
Developer Manual

Plug-in Development Guide

Version Beryllium-20090601-beta1 � June 23, 2009

Julien Signoles with Virgile Prevosto

CEA LIST, Software Reliability Laboratory

This work has been supported by the 'CAT' ANR project (ANR-05-RNTL-00301).

Contents

Foreword 9

1 Introduction 11

2 Tutorial 13

2.1 Standard Plug-in . 13

2.1.1 Plug-in Integration Overview . 13

2.1.2 Hello Frama-C World . 14

2.2 Kernel-integrated Plug-in . 16

2.2.1 Setup . 16

2.2.2 Plug-in Integration Overview . 17

2.2.3 Hello Frama-C World . 18

2.2.4 Con�guration and Compilation . 18

2.2.5 Connection with the Frama-C World 20

2.2.6 Testing . 21

2.2.7 Copyright your Work . 23

3 Software Architecture 25

3.1 General Description . 25

3.2 Cil: C Intermediate Language . 27

3.3 Kernel . 27

3.4 Plug-ins . 28

4 Advanced Plug-in Development 31

4.1 File Tree Overview . 31

4.2 Con�gure.in . 32

4.2.1 Principle . 32

4.2.2 Addition of a Simple Plug-in . 33

4.2.3 Addition of Library/Tool Dependencies 33

4.2.4 Addition of Plug-in Dependencies . 34

5

CONTENTS

4.2.5 Con�guration of New Libraries or Tools 34

4.3 Make�le.in . 35

4.4 Plug-in Speci�c Make�le . 36

4.4.1 Using Makefile.dynamic . 36

4.4.2 Calling a Plug-in Speci�c Make�le from the Frama-C Make�le 37

4.5 Testing . 38

4.5.1 Using ptests . 38

4.5.2 Con�guration . 39

4.5.3 Alternative Testing . 39

4.6 Plug-in General Services . 40

4.7 Writing messages . 40

4.8 Types as �rst class values . 40

4.9 Journalisation . 41

4.10 Plug-in Registration and Access . 41

4.10.1 Kernel-integrated Registration and Access 41

4.10.2 Dynamic Registration and Access . 42

4.11 Project Management System . 43

4.11.1 Overview and Key Notions . 44

4.11.2 Using Projects . 44

4.11.3 Internal State: Principle . 45

4.11.4 Registering a New Datatype . 47

4.11.5 Registering a New Internal State . 48

4.11.6 Direct Use of Low-level Functor Project.Computation.Register . . . 50

4.11.7 Selections . 51

4.12 Command Line Options . 52

4.13 Initialisation Steps . 54

4.14 Locations . 55

4.14.1 Representations . 55

4.14.2 Map Indexed by Locations . 56

4.15 Visitors . 56

4.15.1 Entry Points . 56

4.15.2 Methods . 57

4.15.3 Action Performed . 57

4.15.4 Visitors and Projects . 57

4.15.5 In-place and Copy Visitors . 58

4.15.6 Di�erences Between the Cil and Frama-C Visitors 59

4.15.7 Example . 59

6

CONTENTS

4.16 GUI Extension . 60

4.17 Documentation . 60

4.17.1 General Overview . 60

4.17.2 Source Documentation . 61

4.17.3 Website . 61

4.18 License Policy . 62

5 Reference Manual 63

5.1 File Tree . 63

5.1.1 Directory cil . 64

5.1.2 Directory src . 65

5.2 Con�gure.in . 67

5.3 Make�les . 68

5.3.1 Overview . 68

5.3.2 Sections of Makefile.in and Makefile.config.in 69

5.3.3 Variables of Makefile.dynamic and Makefile.plugin 71

5.3.4 Makefile.dynamic . 75

5.4 Testing . 76

A Changes 79

Bibliography 81

List of Figures 83

Index 85

7

Foreword

This is the documentation of the Frama-C implementation (available at http://frama-c.

cea.fr) which aims to help any developer to integrate a new plug-in inside this platform. It
was �rst a deliverable of the task 2.3 of the ANR RNTL project CAT (http://www.rntl.
org/projet/resume2005/cat.htm).

The content of this document corresponds to the version Beryllium-20090601-beta1 (June
23, 2009) of Frama-C. However the development of Frama-C is still ongoing: several features
described here may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin, Richard
Bonichon, Loïc Correnson, Pascal Cuoq, Pierre-Loïc Garoche, Nikolaï Kosmatov, Benjamin
Monate, Yannick Moy and Anne Pacalet. We also gratefully thank Johannes Kanig for his
initiation to Mlpost1, the tool used for making the �gures of this document.

1http://mlpost.lri.fr

9

http://frama-c.cea.fr
http://frama-c.cea.fr
http://www.rntl.org/projet/resume2005/cat.htm
http://www.rntl.org/projet/resume2005/cat.htm
http://mlpost.lri.fr

Chapter 1

Introduction

This guide aims at helping any developer to program within the Frama-C platfom, in particular
for developing a new analysis or a new source-to-source transformation through a new plug-in.
For this purpose, it provides a step-by-step tutorial, a general presentation of the Frama-C

software architecture, a set of Frama-C-speci�c programming rules and an overview of the
API of the Frama-C kernel. However it does not provide a complete documentation of the
Frama-C API and, in particular, it does not describe the API of existing Frama-C plug-ins.
This API is documented in the html source code generated by make doc (see Section 4.17.1
for additional details about this documentation).

The reader of this guide may be either a Frama-C beginner who wishes to develop his/her
own analysis with the help of Frama-C, or an intermediate-level plug-in developer who wants
to better understand one particular aspect of the framework, or a Frama-C expert who aims
to remember details about one speci�c point of the Frama-C development.

About this document In order to ease the reading, beginning of sections may state the
category of readers it is intended for and a set of prerequisites.

Appendix A references all the changes made to this document between successive Frama-C

releases.

