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Chapter 1

An introduction to Mthread

1.1 What is Mthread?

Mthread is a Frama-C plug-in dedicated to the analysis of concurrent C programs. It finds
and displays multithreaded events, such as thread creation, mutex locking, access to shared
variables, etc. . . . Mthread then gives a very simplified view of the source code, in which only
source statements relevant to the concurrent behavior of the program are left. It also displays
variables that are shared between threads, as well as data sent by threads on messages queues.
For each shared memory zone, the mutexes that may protect it are automatically inferred,
and possible race conditions are reported.

1.2 How Mthread works

Mthread performs sound and precise analyzes of concurrent programs. It is built on top of the
value analysis of Frama-C, and uses the latter to derive sound values (hence sometimes over-
approximated) for all the variables of the program, including those that are shared between
multiple threads. Schematically, Mthread’s behavior can be summarized as follows:

• Do a symbolic execution of the main thread; find the threads it launches.

• Do a symbolic execution of the new threads, possibly discovering other new threads,
which are then also executed symbolically.

• From each thread, compute the set of variables it reads and writes, as well as the
messages it tries to receive and send.

• Compute the shared variables of the program, by detecting variables that are accessed
concurrently (ie. by at least two threads that are live at the same time). On such
concurrent accesses, record which mutexes are being hold by the various threads.

• Restart the whole process, reinjecting the results obtained so far:

– threads receiving messages from a message queue are given the values sent to this
queue by the other threads;

– threads reading shared variables “see” the values they write in those variables, but
also those written by the other threads.
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CHAPTER 1. AN INTRODUCTION TO MTHREAD

• Iterate the process above until all threads agree on the information sent and exchanged
during the execution of the program.

Reaching a fixpoint of the above process means that a sound approximation of the behavior
of the program has been obtained, by construction. More details on how Mthread works are
given in Chapter 2.

1.3 Build and installation

Mthread is a dynamic plug-in of Frama-C. As such, it is compiled independently from Frama-C,
which should however be installed first. Tthe Graphviz1 tool suite is required for both the
GUI mode and the html output.

If all the prerequisites for Frama-C compilation are installed, go to the Mthread source directory
and type:

% make
% make install

Before installing, make sure to check you have the necessary rights. The following things will
be installed:

• the compiled plug-in under $(FRAMAC_PLUGIN);

• some stub libraries $(FRAMAC_SHARE)/Mthread.

The variable $(FRAMAC_SHARE) depends on how Frama-C was installed, and can be ob-
tained by typing frama-c -print-share-path. Similarly, $(FRAMAC_PLUGIN) can be ob-
tained by frama-c -print-plugin-path. In the remainder of this document, we abbreviate
$(FRAMAC_SHARE)/Mthread as $MTSHARE$.

In case it is needed, uninstallation is a simple
% make uninstall

1.4 Running Mthread

Mthread is a Frama-C plug-in, and is activated when launching Frama-C by turning on the
-mthread switch at your shell prompt, as follows:

% frama -c <C files > -mthread <mthread options >

The various options that configure the behavior of Mthread will be given throughout this
document, and are summarized in Appendix 6. In order to be really useful, Mthread however
requires you to instrument the thread library used in your C project, as explained in §3.

Mthread also has a simple GUI integrated in Frama-C. It is called by
% frama -c-gui <C files > -mthread <mthread options >

The gui starts by performing a Mthread analysis on the C files, exactly as in non-gui mode.
Once this is done, the gui offers a menu that permits to examine the results of the analysis
for each thread. See §5.2 for details.

1Available at http://www.graphviz.org/.
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Chapter 2

Mthread theory

The schema given in §1.2 already gives a faithful representation of Mthread fixpoint-based
approach. Through the value analysis, we obtain information about a thread; we then reinject
those information into (future) analyzes of the other threads. Reaching a fixpoint guarantees
that all threads agree on the concurrent part of the program, and that we have found an
over-approximation of their behavior. The sections below detail some of the computations
Mthread does during the iterations.

2.1 Calling contexts

Although the approach outlined above is simple, obtaining precise results is not. Indeed, we
must be careful not to compute too general behaviors for the various threads, the risk being
to get unusable results. Mthread uses some callbacks made available by the value analysis
to record the state of each function at the end of its evaluation. In order to avoid losing
precision, Mthread fuses those states only when the calling contexts are the same. Formally, a
calling context is the callstack that lead to the execution of f, taking the statements at which
the calls originated into account.

1 main () {
2 g ();
3 }
4 v o i d g () {
5 i n t x, y;
6 f(&x, 1);
7 f(&y, 2);
8 }
9 v o i d f ( i n t *p, i n t v) {

10 *p = v;
11 }

In the example above, there are two distinct calling contexts for the function f, namely
<main, 2>:<g, 6> and <main, 2><g, 7>. By making a distinction between those two calls,
Mthread is able to detect that x (resp. y) is always affected the value 1 (resp. 2). This is much
more precise than the information available by only inspecting the state of the value analysis
at the end of the execution, which merges together all the calls to a function. (This can be
easily verified by querying the possible values for p and v in the gui of Frama-C, which would
lead to conclude that x and y are affected either 1 or 2, without the possibility to know which
one).
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CHAPTER 2. MTHREAD THEORY

2.2 Concurrent control-flow graphs

2.2.1 General idea

One result of the analyzes done by Mthread is the concurrent control-flow graph of each thread.
Those graphs aim at displaying all the following events:

• calls to a mthread.h primitive;

• accesses to a shared memory zone (see §2.3).

Basically, we build a very high-level view of the functions called by a thread, with the following
characteristics:

1. only function calls that contain an event, or that transitively lead (through another call)
to such an event, appear in the graph;

2. functions are duplicated for each calling context they appear in;

3. inside the body of a function, only events and high-level control-flow statements such
as if and loop appear. Control-flow statements that do not lead to an event are also
removed.

Points 1 and 3 guarantee that the graph keeps a reasonable size, even with very big programs.
Indeed, most of the code is typically not related to its concurrent structure. Conversely,
point 2 expands the size of the graph, but increases its precision. Indeed, the statements
executed by a function can be very different from one call to another, and this is captured by
our use of calling contexts.

Notice that the concurrent control-flow graph of a thread is very different from what would
be obtained with the slicing plugin of Frama-C. In particular, our control-flow graph does not
represent executable code at all. (For example, incrementations of loop indices are generally
removed from the graph.) Conversely, our graph can be more precise when a function is called
multiple times, and roughly corresponds to the specialization obtained by -slicing-level 3.

2.2.2 Example

The concurrent control-flow graph for the main thread of the example tests/ccfg.c, reprinted
below, is given in Figure 2.1. How to generate this graph is explained in §5.2 and §5.3.

