non-determinism:

1 #include "__fc_builtin.h"
2

3 int A,B,X;
4 void main(void)
5 {
6 A = Frama_C_nondet(6, 15);
7 B = Frama_C_interval(-3, 10);
8 X = A * B;
9 }

With the command below, the obtained result for variable X is [-45..150],0%3.
frama-c -eva ex_nondet.c .../share/libc/__fc_builtin.c

The inclusion of .../share/libc/__fc_builtin.c is only required when using the functions
Frama_C_float_interval and Frama_C_double_interval. Otherwise, including the file __fc_builtin.h
is sufficient.
Note that reads of volatile variables also return a non-deterministic value.

9.3 Observing intermediate results

In addition to using the graphical user interface, it is also possible to obtain information
about the value of variables at a particular point of the program in log files. This is done
by inserting at the relevant points in the source code calls to the functions described below.
These functions have no effect on the results of the analysis; in particular, no alarm is ever
emitted on their calls, even when the evaluation of an argument could fail.
Currently, these functions all have an immediate effect, i.e they display the state that the
analyzer is propagating at the time it reaches the call. Thus, these functions might expose
some undocumented aspects of the behavior of the analyzer. This is especially visible when
they are used together with semantic unrolling (see section 6.4.1). Displayed results may be
counter-intuitive to the user. It is recommended to attach a greater importance to the union
of the values displayed during the whole analysis than to the particular order in which the
subsets composing these unions are propagated by the analyzer.

9.3.1 Displaying the value of an expression

The values of some expressions expr1, expr2. . . during the analysis can be displayed with
a call to the function Frama_C_show_each_name(expr1, expr2...). They are displayed each
time the analyzer reaches the call.
The place-holder “_name” can be removed or replaced by an arbitrary identifier. This identifier
will appear in the output of the analyzer along with the value of the argument. Different

106

9.3. OBSERVING INTERMEDIATE RESULTS

Domain Log category Ref

Symbolic equalities d-eq 6.7.1

Symbolic locations d-symblocs 6.7.2

Gauges d-gauges 6.7.3

Octagons d-octagon 6.7.4

Bitwise d-bitwise 6.7.5

Apron binding d-apron 6.7.6

Numerors d-numerors 6.7.7

Figure 9.1: Log categories for additional domains

identifiers can be used to differentiate each call of these functions, as shown in the following
example:

void f(int x)
{

int y;
y = x;
Frama_C_show_each(x);
Frama_C_show_each_y(y);
Frama_C_show_each_delta(y-x);
...

}

Potential alarms on the arguments of these functions (e.g. an overflow in the computation of
y-x) are not emitted. This is by design.

9.3.2 Displaying the entire memory state

The memory states inferred at a program point can be displayed with a call to the function
Frama_C_dump_each(). The current state is displayed each time the analyzer reaches the call.

The internal states of each additional domain described in Section 6.7 are also displayed if the
domain’s log category has been enabled through the option -eva-msg-key category, where
category is the log category of the domain, shown in Figure 9.1.

9.3.3 Displaying internal properties about expressions

The internal properties inferred by each domain about some expressions expr1, expr2. . . can
be displayed with a call to Frama_C_domain_show_each(expr1, expr2...). They are displayed
each time the analyzer reaches the call.

By default, only the internal representation of variables by the main domain (see Section 3.1)
are shown. The properties inferred by each additional domain are also printed if the domain’s
log category has been enabled through the option -eva-msg-key category, where category
is the log category of the domain, shown in Figure 9.1. The information printed by the
additional domains is currently very limited.

107

CHAPTER 9. PRIMITIVES

9.4 Table of builtins

This table briefly summarizes all builtins present in Eva, with a short description of their
behavior.

9.4.1 Floating-point operations

Generally speaking, all functions mentioned below are the counter-part of the standard library
function of the same name, minus the Frama_C_ prefix.