In the index, page numbers written like 1 reference the de�ning sections for the corresponding
entries while other numbers (like 1) are less important references. Furthermore, the name of
each OCaml value in the index corresponds to an actual Frama-C value. In the Frama-C

source code, the ocamldoc documentation of such a value contains the special tag @plugin

development guide while, in the html documentation of the Frama-C API, the note �Consult
the Plugin Development Guide for additional details� is attached the value name.

Most important paragraphs are displayed inside a gray box like this one. A plug-in devel-
oper must follow them very carefully.

There are numbers pieces of code written in this document. Do not copy/paste them
from the PDF to your favorite text editor because the PDF text may contain non-ASCII
characters prevented the code to compile.

Outline This guide is organised in four parts. The �rst one, Chapter 2, is a step-by-step
tutorial for developing a new plug-in within the Frama-C platform. At the end of this tutorial,
a developer should be able to extend Frama-C with a simple analysis available as a Frama-C

11

CHAPTER 1. INTRODUCTION

plug-in. The second part, Chapter 3, presents the design of the Frama-C software architecture.
The third part, Chapter 4, details how to use all the services provided by Frama-C in order
to develop a fully integrated plug-in. The fourth part, Chapter 5, is a reference manual with
complete documentation for some particular points of the Frama-C platform.

12

Chapter 2

Tutorial

Target readers: beginners.

This chapter aims at helping a developer to write his �rst Frama-C plug-in. At the end of the
tutorial, any developer should be able to extend Frama-C with a simple analysis available as
a Frama-C plug-in. This chapter was written to explain step-by-step how to proceed towards
this goal. It will get you started but does not tell the whole story. In particular, some very
important aspects for the integration in the framework are omitted here and are described in
chapter 4.

Section 2.1 explains the basis for writing a standard Frama-C plug-in while section 2.2 explains
the basis for writing a plug-in integrated with the Frama-C kernel: this is slightly more involved
but allows a deeper integration within the Frama-C architecture. You should do this only if
you intend to contribute a large and very general purpose plug-in to the community.

2.1 Standard Plug-in

This section will teach you how to write the most basic plug-in and run it from the Frama-C

toplevel.

Prerequisite: To follow this tutorial:

• Frama-C needs to be installed in your path;

• the Objective Caml compilers must be installed in your path. These must be the same
compilers as the ones you used to compile Frama-C1;

• GNU make must be in your path.

2.1.1 Plug-in Integration Overview

Figure 2.1 shows how a can integrate with the Frama-C platform. This tutorial focuses on
some parts only of this �gure.

1If you have an Objective Caml version <3.11 then only bytecode plug-ins are available. Upgrade to Objective

Caml >=3.11 if you need native code plug-ins.

13

CHAPTER 2. TUTORIAL

Db.Main

Dynamic?

Plugin

Type?

Journal?

Project?

Make�le.dynamic

Design?

(GUI extension point)

Caption:

? part not covered in this tutorial

registration points

Plug-in directory

Plug-in implementation

Register

Options

. . .

Make�le

Plug-in GUI?

. . .

Figure 2.1: Plug-in Integration Overview.

The implementation of the plug-in is provided inside a speci�c directory. The plug-in registers
with the Frama-C platform through kernel-provided registration points. These registrations
are performed through hooks (by applying a function or a functor). For instance, the next
section shows how to:

• extend the Frama-C entry point thanks to the function Db.Main.extend if you want to
run plug-in speci�c code whenever Frama-C is executed;

• use speci�c plug-in services provided by the module Plugin as adding a new Frama-C

option.

2.1.2 Hello Frama-C World

A very basic plug-in is the 'Hello World' plug-in. This plug-in adds a command line option
-hello to Frama-C and pretty prints the message 'Hello World!' whenever the option is set.
It is possible to program such an option just with the module Arg provided by the Objective

Caml standard library and without the addition of a Frama-C plug-in, but we use this example
to introduce the bases of plug-in development. This plug-in is our running example in this
chapter.

14

2.1. STANDARD PLUG-IN

The 'Hello World' plug-in consists of only two �les: Makefile and hello_world.ml2.

1. Create the two �les Makefile and hello_world.ml containing the lines given in the
frames at the end of this section.

The name of each compilation unit (here hello_world) must be di�erent of the
plug-in name set by the Makefile (here Hello) in order to compile a plug-in.

2. Run make to compile it.

3. Run make install to install the plug-in. You need to have write access to the
$(FRAMAC_LIBDIR)/plugins directory.

4. Test your plug-in with frama-c.byte -hello. The sentence 'Hello Frama-C World!' is
printed.

File Make�le

Example of Makefile for dynamic plugins
###

Frama−c should be properly instal led with "make insta l l "
before any use of this makefile

FRAMAC_SHARE=$(shell frama -c.byte -print -path)

FRAMAC_LIBDIR=$(shell frama -c.byte -print -libpath)

PLUGIN_NAME=Hello

PLUGIN_CMO=hello_world

i n c l u d e $(FRAMAC_SHARE)/ Makefile.dynamic

File hello_world.ml

(∗∗ The traditional 'Hello world ! ' plugin .
It contains one boolean state [Enabled] which can be set by the
command line option "−hello ".
When this option i s set i t just pretty prints a message on the standard
output . ∗)

(∗∗ Register the new plug−in "Hello World" and provide access to some plug−in
dedicated features . ∗)

module S e l f =

Plugin .Reg i s t e r
(s t r u c t

l e t name = "Hello world"

l e t shortname = "hello"

l e t desc r = "The famous 'Hello world ' plugin"

end)

(∗∗ Register the new Frama−C option "−hello ". ∗)
module Enabled =

S e l f .False
(s t r u c t

l e t option_name = "-hello"

l e t desc r = "pretty print \" He l l o world !\""

end)

(∗∗ Print 'Hello World! ' whenever the option i s set . ∗)
l e t run () = i f Enabled. get () then S e l f . r e s u l t "Hello world!"