1 #i n c l u d e "mthread_pthread.h"
2

3 i n t random ();
4

5 pthread_t jobs [4];
6 i n t x, global1 , global2 [2];
7

8 v o i d * fjob( v o i d *) {
9 i n t r = global1 + global2 [0] + global2 [1];

10 }
11

12 v o i d g1( i n t * v, i n t i) {
13 i f (i<4)
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Star t :  main

Call g1((int *)NULL,0);

Create  thread &jobs

r e t u r n

Loop

If i  < 5

write global2[0],

write global2[1]

Call (*pf)(& global1,i);

t h e n

exi t

e l se

If i  < 4

g 1

r e t u r n

Crea te  thread  &jobs+4

Crea te  thread  &jobs+8

Crea te  th read  &jobs+12

t h e n

*v  =  1 ;

write global1

e lse

Call g2(global2);

Figure 2.1: Concurrent control-flow graph for the main thread of our example

14 pthread_create (&jobs[i], NULL , &fjob , NULL );
15 e l s e
16 *v = 1;
17 }
18

19 v o i d * g2( i n t * v) {
20 i f (random ())
21 *v = 1;
22 e l s e
23 *(v+1) = 2;
24 }
25

26 v o i d main() {
27 i n t i, arr [2];
28 v o i d (*pf)( i n t *, i n t ) = &g1;
29

30 g1(NULL , 0);
31 g2(arr);
32 f o r (i=1;i<5;i++)
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CHAPTER 2. MTHREAD THEORY

33 i f (!x) {
34 (*pf)(& global1 , i);
35 g2(global2 );
36 }
37 }

Let us illustrate through our example the characteristics of concurrent control-flow graphs
that have been mentioned above. The options we hint at are documented in Appendix 6.

• The topmost node contains the name of the function the thread starts with, here main.

• Calls to other functions are inlined within the graph, as can be seen eg. for g1. A dotted
grey edge links Call nodes to the corresponding return ones. (Option -return-edges.)

• Functions called twice in two different calling contexts, eg. g1, are inlined twice. Each
body shown represents precisely the execution of the corresponding call. For g1, the
first call creates the first thread, while the second call has a behavior that depends on
i.

• For function calls occurring through pointers eg. the second call to g1, the real name of
the function is printed between the Call node and the body of the function.

• Calls to functions that do not lead to an event are removed. For example, the call
g2(arr) does not appear anywhere.

• Nodes with a red border represent immediate calls to one or more mthread.h primitives,
that are listed in the node. (In this case, only thread creations occur.)

• Nodes with a blue or green background represent accesses to a shared zone of the
memory, and are discussed in §2.3.

• Loop nodes represent while(1) loops; for loops are automatically desugared into while
ones by Frama-C.

• Diamond nodes or appear for a function f without definition. They represent all the
events that occur during the call to f inside a single node. Functions without definition
use their ACSL prototype to specify the data they read and write.

(In this example, we have used the soon-to-be-deprecated option -mt-compact to sim-
plify the graph for g2. Here, instead of having a subgraph very similar to the one for
g1, we have only two nodes. However, this option can also degrade the precision of the
results, and should not be used in new code.)

• if constructs for which the condition is either completely true or completely false in
the given context are removed. This is the case for the if (!x), as x is always equal
to 0 in the program. Similarly, loops whose body do not contain an event are removed.
Those simplifications can be deactivated with -mt-full-cfg.

• The exit node represent the end of the thread, hence the outgoing edge that goes
nowhere.

• Although this is not shown here, the Mthread graph simplifier is sometimes forced to
leave some nodes that do not really contribute to the concurrent structure of the pro-
gram. This is typically the case for functions that use gotos. Those nodes will not have
any border or background.
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2.2.3 Understanding loops in concurrent control flow graphs

A word must be said on the composite node Create thread &jobs+4..12 of our example. It
must not be understood as “at each iteration of the loop, three threads are created”. This is
indeed impossible:

• each node corresponds to a single statement, and no mthread.h primitive can create
three threads in a single statement;

• Mthread does not allow the same thread to be launched more than once, as indicated in
§4.2.

The correct way to read the graph is the following: at each iteration of the loop, a different
thread is created, with some iterations possibly spawning none. (In fact, in our case the
iteration for i = 4 does not create a thread.)

2.3 Shared zones

In this section, we call shared zone a region of the memory on which a race condition between
at least two threads can occur. Mthread performs a fine-grained analysis to detect those
regions. It proceeds as follows:

1. Once a thread is evaluated by the value analysis, we compute the global variables it
reads and writes, using the inout plugin of Frama-C. This plugin uses the results of the
value analysis, thus giving us a sound but quite imprecise over-approximation of the
shared zones accessed by this thread. Let us call Ri(j) (resp. Wi(j)) the zones that are
read (resp. written) by the thread j.

2. After a full iteration (once all threads have been computed), we find all the zones that
are read by at least one thread and written by at least one another.

RWi =
⋃

j,k,j 6=k

(Ri(j) ∩Wi(k))

This set over-approximates the shared zones, and we call it potential shared zones.

3. For each thread that accesses a zone in RWi we start another value analysis, and watch
the zones above: at the end of the execution of any function, if it reads or writes a zone
in RWi, we record a Mthread event for this access. This event will thus appear in the
control-flow graph for the current thread.

Let Rpz(j) (resp. Wpz(j)) be the set of those precise read (resp. write) events relative
to the zone z, for the thread j.

4. Once all the needed threads have been recomputed, we compute the threads that are
live on each point of the control-flow graphs. Let us note live(j@e) the fact that the
thread j is live at the node containing the event e.

By definition, there is potentially a race condition on a zone z if it is written by one
thread and read by another, both threads being live at the same time. Thus, for each
zone z of RWi, we define the fact it is shared by:

shared(z) = ∃j, k, j 6= k ∧ (∃ej ∈ Rpz(j), ∃ek ∈Wpz(k), live(j@ek) ∧ live(k@ej))
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CHAPTER 2. MTHREAD THEORY

(Of course, this is only the mathematical definition of the shared predicate. The computations
themselves are done efficiently, to avoid the cubic complexity of the formulas above.)

The definition of shared is as precise as possible given the information available to Mthread,
while remaining sound. In particular, it avoids flagging as shared an important set of variables,
those that are only initialized (ie. written) by the main thread, and used (ie. read) afterward
by the various threads. As long as the initialization occurs before the creation of any of the
threads that access the variable, this variable is not shared.1

Once all the analyzes are finished, Mthread classifies the events representing accesses to po-
tential shared zones in three categories. Let us consider an event e for an access to a zone
z.

Non-shared access This means that z is in fact not a shared zone. Although z was in RWi,
there is never any race condition when accessing this zone. Since those zones are not
important, e is not shown in the control-flow graph by default. This can be overridden
by the option -mt-non-shared-accesses if desired.

Shared, non-concurrent access Mthread has determined that z is indeed a shared zone.
However, the particular event represented by e is not concurrent, because all the other
threads that access z are either not created yet, or canceled. This is typically the case
for most initializations of shared zones by the main thread. In the control-flow graph,
those events are shown in green. The option -mt-no-non-concurrent-accesses can
be used to hide them if desired.

Concurrent access The zone z is indeed a shared zone, and the access is concurrent. That
is, a race condition is possible at e. It is shown in blue in the control-flow graph.

An example of the various cases above can be found in the file tests/sharedvars.c, which
we do not reproduce below for space consideration. Of the 6 variables of the programs, 3 are
shared (those starting by ’s’) and 3 are not (those starting by ’u’). Running Mthread on it
with the option -mt-verbose 3 is concluded by

[mt] Imprecise locations to watch: u3; s4; s5; s6
[mt] Possible read/write data races:

s6:
read by &jobs4 at sharedvars.c:52, unprotected
read by &jobs6 at sharedvars.c:68, unprotected
write by &jobs4 at sharedvars.c:53, unprotected
write by &jobs6 at sharedvars.c:69, unprotected

s5:
read by &jobs51 at sharedvars.c:57, unprotected
write by &jobs5 at sharedvars.c:63, unprotected
write by &jobs51 at sharedvars.c:58, unprotected

s4:
read by &jobs4 at sharedvars.c:49, unprotected
write by _main_ at sharedvars.c:97, unprotected
write by &jobs4 at sharedvars.c:50, unprotected

[mt] Shared memory: s4; s5; s6

The line “Imprecise locations to watch” indicates that the potential shared zones are the
variables u3, s4, s5 and s6 . The section “Concurrent var accesses” and the line “Shared
memory” however indicates that u3 is not really shared.