Floating-point builtins
Frama_C_sqrt Frama_C_cos Frama_C_sin Frama_C_log Frama_C_log10
Frama_C_exp Frama_C_ceil Frama_C_floor Frama_C_round Frama_C_trunc
Frama_C_atan2 Frama_C_pow Frama_C_fmod

Equivalent builtins exist for 32-bit float computations, with a name suffixed by f.

9.4.2 String operations

Builtins for functions of the string.h standard header.

String manipulation builtins
Frama_C_memchr Frama_C_rawmemchr Frama_C_strchr
Frama_C_strlen Frama_C_strnlen

rawmemchr is a GNU extension to standard C.

9.4.3 Memory manipulation

Builtins for the C standard library functions memcpy, memmove and memset exist, but they are
not available in the open-source release of Frama-C.
Please contact us if you would like to use them for academic and/or commercial purposes.

9.4.4 Dynamic allocation

These builtins are already described in section 5.6.4. They are listed here for completeness.

Dynamic memory allocation builtins
Frama_C_alloc_by_stack Frama_C_vla_alloc_by_stack Frama_C_malloc_fresh
Frama_C_calloc_by_stack Frama_C_calloc_fresh Frama_C_free
Frama_C_realloc Frama_C_realloc_multiple Frama_C_vla_free

9.4.5 State-splitting builtins

The builtins below can be used to “split” abstract values in multiple separate intervals, as if a
disjunction had been written (section 8.1.2). They take as first argument the expression on
which to split, and as second argument the maximum admissible cardinality of the result, i.e.
the maximum number of distinct abstract states that will be created. (See below.)

108

9.4. TABLE OF BUILTINS

Splitting builtins
Frama_C_builtin_split Frama_C_builtin_split_pointer Frama_C_builtin_split_all

The builtins can only split on lvalues with pointer or integer type. The first argument of the
three builtins must be an lvalue l, or a cast on a lvalue.

• Frama_C_builtin_split will split on the contents of l itself;

• Frama_C_builtin_split_pointer will split on the contents of p if l is of the form *p, p->o
or (*p)[i];

• Frama_C_builtin_split_all will split on all the lvalues present in l, including l itself,
e.g. i, q, *q, p and p->f[i][*q] when called on p->f[i][*q]. Of course, this may create
many states.

If the value(s) to split on has/have a greater cardinality than the second argument of the
builtins, the split will not be performed. Note that sufficient -slevel (Section 6.4.1) must be
available to propagate those states. The builtin will not be able to warn that all slevel has
been consumed, and that the split will be inoperative. The second family of builtins can be
used to compute the cardinality.

Cardinality builtins
Frama_C_abstract_cardinal Frama_C_abstract_min Frama_C_abstract_max

Prototypes for those builtins can be found in __fc_builtin.h. Frama_C_abstract_cardinal
returns 12 on [6..36],0%3, while Frama_C_abstract_min and Frama_C_abstract_max return 6
and 36 respectively.

109

Chapter 10

FAQ

Well, for some value of “frequently”. . .

Q.1 Which option should I use to improve the handling of loops in my program?

Start with -eva-auto-loop-unroll. If automatic unrolling is not sufficient, the recommended
way is to use loop unroll annotations on a case by case basis. This is the most precise and
stable mechanism currently in Eva. It does have the drawback of requiring changes to the
source code, however.
If none of the above techniques is suitable, using -eva-slevel is the next best approach.
Compared to the previous ones, this option is more costly, often hard to predict, and can only
be specified globally or at the function level (via -eva-slevel-function), however it works
with loops that are built using gotos instead of for or while . It also improves precision when
evaluating if or switch conditionals (but it is consumed by them, which can be confusing for
the user).
Finally, there is an option from the Frama-C kernel, -ulevel, which performs a syntactic
modification of the analyzed source code. Its advantage is that, by explicitly separating
iteration steps, it allows using the graphical user interface to observe values or express
properties for a specific iteration step of the loop. However, the duplication of loop statements
and variables can clutter the code. Also, the transformation increases the size of the code in
the Frama-C AST and, for large functions, this has a significant impact in the analysis time.
For these reasons, -ulevel is seldom used nowadays.