(∗∗ The code below is not mandatory : you can ignore i t in a f i r s t reading . It
provides an API for the plug−in , so that the function [run] i s cal lable by

2Both �les are distributed within Frama-C and they are available from the directory
src/dummy/hello_world of the source distribution.

15

CHAPTER 2. TUTORIAL

another plug−in and journalized : f i r s t , each plug−in can ca l l [Dynamic. get
"Hello . run" (Type. func Type. unit Type. unit)] in order to ca l l [run]
and second , each ca l l to [run] i s written in the Frama−C journal . ∗)

l e t run =

Dynamic. r e g i s t e r
"Hello.run"

~ j o u r n a l i z e : t r u e
(Type. func Type. uni t Type. uni t)
run

(∗∗ Register the function [run] as a main entry point . ∗)
l e t () = Db.Main. extend run

2.2 Kernel-integrated Plug-in

Target readers: It is only for:

• beginners which have to implement a plug-in requiring a very deep integration within the
Frama-C architecture;

• new Frama-C-kernel developers.

Prerequisite: Getting the Frama-C source.

This section will teach you how to write the most basic kernel-integrated plug-in and run it
from the Frama-C toplevel. This plug-in will be linked with the Frama-C kernel and with all the
other kernel-integrated plug-ins. It is slightly more involved but allows a deeper integration
within the Frama-C architecture. The running example of this section is the very same plug-in
'Hello World' than the one of the previous section.

2.2.1 Setup

Frama-C uses a make�le which is generated by the script configure. This script checks your
system to determine the most appropriate Frama-C con�guration, in particular the plug-ins
that should be available. This �le is itself generated by the autotool autoconf. Consequently,
you have to execute the following commands:

$ autoconf

$./ configure

This generates a proper make�le and lists the available plug-ins. Now you are able to compile
sources with make.

$ make

This compilation produces the following binaries (in a standard con�guration):

• bin/toplevel.byte and bin/toplevel.opt (Frama-C toplevel);

• bin/viewer.byte and bin/viewer.opt (Frama-C GUI);

• bin/ptests.byte (Frama-C testing tool).

Su�xes .byte and .opt respectively correspond to the bytecode and native versions of bina-
ries. If you wish, and before having fun with Frama-C, you can:

16

2.2. KERNEL-INTEGRATED PLUG-IN

• test the compiled platform with make tests;

• generate the source documentation with make doc;

• generate navigation tags for emacs with make tags.

2.2.2 Plug-in Integration Overview

Figure 2.2 shows how a kernel-integrated plug-in may integrate in the Frama-C platform. Some
elements of this �gure are pragmatically explained in the remaining sections of this tutorial.

Db

Db.Main

Plugin

Type?

Journal?

Project?

Plug-in tests suite

. . .
Make�le.in con�gure.in

Plug-in types?

. . .

Design?

(GUI extension point)

Caption:

? part not covered in this tutorial

registration points through hooks

insertion points directly into the pointed �le

Plug-in directory

Plug-in implementation

Register

Options

. . .

Empty plug-in interface

Plug-in GUI?

. . .

Figure 2.2: Kernel-integrated Plug-in Integration Overview.

The implementation of the plug-in is provided inside a speci�c directory and is connected to
the Frama-C platform thanks to some registration points. These registrations are performed

17

CHAPTER 2. TUTORIAL

either through hooks (by applying a function or a functor) or directly by modifying some
speci�c part of Frama-C �les. That is the very major di�erence with integrating standard
plug-ins: standard plug-ins never modify Frama-C �les. For instance, you have to extend Db

with your plug-in-speci�c operations and to register them inside it if you want that someone
uses your plug-in (see Section 2.2.5). However most of the registration way are the same as
standard plug-ins (see Section 2.1) (for instance, extending the Frama-C entry point).

You also have to modify the �les Makefile.in and configure.in in order to properly link
your plug-in with Frama-C (see Section 2.2.4).

Moreover, the developer may provide a plug-in interface (which should usually be empty, see
Section 2.2.5) and aventually speci�c test suites (see Section 2.2.6).

2.2.3 Hello Frama-C World

This section explains how to write the core of a kernel-integrated plug-in Hello. This is a
plug-in which pretty-prints 'Hello World!' whenever the option -hello is set on the Frama-C

command line.

First, we add a new subdirectory hello in directory src.

$ mkdir src/hello

This new directory is going to contain the source �le of our new plug-in3. If you want, you
can have a quick look at src which contains the kernel and existing plug-ins. We only use a
few �les of this directory in this tutorial.

We can now edit the source �le of hello, called src/hello/register.ml. It should contain
exactly the same code than the �le hello_world.ml given page 15 in Section 2.1.2: there is
not a so big di�erence between kernel-integrated plug-ins and the other ones.

Recommendation 2.1 In Frama-C, the name of the �main� �le of a plug-in p should always
be called either register.ml or p_register.ml.

At this point, we have a compilable plug-in made of a main function run.

2.2.4 Con�guration and Compilation

Here we explain how to compile the plug-in hello. Section 4.2 and 4.3 provide more details
about the con�guration and compilation of plug-ins.

Con�guration As explained in Section 2.2.1, Frama-C uses both autoconf and make in order
to compile. Consequently, we have to modify both �les configure.in and Makefile.in in
order to compile our plug-in within Frama-C. In both �les, some prede�ned scripts help with
plug-in integration.

In order to compile the hello plug-in, �rst add the following lines into configure.in4. They
indicate how to con�gure hello, especially whether it has to be compiled or not.

File con�gure.in

3As the plug-in hello is tiny, it has only one source �le.
4In this document, a comment containing ... among lines of code represents an undisplayed piece of code

written either previously in the document or by someone else.

18

2.2. KERNEL-INTEGRATED PLUG-IN

Add the following l ines after other plug−in configurations ,
in the section 'Plug−in sections ' .

hello
#######
check_plugin(hello ,src/hello ,[support for hello plug -in],yes ,no)

These lines correspond to the standard scheme for con�guring a new plug-in. Function
check_plugin is de�ned in configure.in. Its �rst argument is the plug-in name, the second
one is the plug-in directory (the directory containing the plug-in source �les), the third one
is a help message, the fourth one indicates whether the plug-in is available by default (here
yes says that the plug-in is available by default and a user may use option �disable-hello

to disactivate the plug-in) and the last one indicates whether the plug-in will be dynamically
linked within Frama-C (here no says that the plug-in will be statically linked).