Also, examining the control-flow graph of the main thread shows a non-concurrent access to
s4 before the creation of &jobs4. This access is not listed above, as it is not concurrent —and
thus must not be taken into account when examining the mutexes that protect s4.

1In fact, to reduce the time spent computing shared zones, Mthread completely ignores all the accesses that
occur before the creation of the first thread.
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2.4. RELATED WORKS

2.3.1 Protecting shared zones through mutexes

The race conditions evoked in the previous section are theoretical. That is, they can be
prevented using an appropriate use of mutexes. However, once all the shared zones have been
found, Mthread needs to do very little more to have this information.

Indeed, for each access to a shared zone (ie. an event in the control-flow graph), we known
which mutexes are locked, and which are not. Thus, in its final output, when Mthread lists all
the shared zones it has detected, it adds the information it possesses about mutexes. Mutexes
that are guaranteed to be locked are written directly. Mutexes that may or may not be locked
(eg. that are locked in one branch of the program, but not in another) are prefixed by (?).

In a second time, Mthread combines those information together and list for each zone the
mutexes that are either possibly or systematically locked when the zone is accessed. A shared
zone that is protected by at least one guaranteed mutex will not be subject to a race condition.

Since sharedvars.c does not use mutexes at all, it is not very pertinent here. Some examples
of protection outputs are given in §5.1.

2.4 Related works

Ferrara [Fer09] uses a fixpoint-based approach very similar to our one to analyze Java byte-
code. The static analyzer Locksmith [HFP06], which is dedicated to finding data races in
multithreaded C programs, possess some similarities with our shared zones detection algo-
rithm. The Goblint [VV07] is race-detection tool using some fixpoint computation (resolved
by a constraint solver): it offers a path-sensitive analysis of data-races, based upon condi-
tional constraint propagation and points-to analysis. Miné [Min12] builds an analyzer for
concurrent code on top of the Astree abstract interpreter. Apart from the use of two distinct
base analysers, our approach and his are very similar.
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Chapter 3

Instrumenting the C concurrent primitives

To precisely detect calls to concurrent primitives during the symbolic execution of the pro-
gram, Mthread makes the hypothesis that those primitives invoke low-level Mthread functions.
Hence, the first step in using Mthread consists in properly stubbing the thread library of the
program. This work has already been done for parts of the pthread and VxWorks libraries.
The functions currently supported by Mthread are detailed in the next sections.

In this chapter, and unless stated otherwise, the files we refer to are located in the share
directory of the Mthread sources (or alternatively in $MTSHARE after installation).

3.1 First steps

For a new project, the first step consists in finding within the C sources the .h file containing
the declarations for the various multithreaded primitives used in the code. In general, those
functions include at least

• thread creation (and possibly cancellation);

• mutex locking and release;

• emission and reception on/from a message queue.

Other interesting primitives are those initializing the structures used to refer to the objects
above (threads, mutexes, queues), functions using more evolved concurrency primitives (spin-
locks,. . . ) etc. . . . A detailed status of which functions are currently handled by Mthread is
given in Appendix A.

Once the prototypes of the functions above have been found, any potential implementation
must be removed from the source, for example by using well-placed #ifdef 0 lines. This step
is however typically not needed, as those functions usually belong to the OS implementation,
which source code is rarely available.

3.2 Stubbing the header (.h) files

The next steps consists in stubbing the existing concurrency .h files. The primary responsi-
bility of this step is to define all the types in the prototypes of the functions in terms of either
framac_mthread_id or framac_mthread_name. Both types are defined in the Mthread header
mthread.h as

14
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t y p e d e f v o i d * framac_mthread_name;
t y p e d e f i n t framac_mthread_id;

In general, framac_mthread_id is the return type of the initialization functions, and also
the type used by functions that use an object. During execution, they are simply sequential
non-null offsets to an array allocated by Mthread, that itself holds the state of the object. The
non-null information is important, as some code uses the convention v == 0 to test whether
an object is initialized. Also, we cannot return a pointer, as some concurrenct library assume
that thread ids are no bigger than the short type; returning short integers (unless the code
allocates an inordinate amount of eg. mutexes) ensures that our ids can safely be cast to
short, or even char

By contrast, framac_mthread_name is the input type used by initialization functions. It is
used as a hint to name the mutex, thread, or queue. It can be either NULL, in which case
Mthread will use an internal name, a constant string, or the address of a global variable, with
possibly an offset (if the variable is an array cell). The first two possibilities are needed for
VxWorks, while the pthread interface uses the third.

As an example, let us show how those two types are used in the prototypes of the primitive
Mthread functions. The lines below are also an excerpt of mthread.h. (The entire file is given
in Appendix A.)

framac_mthread_id __FRAMAC_THREAD_CREATE(framac_mthread_name ,
v o i d *(*)( v o i d *),
...);

i n t __FRAMAC_THREAD_CANCEL(framac_mthread_id );

framac_mthread_id __FRAMAC_MUTEX_INIT(framac_mthread_name );
i n t __FRAMAC_MUTEX_LOCK(framac_mthread_id );

To conclude this section, let us consider excerpts of the stubbing that has been done for
the pthread library. The prototypes can be found in the file mthread_pthread.h, and are
reprinted below.1

#i n c l u d e <mthread.h>

t y p e d e f framac_mthread_id pthread_t;
t y p e d e f framac_mthread_id pthread_attr_t;
t y p e d e f framac_mthread_id pthread_mutex_t;
t y p e d e f framac_mthread_id pthread_mutexattr_t;

#d e f i n e PTHREAD_MUTEX_INITIALIZER 1

i n t pthread_create(pthread_t *thread , c o n s t ␣
pthread_attr_t *attr ,

v o i d *(* start_routine)( v o i d *), v o i d *arg);
i n t pthread_cancel(pthread_t thread);
i n t pthread_join(pthread_t thread , v o i d ** thread_return);
v o i d pthread_exit( v o i d *thread_return);
pthread_t pthread_self( v o i d );

i n t pthread_mutex_init (pthread_mutex_t * mutex , ␣
pthread_mutexattr_t * attr );

1Prototypes for queue-related functions are not actually part of pthread, and are in mthread_queue.c.
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CHAPTER 3. INSTRUMENTING THE C CONCURRENT PRIMITIVES

i n t pthread_mutex_lock (pthread_mutex_t * mutex );
i n t pthread_mutex_unlock (pthread_mutex_t * mutex );

i n t pthread_setcancelstate( i n t state , i n t *oldstate);
i n t pthread_setcanceltype( i n t type , i n t *oldtype);
v o i d pthread_testcancel( v o i d );

Except for the typedef declarations, everything can be taken verbatim from a system header
for pthread. Thus, since the included file mthread.h is a generic header the user should not
modify, writing new stubs consists essentially in writing the pthread.c file, as explained in
the next section.

Both pthread_t and pthread_mutex_t are defined as type aliases to framac_mthread_id.
Indeed, the interface of the pthread library does not lend itself to the separation we use in
Mthread– unlike VxWorks. Instead, as the next section will show, the initialization primitives
use the address of the object they create when naming them.