Q.2 Alarms that occur after a true alarm in the analyzed code are not detected.
Is that normal? May I give some information to the tool so that it detects those
alarms?

The answers to these questions are “yes” and “yes”. Consider the following example:

111

CHAPTER 10. FAQ

1 int x,y;
2 void main(void)
3 {
4 int *p=NULL;
5 x = *p;
6 y = x / 0;
7 }

When analyzing this example, Eva does not emit an alarm on line 6. This is perfectly correct,
since no error occurs at run time on line 6. In fact, line 6 is not reached at all, since execution
stops at line 5 when attempting to dereference the NULL pointer. It is unreasonable to expect
Frama-C to perform a choice over what may happen after dereferencing NULL. It is possible to
give some new information to the tool so that analysis can continue after a true alarm. This
technique is called debugging. Once the issue has been corrected in the source code under
analysis — more precisely, once the user has convinced themselves that there is no problem at
this point in the source code — it becomes possible to trust the alarms that occur after the
given point, or the absence thereof (see next question).

Q.3 Can I trust the alarms (or the absence of alarms) that occur after a false
alarm in the analyzed code? May I give some information to the tool so that it
detects these alarms?

The answers to these questions are respectively “yes” and “there is nothing special to do”. If
an alarm might be spurious, Eva automatically goes on. If the alarm is really a false alarm,
the result given in the rest of the analysis can be considered with the same level of trust than
if Frama-C had not displayed the false alarm. One should however keep in mind that this
applies only in the case of a false alarm. Deciding whether the first alarm is a true or a false
one is the responsibility of the user. This situation happens in the following example:

1 int x,y,z,r,i,t[101]={1,2,3};
2

3 void main(void)
4 {
5 x = Frama_C_interval(-10,10);
6 i = x * x;
7 y = t[i];
8 r = 7 / (y + 1);
9 z = 3 / y;

10 }

Analyzing this example with the default options produces:

[eva:alarm] false_al.c:7: Warning: accessing out of bounds index. assert 0 <= i;
[eva:alarm] false_al.c:9: Warning: division by zero. assert y != 0;

On line 7, the tool is only capable of detecting that i lies in the interval -100..100, which is
approximated but correct. The alarm on line 7 is false, because the values that i can take at
run-time lie in fact in the interval 0..100. As it proceeds with the analysis, the plug-in detects
that line 8 is safe, and that there is an alarm on line 9. These results must be interpreted
thus: assuming that the array access on line 7 was legitimate, then line 8 is safe, and there is
a threat on line 9. As a consequence, if the user can convince themselves that the threat on
line 7 is false, they can trust these results (i.e. there is nothing to worry about on line 8, but
line 9 needs further investigation).

112

Acknowledgments

Dillon Pariente has provided helpful suggestions on this document since it was an early draft.
We are especially thankful to him for finding the courage to read it version after version.
Patrick Baudin, Richard Bonichon, Jochen Burghardt, Géraud Canet, Loïc Correnson, David
Delmas, Florent Kirchner, David Mentré, Benjamin Monate, Anne Pacalet, Julien Signoles
provided useful comments in the process of getting the text to where it is today.

113

BIBLIOGRAPHY

Bibliography

[CCK+] Loïc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto,
Armand Puccetti, Julien Signoles, and Boris Yakobowski. Frama-C User Manual.
CEA, List. Available at https://frama-c.com/download/frama-c-user-manual.
pdf.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In Ahmed Bouajjani and Oded Maler, editors, Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer
Science, pages 661–667. Springer, 2009.

[JPV18] Maxime Jacquemin, Sylvie Putot, and Franck Védrine. A reduced product of
absolute and relative error bounds for floating-point analysis. In Andreas Podel-
ski, editor, Static Analysis - 25th International Symposium, SAS 2018, Freiburg,
Germany, August 29-31, 2018, Proceedings, volume 11002 of Lecture Notes in
Computer Science, pages 223–242. Springer, 2018.