Now we are ready to execute

$ autoconf

$./ configure

and to check that the new plug-in hello is going to compile: you should have the line

checking for src/hello ... yes

hello ... yes

in the con�guration summary.

Compilation Once configure.in is extended, we also have to modify Makefile.in with
the following lines.

File Make�le.in

Add the following l ines after other plug−ins compilation directives ,
in the section 'Plug−in sections ' .

#########
Hello
#########
PLUGIN_ENABLE := @ENABLE_HELLO@

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

PLUGIN_NO_TEST :=yes

i n c l u d e Makefile.plugin

These lines use the prede�ned make�le Makefile.plugin which is a generic make�le dedicated
to the compilation of one plug-in. There are more than twenty variables than can be used to
customize the behavior of Makefile.plugin. These variables are all described in Section 5.3.3,
but most of them have reasonable default values so that it is not necessary to describe more
than the few above.

Now we brie�y explain the variables that are set for hello.

• PLUGIN_ENABLE indicates that the plug-in should be compiled. Here we use the variable
@ENABLE_HELLO@ set by configure.in.

• PLUGIN_NAME is the name of the plug-in.

The variable PLUGIN_NAME must hold a valid OCaml module name (in particular it
must be capitalised).

19

CHAPTER 2. TUTORIAL

• PLUGIN_DIR is the directory containing the source �le(s) for the plug-in.

• PLUGIN_CMO is the list of the .cmo �les (without the extension .cmo nor the plug-in
path) required to compile the plug-in.

• PLUGIN_NO_TEST is set to yes because there is no speci�c test directory for the plug-in
(see Section 2.2.6 about plug-in testing).

Now we are ready to compile Frama-C with the new plug-in hello.

$ make

At this point, the plug-in works properly: a Frama-C user can run the plug-in safely.

$./bin/toplevel.byte -hello

Hello World!

2.2.5 Connection with the Frama-C World

The plug-in hello is now compiled but it is not fully registered within the Frama-C framework.
In particular, our plug-in should be added in the plug-in database Db in order to be simply
used by other plug-ins (see Chapter 3 for details).

Extension of the Plug-in Database For this purpose, we have to extend Db with the
new plug-in hello.

File src/kernel/db.mli

...

(∗∗ Hello World plug−in .
@see <. . / hello/index .html> internal documentation . ∗)

module Hel lo : s i g
v a l run: (Format. f o rmatte r → uni t) r e f (∗∗ Print "hello world". ∗)

end
...

File src/kernel/db.ml

...

module Hel lo = s t r u c t l e t run = mk_fun "Hello_world.run" end
...

The interface declares a new module Hello containing a single function run. Indeed run is
a reference to a function. This reference is not initialised in the implementation of Db: we
use mk_fun (declared in the opened module Extlib) in order to declare the reference without
instantiating it. This instantiation has to be done by the plug-in itself. Otherwise, a call to
!Db.run raises the exception Extlib.NotYetImplemented. In order to �x this, we modify the
module Register as follows.

File src/hello/register.ml

... d e f i n i t i o n o f run
l e t () = Db.Hel lo . run ← run

It is important to note that the reference Db.Hello.run is set at the OCaml module initiali-
sation step. So the body of each Frama-C function can safely dereference it.

20

2.2. KERNEL-INTEGRATED PLUG-IN

Documentation We have properly documented the interface of Db with ocamldoc through
special comments between (** and *). This documentation is generated by make doc. In par-
ticular, this command also generates an internal documentation for hello which is accessible
in the directory doc/code/hello.

Hiding the Implementation Finally, we hide the implementation of hello to other de-
velopers in order to enforce the architecture invariant which is that each plug-in should be
used through Db (see Chapter 3). For this purpose we add an empty interface to the plug-in
in the following way.

File src/hello/Hello.mli

(∗∗ Hello World plug−in .

No function i s directly exported : they are registered in {!Db.Hello }. ∗)

Note the unusual capitalisation of the �lename Hello.mli which is required for compilation
purposes.

Indeed, thanks to Makefile.plugin, each plug-in is packed into a single module
$(PLUGIN_NAME) (here Hello) and we simply export an empty interface for it.

We also have to explain to Makefile.plugin that we use our own interface hello.mli

for Hello. For this purpose, in Makefile.in, we add the following line before including
Makefile.plugin.

File Make�le.in

#########
Hello
#########
PLUGIN_ENABLE := @ENABLE_HELLO@

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

PLUGIN_NO_TEST :=yes

PLUGIN_HAS_MLI :=yes # Add this single l ine
i n c l u d e Makefile.plugin

2.2.6 Testing

Frama-C provides a tool, called ptests, in order to perform non-regression and unit tests. This
tool is detailed in Section 4.5. This section only covers basic use of ptests. First we have to
create a test directory for hello

$ mkdir tests/hello

and, in Makefile.in, we have to remove the line PLUGIN_NO_TEST:=yes.

File Make�le.in

#########
Hello
#########
PLUGIN_ENABLE := @ENABLE_HELLO@

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

#PLUGIN_NO_TEST:=yes # Remove this single l ine

21

CHAPTER 2. TUTORIAL

PLUGIN_HAS_MLI :=yes

i n c l u d e Makefile.plugin

Now we can add the following test hello.c in directory tests/hello.

File tests/hello/hello.c

/* run.config

OPT: -hello

*/

/* A test of the plug -in hello does not require C code anyway. */

It is possible to test the new plug-in on this �le with the command

$./bin/toplevel.byte -hello tests/hello/hello.c

which should display

[preprocessing] running gcc -C -E -I. tests/hello.c

Hello Frama -C World!