3.3 Stubbing the source (.c) files

The bulk of the stubbing work consists in implementing the concurrent C primitives in terms
of the low-level Mthread ones. Stubs are generally very easy to write, as most of the time they
consist in:

• disregarding useless arguments (such as initialization options Mthread may not handle
yet), or swapping some arguments around;

• dereferencing pointers, if a pointer is supplied while Mthread needs the value it points
to;

• for initialization functions, storing or returning the result of the call to the low-level
Mthread primitive (which will be the id of the thread, mutex or queue for Mthread);

• translating the Mthread return codes into those of the OS library.

3.3.1 pthread library

The stubbing for the pthread library can be found in mthread_pthread.c. Its interesting
parts are reprinted below.

#i n c l u d e "mthread_pthread.h"

i n t pthread_create(pthread_t *thread , c o n s t pthread_attr_t *␣
attr ,

v o i d *(* start_routine)( v o i d *), v o i d *arg␣
) {

i n t result = __FRAMAC_THREAD_CREATE(thread , start_routine , ␣
arg);

i f (result > 0) {
*thread=result;
__FRAMAC_THREAD_START(result);
r e t u r n 0; }

e l s e { r e t u r n 11; /* EAGAIN */ }
}
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i n t pthread_cancel(pthread_t thread) {
i n t result = __FRAMAC_THREAD_CANCEL(thread);
r e t u r n (result != -1 ? 0 : 3 /* ESRCH */);

}

pthread_t pthread_self( v o i d ) {
r e t u r n __FRAMAC_THREAD_ID ();

}

i n t pthread_mutex_init(pthread_mutex_t *restrict mutex ,
c o n s t pthread_mutexattr_t *restrict attr␣

) {
i n t result = __FRAMAC_MUTEX_INIT(mutex);
i f (result > 0) { *mutex = result; r e t u r n 0; }
e l s e { r e t u r n 22; /* EINVAL */}

}

i n t pthread_mutex_lock (pthread_mutex_t *mutex) {
i n t result = __FRAMAC_MUTEX_LOCK (*mutex);
r e t u r n (result != -1 ? 0 : 22 /* EINVAL */);

}

i n t pthread_mutex_trylock (pthread_mutex_t *mutex) {
i n t result = __FRAMAC_MUTEX_LOCK (*mutex);
r e t u r n (result != -1 ? 0 : 22 /* EINVAL */);

}

i n t pthread_mutex_unlock (pthread_mutex_t * mutex ) {
i n t result = __FRAMAC_MUTEX_UNLOCK (* mutex);
r e t u r n (result != -1 ? 0 : 22 /* EINVAL */);

}

/* ========================================== */
/* Functions currently not perfectly stubbed */

// Does not store the return code
v o i d pthread_exit( v o i d *thread_return) {

__FRAMAC_THREAD_EXIT(thread_return);
}

v o l a t i l e NON_DET_JOIN;
// Overapproximated return code for the function and the joined␣

threads
i n t pthread_join(pthread_t thread , v o i d ** thread_return) {

*thread_return = NON_DET_JOIN;
r e t u r n NON_DET_JOIN ? -1 : 0;

}

/* ================================ */
/* Stubs that do nothing */

i n t pthread_setcancelstate( i n t state , i n t *oldstate) {
r e t u r n 0;

}
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i n t pthread_setcanceltype( i n t type , i n t *oldtype) {
r e t u r n 0;

}

v o i d pthread_testcancel( v o i d ) {
}

Notice the recurring pattern *obj = obj_init(&obj, ...) (with proper error-handling) used
in both functions pthread_create and pthread_mutex_init. The address holding the object
is used as name hint during the creation. Then the Mthread initialization function returns the
id of the object, which is stored at the given address. The functions that use this id either
dereference their argument if the id is passed as a pointer (pthread_mutex_lock) or use it
directly otherwise (pthread_cancel), depending on their POSIX prototype.

As hinted by the comments, not all functions are properly stubbed. The *setcancel functions,
which are related to the cancelability of a thread, are not given a body; for now, we implicitly
assume that pthread_cancel always succeed in stopping a thread. For functions that do not
initialize values, there is little differences between not stubbing a function, and giving it a
trivial body; the latter approach however silences a few Frama-C warnings. For functions that
initialize a structure used later, a stub is however mandatory.

Also, thread return codes are not stored yet, which means that pthread_join is not modeled
as precisely as possible.

3.3.2 VxWorks library

The stubs for VxWorks are even simpler than those for pthread, as their prototypes are closer
to those of our Mthread functions. The file mthread_vxworks.c is reproduced below.

#i n c l u d e "msgqlib.h"
#i n c l u d e "semlib.h"

i n t taskSpawn ( c h a r *name , i n t priority , i n t options ,
i n t stackSize , FUNCPTR entryPt ,
i n t arg1 , i n t arg2 , i n t arg3 , i n t arg4 ,
i n t arg5 , i n t arg6 , i n t arg7 , i n t arg8 ,
i n t arg9 , i n t arg10) {

// arg1 may be ignored , depending on the threads
__FRAMAC_THREAD_CREATE(name , entryPt , arg1);
r e t u r n OK;

}

/* Mutexes */

SEM_ID semMCreate ( i n t options) {
r e t u r n __FRAMAC_MUTEX_INIT(NULL);

}

SEM_ID semBCreate ( i n t options , SEM_B_STATE initialState) {
i n t result = __FRAMAC_MUTEX_INIT(NULL);
i f (initialState == SEM_EMPTY)

__FRAMAC_MUTEX_LOCK(result );
r e t u r n result;
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}

STATUS semTake (SEM_ID semId , i n t timeout) {
__FRAMAC_MUTEX_LOCK(semId);
r e t u r n OK;

}

STATUS semGive (SEM_ID semId) {
__FRAMAC_MUTEX_UNLOCK(semId );
r e t u r n OK;

}

/* Queues */

MSG_Q_ID msgQCreate ( i n t maxMsgs , i n t maxMsgLength , i n t options)
{

r e t u r n __FRAMAC_QUEUE_INIT(NULL , maxMsgLength );
}

STATUS msgQSend (MSG_Q_ID msgQId , c h a r *buffer ,
UINT nBytes ,
i n t timeout , i n t priority) {

__FRAMAC_MESSAGE_SEND(msgQId , buffer , nBytes );
r e t u r n OK;

}

i n t msgQReceive (MSG_Q_ID msgQId , c h a r *buffer ,
UINT maxNBytes , i n t timeout) {

r e t u r n __FRAMAC_MESSAGE_RECEIVE(msgQId , maxNBytes , buffer );
}

Let us point out two interesting things:

• First, the thread creation functions takes no less than 10 arguments! However, only the
first one is ever used inside the code, so we only pass arg1 to __FRAMAC_THREAD_CREATE.
In fact, most of the functions pointed to by entryPt ignore this unique argument alto-
gether. Mthread is able to handle this case, and discards the useless arguments auto-
matically. However this causes a warning. We did not silence it, because we think it
is useful. Still, it is not possible to write a stub that passes exactly the right number
of argument to __FRAMAC_THREAD_CREATE, as this information is not available inside
taskSpawn from the C side. (In our opinion, the problem lies in the VxWorks interface,
which should use variadic arguments.)