[RM07] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), August 2007.

[SAC+15] Julien Signoles, Thibaud Antignac, Loïc Correnson, Matthieu Lemerre, and Virgile
Prevosto. Frama-C Plug-in Development Guide, February 2015.
http://frama-c.com/download/frama-c-plugin-development-guide.pdf.

[Ven12] Arnaud Venet. The gauge domain: Scalable analysis of linear inequality invariants.
In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, volume 7358 of Lecture Notes in Computer Science, pages 139–154.
Springer, 2012.

115

https://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-plugin-development-guide.pdf

	Introduction
	First contact
	Run-time errors and the absence thereof
	From Value Analysis to Eva
	Other analyses based on Eva

	Tutorial
	Introduction
	Target code: Skein-256
	Using Eva for getting familiar with Skein
	Writing a test
	First try at an analysis using Eva
	Missing functions
	Interpreting the output of the analysis
	Increasing analysis precision in loops
	Increasing precision
	Inspecting alarms in the GUI
	Finding and fixing bugs

	Guaranteeing the absence of bugs
	Generalizing the analysis to arbitrary messages of fixed length
	Verifying functional dependencies
	Generalizing to arbitrary numbers of Update calls

	What Eva provides
	Values
	Variation domains for expressions
	Memory contents
	Interpreting the variation domains
	Origins of approximations

	What is checked by Eva
	Log messages emitted by Eva
	Results
	Informational messages regarding propagation
	Analysis summary

	About these alarms the user is supposed to check…
	API
	Eva API overview

	Graphical interface (GUI)
	A general view of the GUI
	Detecting and understanding non-termination
	Values Panel
	Filtering non-terminating callstacks

	Finding origins of alarms and imprecisions via the Studia plug-in
	Detecting branches abandoned because of red alarms

	Limitations and specificities
	Prospective features
	Strict aliasing rules
	Const attribute inside aggregate types
	Alignment of memory accesses

	Loops
	Functions
	Analyzing a partial or a complete application
	Entry point of a complete application
	Entry point of an incomplete application
	Library functions
	Choosing between complete and partial application mode
	Applications relying on software interrupts

	Conventions not specified by the ISO standard
	The C standard and its practice

	Memory model – Bases separation
	Base address
	Address
	Bases separation
	Dynamic allocation

	What Eva does not provide

	Parameterizing the analysis
	Three-step approach
	Command line
	Analyzed files and preprocessing
	Activating Eva
	Saving the result of an analysis
	Controlling the output

	Describing the analysis context
	Specification of the entry point
	Analysis of a complete application
	Analysis of an incomplete application
	Tweaking the automatic generation of initial values
	State of the IEEE 754 environment
	Setting compilation parameters
	Parameterizing the modeling of the C language
	Dealing with library functions
	Using the specification of a function instead of its body

	Improving precision in loops
	Loop unrolling
	Widening hints and loop invariants

	Improving precision with case-based reasoning
	Automatic partitioning on conditional structures
	Value partitioning

	Controlling approximations
	Cutoff between integer sets and integer intervals
	Maximum number of precise items in arrays

	Advanced analyses
	Symbolic equalities
	Reused left-values
	Gauges
	Octagons
	Bitwise values
	Binding to APRON
	Numerors

	Non-termination
	Analysis scripts and templates

	Inputs, outputs and dependencies
	Dependencies
	Imperative inputs
	Imperative outputs
	Operational inputs

	Annotations
	Preconditions, postconditions and assertions
	Truth value of a property
	Reduction of the state by a property
	An example: evaluating postconditions

	Assigns clauses
	Specifications for functions of the standard library

	Primitives
	Standard C library
	malloc, calloc, realloc and free functions

	Parameterizing the analysis
	Adding non-determinism

	Observing intermediate results
	Displaying the value of an expression
	Displaying the entire memory state
	Displaying internal properties about expressions

	Table of builtins
	Floating-point operations
	String operations
	Memory manipulation
	Dynamic allocation
	State-splitting builtins

	FAQ