The speci�c output of the plug-in hello is the last line.

It is also possible to use ptests to run tests automatically.

$./bin/ptests.byte hello

The above command runs the Frama-C toplevel on each C �le contained in the directory
tests/hello. For each of them, it also uses directives following run.config given at the top
of �les. Here, for the test tests/hello/hello.c, the directive speci�es that the toplevel has
to be executed with the option -hello. Below is the output of this command.

% Dispatch finished , waiting for workers to complete

% System error wh i l e comparing. Maybe one of the files is missing ...

tests/hello/result/hello.res.log or tests/hello/oracle/hello.res.oracle

% System error wh i l e comparing. Maybe one of the files is missing ...

tests/hello/result/hello.err.log or tests/hello/oracle/hello.err.oracle

% Comparisons finished , waiting for diffs to complete

% Diffs finished. Summary:

Run = 1

Ok = 0 of 2

This result says that testing fails because it is not possible to compare the execution results
with previously stored results (oracles). You have to execute:

$./bin/ptests.byte -update hello

Thus each time one executes ptests.byte, di�erences with the saved oracles are displayed.
Furthermore, you can easily check whether the changes in plug-in hello are compliant with
all existing tests. For example, if we execute one more time:

$./bin/ptests.byte hello

% Diffs finished. Summary:

Run = 2

Ok = 2 of 2

This indicates that everything is alright.

Finally, you can also check if your changes break something else in the Frama-C kernel or in
other plug-ins by executing ptests on all default tests with make tests.

22

2.2. KERNEL-INTEGRATED PLUG-IN

Note to SVN users If you have write access to the SVN repository, you may commit your
changes into the archive. Before that, you have to perform non-regression tests in order to
ensure that your modi�cations do not break the archive.

So you must execute the following commands.

$ svn add ... # Do not forget new oracles

$ svn up

$ make tests

$ emacs5 Changelog

$ svn commit -m "informative message"

If you created any new �les, use the svn add command to add them into the archive.
The svn up command updates your local directory with respect to the root repository.
The make tests command performs the non-regression tests. Finally, if and only if the
regression tests do not expose any problem, update the �le Changelog according to your
changes and commit them thanks with the svn commit command.

2.2.7 Copyright your Work

Target readers: developers with a SVN access.

If you want to redistribute plug-in hello, you have to choose a license policy for it (compatible
with Frama-C). Section 4.18 provides details about how to proceed. Here, suppose we want to
put the plug-in hello under the Lesser General Public License (LGPL) and CEA copyright,
you simply have to edit the section �File headers: license policy� of Makefile.in with the
following line:

File Make�le.in

CEA_LGPL= src/hello /*.ml* # . . . others f i l e s

Now executing:

$ make headers

This adds an header on �les of plug-in hello in order to indicate that they are under the
desired license.

5Or what other text editor you want to use.

23

Chapter 3

Software Architecture

Target readers: beginners.

In this chapter, we present the software architecture of Frama-C. First, Section 3.1 presents
its general overview. Then, we focus on three di�erent parts:

• Section 3.2 introduces the API of Cil [12] seen by Frama-C;

• Section 3.3 shows the organisation of the Frama-C kernel; and

• Section 3.4 explains the plug-in integration.

3.1 General Description

Frama-C (Framework for Modular Analyses of C) is a software platform which helps the
development of static analysis tools for C programs thanks to a plug-ins mechanism. This
platform has to provide services in order to ease

• analysis and source-to-source transformation of big-size C programs;

• addition of new plug-ins; and

• plug-ins collaboration.

In order to reach these goals, Frama-C is based on a software architecture with a speci�c design
which is presented in this document. Figure 3.1 summarizes it. Mainly this architecture is
separated in three di�erent parts:

• Cil (C Intermediate Language) [12] extended with an implementation of the speci�cation
language ACSL (ANSI/ISO C Speci�cation Language) [1]. That is the intermediate
language upon which Frama-C is based. See Section 3.2 for details.

• The Frama-C kernel. That is a toolbox on top of Cil dedicated to static analyses. It
provides data structures and operations which help the developer to deal with the Cil

AST (Abstract Syntax Tree), as long as general services providing an uniform set of
features to Frama-C. See Section 3.3 for details.

• The Frama-C plug-ins. That is analyses or source-to-source transformations which use
the kernel and possibly others plug-ins through their API take in the Frama-C kernel.
See Section 3.4 for details.

25

CHAPTER 3. SOFTWARE ARCHITECTURE

Plug-ins

Standard Plug-ins

Plug-in 1 . . . Plug-in n

Kernel-integrated Plug-ins

Plug-in 1 . . . Plug-in p

Plug-ins API inside Frama-C

Plug-ins Values

Db Dynamic

Kernel-integrated Plug-ins Types

Plug-in types 1 . . . Plug-in types q

Frama-C Kernel

Speci�c Services

AST Manipulation Memory States

Abstract Interpretation Lattices

Utilities

General Services

Project

Plugin Journal

Cmdline

Type Log

Extended Cil

Extended Cil API

Extended Cil Kernel
Lexing, Parsing, Typing, Linking

Extended Cil AST

Figure 3.1: Architecture Design.

26

3.2. CIL: C INTERMEDIATE LANGUAGE

3.2 Cil: C Intermediate Language

Cil [12] is a high-level representation along with a set of tools that permit easy analysis and
source-to-source transformation of C programs.

Frama-C uses Cil as a library which performs the main steps of the compilation of C programs
(pre-processing, lexing, parsing, typing and linking) and outputs an abstract syntax tree
(AST) ready for analysis. From the Frama-C developer's point of view, Cil is a toolbox usable
through its API and providing:

• the AST description (module Cil_types);

• useful AST operations (module Cil);

• some simple but useful miscellaneous datastructures and operations (mainly in module
Cilutil); and

• some syntactic analysis like a (syntactic) call graph computation (module Callgraph)
or generic forward/backward data�ow analysis (module Dataflow).