• Second, there are actually two semaphore creation functions. The second, semBCreate,
receives as argument a flag specifying whether the thread should take the semaphore
after having created it. In Mthread, it is not useful to have an atomic “create+take”
operation (as the the others threads cannot reference the mutex until semBCreate has
returned), so we simply model it by two successive calls to __FRAMAC_MUTEX_INIT and
__FRAMAC_MUTEX_LOCK.
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Chapter 4

Analyzing a full project without warnings

This chapter explains the warning or error messages emitted by Mthread during its analysis.
Mthread’s own analysis can only be as precise as the one done by Value for each thread. Thus,
setting up the latter correctly is important; relevant information can be found in its own
manual:

http://frama-c.com/value.html

During the analysis, the first hint that something might have gone awry resides in the warnings
sent back to the user. As a general rule of thumb, it is good to eliminate those messages.
How to read the results of Mthread will be explained in Chapter 5.

4.1 The philosophers example

In the remainder of this document, we will use the source code below to exemplify some uses
of Mthread. It is taken from the file tests/philo.c, and contains a modified version of the
classic philosophers problem.

1

2 #i n c l u d e "mthread_pthread.h"
3 #i n c l u d e "mthread_queue.h"
4 #d e f i n e NULL (( v o i d *)0)
5 #d e f i n e N 5
6

7

8 i n t end2 = 0;
9 pthread_mutex_t locks[N];

10 pthread_t jobs[N];
11 msgqueue_t queue;
12

13

14 i n t random ();
15

16 v o i d aux ( i n t l, i n t r, i n t mess) {
17 pthread_mutex_lock(locks+l);
18 pthread_mutex_lock(locks+r);
19 i f (random () && mess != 2) {
20 c h a r buf [2];
21 buf [0]= mess;

20
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22 end2 = 1;
23 msgsnd(queue , buf , 2);
24 }
25 pthread_mutex_unlock(locks+r);
26 pthread_mutex_unlock(locks+l);
27 }
28

29 v o i d * job( v o i d * k ) {
30 i n t p = ( i n t ) k ;
31 i n t l = p>0 ? p-1 : N-1 ;
32 i n t r = p<N-1 ? p+1 : 0 ;
33

34 wh i l e (1)
35 aux(l, r, p+1);
36 }
37

38 i n t main() {
39 i n t i ;
40 c h a r end [2];
41 end [0]=0;
42

43 f o r (i=0;i<N;i++)
44 pthread_mutex_init( &locks[i] , NULL);
45

46 queuecreate (&queue , 5);
47

48 f o r (i=0;i<N;i++)
49 pthread_create( &jobs[i], NULL , &job , ( v o i d *) i );
50

51 wh i l e (!( end [0] && __MTHREAD_SYNC(end2 )))
52 msgrcv(queue , 2, end);
53

54 r e t u r n 0;
55 }

This code presents some interesting challenges. First, the ids for the threads and mutexes of
the program are stored in two arrays, jobs and locks respectively. Both arrays are initialized
through loops — a challenge for any analyzer. Moreover, the behavior of the various threads
is governed by a unique function: the only difference between them lies in the argument
they initially receive. Finally, the various threads write in the global variable end2, and send
a partially initialized message on the queue queue. The termination of the main thread is
influenced by those two objects.

4.1.1 A first try

Let us start Mthread on this program. We need to start Frama-C on both philo.c and on our
stubbed pthread library. In order to use our own headers, a proper -I directive must be given
to our C preprocessor. The -nostdinc is also a good idea to ensure that Frama-C will not use
any unwanted system header. Finally, the value analysis is by default very verbose, and it is
a good idea to partially silence it using -value-verbose 0. Thus, a complete invocation of
Mthread would be

% frama -c -cpp -command "gcc -C -E -I. -I$MTSHARE -nostdinc" \
-mthread $MTSHARE/mthread_pthread.c $MTSHARE/mthread_queue.c philo.c
-value - v e r bo s e 0
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(Frama-C assumes the main function is called main, which is the case here)

While Mthread’s output is also rapidly verbose (we will only reproduce snippets below), it is
quite apparent that something has gone awry. Many lines start by philo.c:ll[mt] warning:,
where ll is a line number. The prefix [mt] being a short-name for Mthread, let us examine
a few of those warning lines.

The first one is
philo.c:46:[mt] warning: During mutex initialization: invalid mutex name. When

decoding id , incorrect offset {0; 4} in ’{{ &locks + {0; 4}}}’. Try to
increase slevel. Ignoring.

The next four lines are more complicated variants, with offset increasing until it reaches the
possible values {0; 4; 8; 12; 16}. By contrast, the previous line was

philo.c:46:[mt] Initializing mutex &locks

Since line 46 is a call to pthread_mutex_init, it is clear that the mutex initialization did
not succeed in all cases. This is of course due to the presence of the loop, which is executed
symbolically, but imprecisely. While the first iteration of the body proceeds as expected (and
initializes locks[0]), the next ones do not. Instead, during the analysis of the loop, the
value i ranges over the sets {0} . . . {0, 1, 2, 3, 4}. By default, Frama-C simulates a 32
bits architecture, on which an int is 4 bytes. Thus, the expression &locks[i] ranges over
the locations &locks, . . . &locks+{0;4;8;12;16}, exactly as indicated by the value analysis.
However, Mthread is not satisfied by such imprecise values: which mutex is really being
initialized at each iteration? Thus, it refuses to register the initialization, and warns the user
accordingly: the whole pthread_mutex_init call is ignored in the last four cases.

In this particular case, Mthread also provides a solution. It suggests increasing the -slevel
option of the value analysis, which controls in particular the symbolic execution of loops. By
default, no -slevel is used, and variables modified inside loops become imprecise immediately.

Before increasing this option, let us consider the other warnings. For line 51, we get similar
ones for thread creation, eg.

philo.c:51:[mt] warning: During thread creation: invalid thread identifier.
When decoding id, incorrect offset {0; 4; 8; 12; 16} in ’{{ &jobs +

{0; 4; 8; 12; 16}}} ’. Try to increase slevel. Ignoring.

The problem is identical to the one for mutexes. Thus, only the creation of the first thread
succeeds. We can verify that by reading the log: once the analysis of the main thread finishes,
Mthread starts to analyze the thread it calls &jobs[0], but this is the only other thread
mentioned in the log.

[mt] *** First value analysis for main thread done.
[mt] ******* Starting to iterate
[mt] ***** Iteration 1
[mt] *** Computing thread &jobs [0] (first iteration)

There are also warnings during the analysis of this thread:
philo.c:19:[mt] warning: Trying to lock uninitialized mutex. Ignoring
philo.c:20:[mt] warning: Trying to lock uninitialized mutex. Ignoring
[kernel] No code for function random , default assigns generated
philo.c:25:[mt] Sending message on &queue , content [0] ∈ {1}

[1] ∈ UNINITIALIZED
philo.c:27:[mt] warning: Trying to unlock uninitialized mutex. Ignoring
philo.c:28:[mt] warning: Trying to unlock uninitialized mutex. Ignoring

This is not surprising, as the first thread locks the mutexes locks[4] and locks[1], whose
initializations have indeed failed. All further warnings are duplicates of the ones above,
occurring during further iterations of the analyzes.
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4.1.2 Unrolling loops

Let us follow Mthread’s recommendation and increase the slevel. Here, it suffices to execute
loops precisely 5 times. Thus, we add option -slevel 5 to the command-line used above. In
this case, it is sufficient to make all warnings disappear.

Alternatively, it is also possible to syntactically unroll loops. Although it is seldom useful
for the value analysis, it may be for Mthread itself. Let us consider the file tests/init.c of
Mthread, which is reproduced below.