Frama-C indeed extends Cil with ACSL (ANSI/ISO C Speci�cation Language) [1], its speci�-
cation language. The extended Cil API consequently provides types and operations in order
to properly deal with annotated C programs.

Cil modules belong to directory (and subdirectories of) cil/src.

3.3 Kernel

On top of the extended Cil API, the Frama-C kernel groups together speci�c services providing
in di�erent modules which are described below.

• In addition to the Cil utilities, Frama-C provides useful operations (mainly in module
Extlib) and datastructures (e.g. specialised version of association tables like Rangemap).
These modules belong to directories src/lib and src/misc and they are not speci�c to
analysis or transformation of C programs.

• Frama-C provides generic lattices useful for abstract interpretation (module
Abstract_interp) and some pre-instantiated arithmetic lattices (module Ival). The
abstract interpretation toolbox is available in directory src/ai.

• Frama-C also provides di�erent representations of C memory-states (module Locations)
and data structures using them (e.g. association tables indexing by memory-states in
modules Lmap and Lmap_bitwise). The memory-state toolbox is available in directory
src/memory_state.

• Moreover, directory src/kernel provides a bunch of very helpful operations over the
extended Cil AST. For example, module Globals provides operations dealing with global
variables, functions and annotations while module Visitor provides inheritable classes
in order to permit easy visiting, copying or in-place modi�cation of the AST.

Besides, Frama-C also provides some very general-purpose services, used by all other modules
(even the Frama-C version of Cil), which are shortly described below.

27

CHAPTER 3. SOFTWARE ARCHITECTURE

• Module Log provides an uniform way to display user messages in Frama-C.

• Module Cmdline parses the Frama-C command line.

• Module Plugin provides a high-level API on top of the two previous modules for the
plug-in developer: a developer usually uses this modules and does not use modules Log
nor Cmdline.

• Module Type is a library handling OCaml types as �rst-class values. Such values are
required by journalization and registration of dynamic values. See section 4.8 for details.

• Module Journal handles how Frama-C journalizes its actions. See section ?? for details.

• In directory src/project, the Frama-C kernel embeds a library, called Project, which
permits the consistency of results for multi-analysis of multi-ASTs in a dynamic setting.
See section 4.11 for details.

3.4 Plug-ins

In Frama-C, plug-ins are analysis or source-to-source transformations. Each of them is an
extension point of the Frama-C kernel. Frama-C allows plug-in collaborations: a plug-in p
can use a list of plug-ins p1, . . . , pn and conversely. Mutual dependences between plug-ins
are even possible. If a plug-in is designed to be used by another plug-in, its API has to be
registered, either in module Dynamic or in module Db. This last way is only available for
kernel-integrated plug-ins.

More generally, the set of functionalities available for a standard plug-in and for a kernel-
integrated plug-in are mostly the same. The di�erences between a standard plug-in and a
kernel-integrated one are listed Figure 3.4.

Functionality Standard plug-in Kernel-integrated plug-in

dynamic linking default possible
static linking possible default

API in Dynamic possible possible
API in Db no possible by modifying the kernel

add new abstract types possible possible
add new concrete types no possible by modifying the kernel

Figure 3.2: Di�erences between standard plug-ins and kernel-integrated ones.

Both kinds of plug-ins may be either dynamically linked or statically linked within the Frama-

C kernel. dynamic linking is the standard way for standard plug-ins while static linking is the
standard way for kernel-integrated plug-ins.

Dynamic linking is only available in native mode if you have Objective Caml 3.11 or higher
as long as a supported architecture. See the Objective Caml manual [9] for additional
details.

Both kinds of plug-ins may register their API through module Dynamic, but the standard way
for kernel-integrated plug-ins is the use of module Db. Kernel-integrated plug-ins may also
declare any types inside the Frama-C kernel thanks to the so-called `Kernel-integrated Plug-ins

28

3.4. PLUG-INS

Types' . Such types are usable by any plug-in, and even by some parts of the Frama-C kernel.
However any plug-in may still register a new abstract type and use it through the function
provided by the plug-in API. See Section 4.10 for details.

29

Chapter 4

Advanced Plug-in Development

This chapter details how to use services provided by Frama-C in order to be fully operational
with the development of plug-ins. Each section describes technical points a developer should
be aware of. Otherwise, one could �nd oneself in one or more of the following situations 1

(from bad to worse):

1. reinventing the (Frama-C) wheel;

2. being unable to do some speci�c things (e.g. saving results of your analysis on disk, see
Section 4.11.3);

3. introducing bugs in your code;

4. introducing bugs in other plug-ins using your code;

5. breaking the kernel consistency and so potentially breaking all the Frama-C plug-ins
(e.g. if you modify the AST without changing of project, see Section 4.11.2).

In this chapter, we suppose that the reader is able to write a minimal plug-in like hello

described in chapter 2 and knows about the software architecture of Frama-C 3. Moreover
plug-in development requires to use advanced features of OCaml (module system, classes and
objects, etc). Static plug-in development requires some knowledge of autoconf and make.
Each section summarizes its own prerequisites at its beginning (if any).

Note that the following subsections can be read in no particular order: their contents are
indeed quite independent from one another even if the re are references from one chapter to
another one. Pointers to reference manuals (Chapter 5) are also provided for readers who
want full details about speci�c parts.

4.1 File Tree Overview

Target readers: beginners.

The Frama-C main directory is split in several sub-directories. Frama-C source code is mostly
provided in directories cil and src. The �rst one contains the source code of Cil [12] extended

1It is fortunately quite di�cult (but not impossible) to fall into the worst situation by mistake if you are
not a kernel developer.

31

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

with an ACSL [1] implementation. The second one is the core implementation of Frama-C.
This last directory contains directories of the Frama-C kernel and directories of the provided
Frama-C plug-in.

A pretty complete description of the Frama-C �le tree is provided in Section 5.1.