1 /* This example tests the various way a structure can be named:
2 with a pointer , with a string , without any indication (in
3 this last case , only once per statement , or with a proper
4 unrolling) */
5 #i n c l u d e "mthread_pthread.h"
6 #d e f i n e NULL (( v o i d *)0)
7 #d e f i n e N 3
8

9 i n t locks[N];
10 c h a r (*names [2*N]) = { "mu1", "mu2", "mu3", "mu4", "mu5", "mu6"␣

};
11

12

13 i n t mutex_init( v o i d * mname) {
14 r e t u r n __FRAMAC_MUTEX_INIT(mname);
15 }
16

17 v o i d main() {
18 i n t i ;
19

20 f o r (i=0;i<N;i++)
21 mutex_init (&locks[i]);
22

23 f o r (i=0;i<N;i++)
24 mutex_init(names[i]);
25

26 /*@ loop pragma UNROLL N; */
27 f o r (i=0;i<N;i++) {
28 i n t m = mutex_init(NULL);
29 __FRAMAC_MTHREAD_NAME_MUTEX(m, names[i+3]);
30 }
31

32 // We really need to unroll the loop
33 f o r (i=0;i<N;i++)
34 mutex_init(NULL);
35 }

This example try to initialize 12 mutexes, using four different mechanisms. In the first loop,
the mutexes are named using a location in an array. In the second loop, they are named using
constant strings. In the third and four loops, no names are given at all. The result of the
analysis of the main thread by Mthread are given below (with a proper -slevel 3):

[mt] *** Computing value analysis for main thread
[mt] New thread: main , fun main
init.c:20:[ mt] Initializing mutex &locks
init.c:20:[ mt] Initializing mutex &locks+4
init.c:20:[ mt] Initializing mutex &locks+8
init.c:23:[ mt] Initializing mutex mu1
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init.c:23:[ mt] Initializing mutex mu2
init.c:23:[ mt] Initializing mutex mu3
init.c:27:[ mt] Initializing mutex mutex_7
init.c:27:[ mt] Initializing mutex mutex_8
init.c:27:[ mt] Initializing mutex mutex_9
init.c:31:[ mt] Initializing mutex mutex_10
init.c:31:[ mt] warning: During mutex initialization. Mutex mutex_10 initialized

more than once by thread _main_ at same statement. Ignoring.
[mt] *** First value analysis for main thread done.

As can be seen, the first 9 initializations succeed without problem. The mutexes created in
the first loop are named after the array passed as hint (and the index of the mutex in the
array), while the exact names contained in names are used for the mutexes 4 to 6. In the
third loop, fully generic names are used, but we can see that Mthread has indeed registered 6
mutexes prior to this loop .

Problems however arise in the last loop, although it is very similar to the third one. Mthread
initializes the tenth mutex on the first iteration, but complains in the second that it has al-
ready initialized a mutex mutex_10. Indeed, without any name hint, Mthread cannot possibly
known if the user is requesting another mutex, or if there is a problem in the analysis. As a con-
sequence, it prefers to err on the side of caution, and refuses the subsequent initializations. A
possible solution (other than changing the calls to mutex_init in the code) is to syntactically
unroll the loop, as was done for the third one. The instruction //@ loop pragma UNROLL N;
instructs Frama-C to unroll a loop N times.1 Afterward, Mthread sees some mutex initializa-
tions at different statements, and accepts them. Internally however, those statements point
to the same initial line number, hence the messages for the third loop in the log.

4.2 Other Mthread warnings

In this section, we give a short survey of some the warnings emitted by Mthread. In a log
output, those warnings contain the string [mt]. Most of the time, the warnings are self-
explanatory, and they sometimes contain their own solution. Roughly speaking, they can be
partitioned in the categories below.

Erroneous or imprecise arguments. Mthread systematically sanitizes the arguments it
receives from the __FRAMAC_* functions defined in mthread.h, and ignores the entire
call (with a warning) when it cannot give a sense to them. We have already given an
example in §4.1.1 with an imprecise name for a mutex initialization. Nearly identical
warnings are emitted with imprecise names or ids, for threads, mutexes or queues.

Other similar errors can include passing a function without a body to the thread creation
function __FRAMAC_THREAD_CREATE, or too few arguments. The corresponding messages
are given below.2

philo.c:51:[mt] warning: During thread creation: invalid thread function.
Missing definition for function ’job ’. Ignoring.

philo.c:51:[mt] user error: When creating thread &jobs [0] from function
job: too few arguments , 1 expected but 0 given. Ignoring.

Multiple creation of a unique thread. Mthread is quite tolerant when it encounters code
that would initialize again a mutex or a queue potentially already initialized:

1If N is a C macro (expansed by the preprocessor according to a #define instruction) and not a C constant,
Frama-C must be invoked with the -pp-annot option.

2The messages are obtained by simple modifications of our examples and stubs, not shown in this document.
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philo.c:46:[mt] warning: Mutex &locks might be already initialized

We cannot be as lenient for threads, however, to preserve the correctness of our analyzes.
Thus, when we detect a thread that seems to be started twice, we immediately fail. Of
course, it remains possible to launch two threads with exactly the same arguments, but
the program must use two different names.

philo.c:51:[mt] Thread &jobs[0], fun job , parent _main_ , args {0; }
philo.c:51:[mt] user error: Thread &jobs [0] has already been created

previously in the current thread.

Read or write of the entire memory. If the value analysis dereferences a very imprecise
pointer, it can access the whole memory. This completely invalidates the assumptions
made by Mthread when it searches for shared memory, and can make it very imprecise.
We therefore entirely ignore the access. Since such an imprecise pointer almost always
comes from an erroneous stubbing, or a very buggy original code, this is not a limitation
in practice.

The directory tests contains an example designed to test this case, called read_all.c.
The value analysis prints a warning when the faulty pointer p is being dereferenced
(line 4). The Mthread warning is on line 7.

1 read_all.c:26:[mt] New thread: &jobs , fun f, parent _main_ ,
2 args [0..4294967295]
3 read_all.c:26:[mt] Start thread &jobs
4 read_all.c:28:[mt] user error: read of the whole memory. Ignoring to allow
5 Mthread to continue , but the analysis will not be correct.
6 read_all.c:28:[ value] warning: Completely invalid destination for assigns
7 clause *p. Ignoring.

Buffer overflow in message sending or receiving. Mthread send and receive functions
take as input either a source buffer, or a destination one, as well as its size. Of course,
the value analysis must be wary of buffer overflow. Let us successively change the
declaration of the buffers buf and end of philo.c to char[1] (lines 31 and 42).

Small buffer during emission
../ share/mthread_queue.c:10:[ kernel] warning: out of bounds read.

assert \ v a l i d (mess +(0..size -1));
philo.c:25:[mt] Sending message on &queue , content [0..1] ∈ {{}}

The indicated line is inside the function msgsnd:
i n t result =__FRAMAC_MESSAGE_SEND(msgqid , mess , size);

Here we have mess=buf, size=2, and the program is defined only if buf[0..(2-1)]
is a valid array slice. This is indeed false in the modified program, as buf has size 1.
In this case, the value analysis is sure that the range is always invalid, as there is no
approximation on either buf or size, and the read fails. This can be verified with the
empty message content in the second line of the log.

Small buffer during reception
../ share/mthread_queue.c:16:[ kernel] warning: out of bounds write.

assert \ v a l i d (mess +(0..size -1));
../ share/mthread_queue.c:16:[ kernel] warning: all target addresses were

invalid. This path is assumed to be dead.
philo.c:54:[mt] warning: Found message of length 2, which is too long for

buffer ’mess ’. Execution will continue without those messages.
(Ignore "This path is assumed to be dead message if any".)

philo.c:54:[mt] Receiving message on &queue , max size 2, stored in &end.
No valid value to receive.
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Again, the value analysis detects that we are accessing past the end of an array. The
warning “This path is assumed to be dead” is actually not really relevant here, and
should be ignored. Next, Mthread adds a more precise warning about which buffer is
too small, and warns that messages of length 2 are too long. This means that any
message of at least that size will be ignored by __FRAMAC_MESSAGE_RECEIVE. Since
all messages are of size 2, there is nothing valid to receive (hence the last line of
the log), and Mthread instructs the value analysis to stop when evaluating the call
to __FRAMAC_MESSAGE_RECEIVE.

Too many objects. By default, Mthread allows the creation of 32 threads, mutexes or
queues, with different counters for each kind of object. This value is hard-coded in
mthread.h, in order to have valid C. If Mthread detects that a program wants to allo-
cate more than this number of objects, it issues a warning.

philo.c:51:[mt] warning: During thread creation. Too many thread ids ,
unable to register another one. Try to increase MTHREAD_NUMBER_IDS
above 32 in the preprocessing directive. Ignoring.

As hinted by the message, the number of possible distinct Mthread objects is defined
by the C macro MTHREAD_NUMBER_IDS. Thus, it suffices to increase its value in the
preprocessing directive -cpp-command, eg. by adding -DMTHREAD_NUMBER_IDS=40 for
gcc or cpp.

Unrecognized id. The ids returned by Mthread for threads, mutexes and queues are C ints,
unless they are cast to another type by the program itself. If the code does strange things
with those ints, eg. incrementing them, it can build precise but incorrect ids. Mthread
will then fail with a message similar to the one below.

philo.c:29:[mt] warning: During mutex lock. Id 13 for mutexes does not
exists (incrementation inside program ?). Ignoring.

Uninitialized concurrency structures. Primitives receiving an id as argument can be
passed the value 0. This typically corresponds to non-initialized mutexes, queues
etc. . . Either this is a mistake in the code (the programmer forgot the initialization),
or the initialization will be done later, by another thread, and the warning should dis-
appear in later iterations of the analysis.

philo.c:38:[mt] warning: Trying to unlock uninitialized mutex. Ignoring
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Reading Mthread results

This chapter explains how to interpret the results output by Mthread, on the philosophers
example. §5.2 shows how to use Mthread’s gui to browse through some results not available
in console mode.

5.1 Reading the results of the philosophers examples

Running Mthread on philo.c goes smoothly once a proper slevel (of at least 5) is used. No
warning is emitted during the analysis. Mthread reports it stops after 4 iterations, having
reached the fixpoint. However, not all threads are executed at each iteration. For exampel,
Mthread detects it would learn nothing by analyzing the thread main during its second step,
and thus skips this analysis. If we read more finely the output, for example by setting
-mt-verbose 2, the iteration structure looks like this:

Initial run of the main thread This analysis detects the five secondary threads. Receiv-
ing a message on &queue fails. No potential shared zone is detected — quite logically,
as only one thread was running.

First iteration The five secondary threads are executed. Messages sent on &queue are mem-
orized for an eventual use in another thread.

philo.c:25:[mt] Sending message on &queue , content [0] ∈ {1}
[1] ∈ UNINITIALIZED

Second iteration The main thread is recomputed, because Mthread detects that some mes-
sages can be received on &queue.

[mt] *** Computing thread _main_ , iteration 2 (new message received)

During this iteration, the call to msgrcv succeeds, and the value end[0] becomes possibly
non-null. As a result, a new shared memory zone is detected, the variable end2.

[mt] Concurrent imprecise accesses have changed: before
\ no th i ng

vs.
end2

Third iteration All threads are recomputed because we want to monitor the accesses to the
potential shared variable end2:

[mt] *** Computing thread &jobs (potential shared vars changed)
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At the end of the iteration, end2 is detected as being a (really) shared zone, not just a
potential one:

[mt] Shared memory: end2
[mt] Concurrent precise var accesses have changed: before

\ no th i ng
vs.

end2

Mthread also detects that end2 is not protected in a coherent way, ie. that there might
be a race condition on it.

[mt] Possible read/write data races:
end2:

read by _main_ at philo.c:53, unprotected
write by &jobs [0] at philo.c:24, protected by &locks [1] &locks [4],
write by &jobs [2] at philo.c:24, protected by &locks [1] &locks [3],
write by &jobs [3] at philo.c:24, protected by &locks [2] &locks [4],
write by &jobs [4] at philo.c:24, protected by &locks [0] &locks [3],

[mt] Mutexes for concurrent accesses:
[end2] write protected by (?)& locks [0] (?)& locks [1] (?)& locks [2]

(?)& locks [3] (?)& locks[4], read unprotected

Mthread does not report any new potential shared variable however, which is coherent
with the program.

Fourth iteration During this iteration, the thread main is recomputed. Indeed, new possible
values for end2 (coming from the other threads), have been found in iteration 3.

[mt] *** Computing thread _main_ , iteration 4 (shared vars values changed)

During this iteration, the return statement of the main function becomes reachable.

As this state of the analysis, there is no reason to recompute any of the threads, and
Mthread detects that a fixpoint is reached.

[mt] ******* Analysis performed , 4 iterations

Not all the logs given above are available with the default verbosity level of 1. Indeed, they
are not important to understand the results of the analysis, only the way it proceeded.

Let us point out a few more information. For example, the information on the mutexes
protecting the accesses to end2 are two-fold. First, we have an exhaustive account, with all
accesses by each thread; each access is listed together with the mutex contexts at those points
of the analyzes. In this example, the information is as precise as possible. Second, we have a
summary, that aggregates the exhaustive listing.

[mt] Mutexes for concurrent accesses:
[end2] write protected by (?)& locks (?)& locks+4 (?)& locks +8 (?)& locks +12

(?)& locks+16, read unprotected

This shows that end2 is not protected at all when it is read. Conversely, it is protected by
various mutexes when it is written, but never in a consistent way: there is always a (?) in
front of the mutex name, indicating that in at least one case, the mutex was not locked. This
indicates possible race conditions both when reading and writing end2, which is indeed the
case in the program.

Finally, let us discuss the values of the messages sent and received on &queue. We reprint
some relevant messages below.

philo.c:25:[mt] Sending message on &queue , content [0] ∈ {1; }
[1] ∈ UNINITIALIZED
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philo.c:54:[mt] Receiving message on &queue , max size 2, stored in &end.
Possible values:

From thread &jobs [0]: [0] ∈ {1}
[1] ∈ UNINITIALIZED

From thread &jobs [2]: [0] ∈ {3}
[1] ∈ UNINITIALIZED

From thread &jobs [3]: [0] ∈ {4}
[1] ∈ UNINITIALIZED

From thread &jobs [4]: [0] ∈ {5}
[1] ∈ UNINITIALIZED

Mthread is quite accommodating about the content of the message, and tolerates the fact
that a part of the source buffer is uninitialized. Inspecting the value of end1 after line 54 of
philo.c reveals that the possible values are

end [0] ∈ {1; 3; 4; 5}
[1] ∈ UNINITIALIZED

This is also the most precise approximation possible.