4.2 Con�gure.in

Target readers: not for standard plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

In this Section, we detail how to modify the �le configure.in in order to con�gure plug-ins
(Frama-C con�guration has been introduced in Section 2.2.1 and 2.2.4).

First Section 4.2.1 introduces the general principle and organisation of configure.in. Then
Section 4.2.2 explains how to con�gure a new simple plug-in without any dependency. Next we
show how to exhibit dependencies with external libraries and tools (Section 4.2.3) and with
other plug-ins (Section 4.2.4). Finally Section 4.2.5 presents the con�guration of external
libraries and tools needed by a new plug-in but not used anywhere else in Frama-C.

4.2.1 Principle

When you execute autoconf, �le configure.in is used to generate script configure. Each
Frama-C user executes this script which checks his system to determine the most appropriate
con�guration: at the end of this con�guration (if it is successful), the script summarizes the
status of each plug-in which can be:

• available (everything is �ne with this plug-in);

• partially available: either an optional dependency of the plug-in is not fully available,
or a mandatory dependency of the plug-in is only partially available; or

• not available: either the plug-in itself is not provided by default, or a mandatory de-
pendency of the plug-in is not available.

The important notion in the above de�nitions is dependency . A dependency of a plug-in
p is either an external library/tool or another Frama-C plug-in. It is either mandatory or
optional. A mandatory dependency must be present in order to build p, whereas an optional
dependency provides to p additional but not highly required features (especially p must be
compilable without any optional dependency).

Hence, for the plug-in developer, the main role of configure.in is to de�ne the optional
and mandatory dependencies of each plug-in. Another standard job of configure.in is the
addition of options �-enable-p and �-disable-p to configure for a plug-in p. These options
respectively forces p to be available and disables p (its status is automatically �not available�).

Indeed configure.in is organised in di�erent sections specialised in di�erent con�guration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described in Section 5.2. Now we focus on the
modi�cations to perform in order to integrate a new plug-in in Frama-C.

32

4.2. CONFIGURE.IN

4.2.2 Addition of a Simple Plug-in

In order to add a new plug-in, you have to add a new subsection for the new plug-in to Section
Plugin wished. This action is usually very easy to perform by copying/pasting from another
existing plug-in (e.g. occurrence) and by replacing the plug-in name (here occurrence) by
the new plug-in name in the pasted part. In these sections, plug-ins are sorted according to
a lexicographic ordering.

For instance, SectionWished Plug-in introduces a new sub-section for the plug-in occurrence

in the following way.

occurrence
############
check_plugin(occurrence ,src/occurrence ,

[support for occurrence analysis],yes ,no)

The �rst argument is the plug-in name, the second one is the name of directory containing
the source �les of the plug-in, the third one is a help message for the �enable-occurence

option of con�gure, the fourth one indicates if the plug-in is enabled by default and the last
one indicates if the plug-in will be dynamically linked within the Frama-C kernel.

The macro check_plugin sets the following variables: FORCE_OCCURRENCE,
REQUIRE_OCCURRENCE, USE_OCCURRENCE and ENABLE_OCCURRENCE. DYNAMIC_OCCURRENCE.

The �rst one indicates if the user explicitly requires the availability of occurrence via setting
the option �-enable-occurrence. The second and third ones are used by others plug-ins
in order to handle their dependencies (see Section 4.2.4). The fourth ENABLE_OCCURRENCE

indicates the plug-in status (available, partially available or not available). At the end of
these lines of code, it says if the plug-in should be compiled: if �-enable-occurrence is set,
then ENABLE_OCCURRENCE is yes (plug-in available); if �-disable-occurrence, then its value
is no (plug-in not available). If no option is speci�ed on the command line of configure,
its value is set to the default one (according to $default). Finally, DYNAMIC_OCCURRENCE
indicates whether the plug-in will be dynamically linked within the Frama-C kernel.

4.2.3 Addition of Library/Tool Dependencies

Three di�erent variables are set for each external library and tool used in Frama-C which are

• HAS_library

• REQUIRE_library

• USE_library

where library is the name of the considered library or tool (see Section 4.2.5 for explanations
about their initialisations and their uses).

HAS_library indicates whether the library is available on this platform (its value is yes)
or not (its value is no). This last value is accessible in Makefile.in through the variable
@HAS_library@ (see Section 4.3). Actually we are not concerned by this value in this section.

REQUIRE_library (resp. USE_library) is a list of plug-in names (separated by spaces). It
contains the plug-ins for which library is a mandatory (resp. an optional) dependency. So
you have to extend these lists in order to add some library/tool dependencies for a new plug-in
p.

33

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Recommendation 4.1 The best place to perform such extensions is just after the addition
of p which sets the value of ENABLE_p.

Example 4.1 Plug-in gui requires Lablgtk2 [7]. So, just after its declaration, there are the
following lines in configure.in.

i f test "$ENABLE_GUI" == "yes"; then
REQUIRE_LABLGTK=${REQUIRE_LABLGTK}" gui"

f i

These lines specify that Lablgtk2 must be available on the system if the user wants to compile
gui.

4.2.4 Addition of Plug-in Dependencies

Adding a dependency with another plug-in is quite the same as adding a dependency with
an external library or tool (see Section 4.2.3). For this purpose, configure.in uses vari-
ables REQUIRE_plugin and USE_plugin (in the same way that variables REQUIRE_library and
USE_library: they are lists of plug-in names for which plugin is respectively a mandatory
dependency or an optional dependency).

From the viewpoint of a plug-in developer , the di�erence between libraries and tools is that
the best place to indicate such dependencies is not just after the addition of the plug-in: needed
variables REQUIRE_plugin and USE_plugin could be undeclared at this point (in particular in
the case of mutually dependent plug-ins). So dependency indications are postponed at the
top of Section Plug-in dependencies of configure.in.

Example 4.2 Plug-In value requires plug-in from and may use plug-in gui (for
ValViewer [4]). So lists REQUIRE_FROM and USE_GUI contain value. Moreover, as many plug-
ins require value, list REQUIRE_VALUE is quite big. In particular, it contains plug-in from:
both plug-ins value and from are indeed mutually dependent.