5.2 Mthread’s gui

Mthread is partially integrated with the Frama-C gui. A graphical analysis is started in the
usual way:

% frama -c-gui -mthread <options >

This starts a standard console Mthread analysis, with the given options. Once it is finished,
Frama-C’s gui is launched with an Mthread menu within the menubar. The former contains
the list of threads detected. Choosing one of them has two effects:

1. The last value analysis for the thread is restored. This allows exploring the values
found during the evaluation of the thread in the standard Frama-C way, by clicking
on the expressions of the program and reading the output on the “Information” panel.
This also displays the warnings emitted during the last analysis of the thread in the
“Messages” panel.

2. A Gtk window containing Mthread’s control-flow graph of the thread is shown. It is
possible to zoom on the window using the mouse scrollwheel. An example window is
given in Figure 5.1.

Clicking on a node has three effects:

(a) It displays the corresponding statement in the source code; this offers a convenient
way to browse the control-flow graph and to read the values inferred by the value
analysis. On the philosophers example, in thread &jobs, clicking on the blue node
positions us on the line end2 = 1 in the source (corresponding to line 24 of philo.c
originally).

(b) The current context for threads and mutexes is displayed in the information panel.
On the node mentioned previously, all the other threads are potentially launched,
and two mutexes are locked.

node 205 (philo.c:33)
stmt at philo.c:24, function aux
Locked mutexes: &locks+4 &locks +16
Possible other threads: _main_ &jobs+4 &jobs+8 &jobs +12 &jobs +16

1For example using Frama-C’s gui
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Figure 5.1: Mthread inside Frama-C graphical user interface
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Notice that the id of the node is shown, which offers a way to track down the node
id numbers mentioned in Mthread logs.

(c) The node is highlighted, as well as all the other nodes that are related to the chosen
event. For example, clicking on a Lock mutex node will highlight all the events
that refer to the same mutex. In the control-flow graph for &jobs[0], clicking on
the Lock &locks[1] node will also highlight the Release &locks[1] node.

5.3 Html

Mthread html output, triggered by option -mt-extract html, produces a summary of the
concurrent program, as well as control-flow graphs of each thread as analyzed by Mthread.
Let us start by the first representation extracted from Mthread’s internal control-flow-graph
model: a set of Html pages. This allows easy browsing through the various information
computed by Mthread.

For our simple dining philosophers’ example, these pages can be produced in the directory
html_summary by typing :

% frama -c -mthread -mt -extract html -cpp -command "gcc -C -E -I. -I../ share/"
-slevel 256 -pp-annot ../ share/mthread_pthread.c philo_simple.c

A Html summary of the code (Figure 5.2) is displayed at html_summary/index.html, provid-
ing information about thread creations, lock and unlock directives as well as message queue
uses. There also are links to the various threads encountered in the program. Clicking on one
of those links leads to a summary concerning the given thread. This thread-focused summary
(Figure 5.3) shows the concurrent control-flow graph of the thread (§2.2).

The precision and details shown on this graph can be controlled by Mthread’s options detailed
in 2.2 and Appendix 6. Links to all the other threads are provided but one important feature
here is that the control-flow graph is clickable. A click on the Call aux node yields the
source code behind this node (Figure 5.4). Most of the expressions in the source code page
are themselves clickable, for example to navigate from function to function.
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Figure 5.2: Html summary of dining philosophers
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Figure 5.3: Excerpt from the first philosopher’s control-flow graph

Figure 5.4: Excerpt from the philosophers’ source code
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Chapter 6

Command-line options

This section describes the list of options available to finely tune the behavior of Mthread.
They can also be manually found using frama-c -mt-help. Some experimental options are
intentionally left undocumented.

Basics. As a reminder, the generic options for Mthread are the following:

-mthread This enables the Mthread plug-in. This option is mandatory for any use of Mthread
and launches the Mthread analysis.

-mt-verbose n Change the verbosity of Mthread. Default is 1. Any value strictly above 1
will show the internal state of the analysis at the end of each iteration.

-mt-help Display a short summary of all the Mthread options available.

(The options for Frama-C in general can be obtained through frama-c -kernel-help,
while those for the value analysis are invoked by frama-c -value-help.)

External outputs. The Mthread results printed as html for further study.

-mt-extract html Extracts a partial version of the results found by Mthread as HTML. All
results can be browsed1 starting from the file ./html_summary/index.html.

Control-flow graph options. The options below control how the concurrent control-flow
graphs are displayed and simplified.

-mt-return-edges Link nodes for function calls to their corresponding return nodes. This
makes it easier to see nested calls of big functions. (Set by default)

-mt-non-shared-accesses Do not remove nodes corresponding to accesses to false shared
accesses (§2.3). Not set by default; if the option is set, the accesses are shown in white
in the control-flow graph.

-mt-non-concurrent-accesses Do not remove nodes corresponding to accesses to shared
accesses that occur in a non-concurrent context (§2.3). Set by default, those accesses
are shown in green in the control-flow graph.

1A navigator with support for SVG files is required to display the control-flow graphs.
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-mt-inline-callbacks Simplify the control-flow graph so that multithreaded functions no
longer appear in it, only their effect. Although this option generates simpler control-flow
graph, it may fail if the callbacks access global variables2. Not set by default.

-mt-full-cfg Do not simplify the bodies of functions that contain multithreaded events. All
the statements of those functions will be reflected in the control-flow graphs, which can
result in very big graphs: use this option with caution. Calls to functions that do not
contain multithreaded events are however never inlined in the control-flow graphs. Not
set by default.

Debug options. Those debug options are not intended for general use, but can sometimes
be useful to diagnose a strange behavior of Mthread. Other debug options are unintentionally
not described.

-stop-after <i> Instructs Mthread to only perform at most i iterations of the analysis. If
the analysis has not converged by then, it is stopped, and the remaining steps to perform
are shown on the log.

2This typically happens with mutex or queue ids if all the initializations of the programs are not done by
the main thread.
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AppendixA

Mthread functions available for stubbing

This appendix details the concurrent functions Mthread is able to detect and handle. Their
prototypes can be found in the file $MTSHARE\mthread.h.

Thread-related primitives

• Thread creation, through function __FRAMAC_THREAD_CREATE

• Thread immediate exit, through function __FRAMAC_THREAD_EXIT

• Current thread id, through function __FRAMAC_THREAD_ID

• Thread canceling, through function __FRAMAC_THREAD_CANCEL
(This functions currently cancels the thread regardless of any potential cancelability
state notion, such as the one available in pthread.)

Mutex-related primitives

• Mutex initializing, through function __FRAMAC_MUTEX_INIT

• Mutex locking, through function __FRAMAC_MUTEX_LOCK

• Mutex release, through function __FRAMAC_MUTEX_UNLOCK

Queue-related primitives

• Queue initializing, through function __FRAMAC_QUEUE_INIT

• Message sending, through function __FRAMAC_MESSAGE_SEND

• Message reception, through function __FRAMAC_MESSAGE_RECEIVE

Miscellaneous functions

• Logging, through function __FRAMAC_MTHREAD_SHOW
This function takes as first argument a constant string will be used as a message,
and a number of C values that will be printed after the message. It can be used to
show in the control-flow graph any information relevant to the analysis, and does
not modify the memory state at all.

• Forcing synchronization of unprotected shared values, through the use of the func-
tion __FRAMAC_MTHREAD_SYNC.

More involved concurrency primitives, such as spinlocks etc. . . . are not currently supported.
They may be added to Mthread later.
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