4.2.5 Con�guration of New Libraries or Tools

Con�guration of new libraries and con�guration of new tools are similar. In this section, we
therefore choose to focus on the con�guration of new libraries.

Section 4.2.3 explains how to depend on some external library library. Nevertheless if library
is not used by Frama-C anywhere else, you have to con�gure it.

First, you have to declare the three variables set by each library: HAS_library, USE_library
and REQUIRE_library. This is performed in Section Con�guration of Plug-in Libraries of �le
configure.in. You should not assign values to these variables (just declare them).

Next, you have to export HAS_library in Makefile.in through AC_SUBST(HAS_library) in
Section Make�le Creation of configure.in.

Last but not least, you have to check that the library is available on the user system.
A prede�ned macro called configure_library helps the plug-in developer in this task2.
configure_library takes three arguments. The �rst one is the (uppercase) name of the
library, the second one is a �lename which is used by the script to check the availability of
the library. In case there are multiple locations possible for the library, this argument can be

2For tools, there is a macro configure_tool which works in the same way as configure_library.

34

4.3. MAKEFILE.IN

a list of �lenames. In this case, the argument must be properly quoted (i.e. enclosed in a [,
] pair). Each name is checked in turn. The �rst one which corresponds to an existing �le is
selected and put in the variable SELECTED_$library$. If no name in the list corresponds to
an existing �le, the library is considered to be unavailable. The last argument is a warning
message to display if a con�guration problem appear (usually because the library does not
exist). Using these arguments, the script checks the availability of the library and, according
to it, disables (resp. partially disables) the plug-ins requiring (resp. optionally using) it3.

When checking for Objective Caml libraries and object �les, remember that they come in two
�avors: bytecode and native code, which have distinct su�xes. Therefore, you should use the
variables LIB_SUFFIX (for libraries) and OBJ_SUFFIX (for object �les) to check the presence of
a given �le. These variables are initialized at the beginning of the configure script depending
on the availability of a native-code compiler on the current installation.

Example 4.3 The library Lablgtksourceview (used to have a better rendering of C sources in
the GUI) can be found either as part of Lablgtk2 or as an independent library. This is checked
through the following command:

configure_library(

[GTKSOURCEVIEW],

[$OCAMLLIB/lablgtk2/lablgtksourceview.$LIB_SUFFIX ,

$OCAMLLIB/lablgtksourceview/lablgtksourceview.$LIB_SUFFIX],

[lablgtksourceview not found])

Moreover, we want to distinguish the two cases, as the independent library denotes a legacy
version of Lablgtksourceview, which has been merged with Lablgtk2. This is done by pattern-
matching on the variable SELECTED_GTKSOURCEVIEW as shown below:

case $SELECTED_GTKSOURCEVIEW in

$OCAMLLIB/lablgtksourceview/lablgtksourceview.$LIB_SUFFIX)

HAS_LEGACY_GTKSOURCEVIEW=yes

;;

esac

4.3 Make�le.in

Target readers: not for standard plug-in developers.

Prerequisite: knowledge of make.

In this section, we detail the use of Makefile.in dedicated to Frama-C compilation. This �le
is split in several sections which are described in Section 5.3.2. By default, executing make

only displays an overview of commands. For example, here is the output of the compilation
of source �le src/kernel/db.cmo.

$ make src/kernel/db.cmo

Ocamlc src/kernel/db.cmo

If you wish the exact command line, you have to set variable VERBOSEMAKE to yes like below.

$ make VERBOSEMAKE=yes src/kernel/db.cmo

ocamlc.opt -c -w Ael -warn -error A -dtypes -I src/misc -I src/ai

-I src/memory_state -I src/toplevel -I src/slicing_types -I src/pdg_types

-I src/kernel -I src/logic -I src/cxx_types -I src/gui -I lib/plugins

-I lib -I src/lib -I src/project -I src/buckx -I external -I src/project

-I src/buckx -I cil/src -I cil/src/ext -I cil/src/frontc -I cil/src/logic

-I cil/ocamlutil -g src/kernel/db.ml

3As plug-in dependencies are checked after this check, plug-ins are not recursively disabled here.

35

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

In order to integrate a new plug-in, you have to extend section �Plug-ins�. For this purpose,
you have to include Makefile.plugin for each new plug-in (hence there are as many lines
include Makefile.plugin as plug-ins). Makefile.plugin is a generic make�le dedicated to
plug-in compilation. Before its inclusion, a plug-in developer can set some variables in order
to customize its behavior. These variables are fully described in Section 5.3.3.

These variables must not be used anywhere else in Makefile.in. Moreover, for setting
them, you must use := and not =4.

Example 4.4 For compiling the plug-in Value, the following lines are added into
Makefile.in.

##################
Value analysis
##################
PLUGIN_ENABLE := @ENABLE_VALUE@

PLUGIN_NAME := Value

PLUGIN_DIR :=src/value

PLUGIN_CMO := state_set kf_state eval kinstr register

PLUGIN_GUI_CMO := value_gui

PLUGIN_HAS_MLI :=yes

PLUGIN_NO_TEST :=yes

PLUGIN_UNDOC := value_gui.ml

i n c l u d e Makefile.plugin

As said above, you cannot use the parameters of Makefile.plugin anywhere in Makefile.in.
You can yet use some plugin-in speci�c variables once Makefile.plugin has been included.
These variables are detailed in Section 5.3.3.

One other variable has to be modi�ed by a plug-in developer if he uses �les which do not
belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set). This variable is
UNPACKED_DIRS and corresponds to the list of non plug-in directories containing source �les.

A plug-in developer should not modify any other part of Makefile.in or
Makefile.plugin.

4.4 Plug-in Speci�c Make�le

Prerequisite: knowledge of make.

In this section, we detail how to add a Make�le to a plug-in. Section 4.4.1 introduces how to
write a Make�le for its own plug-in thanks to Makefile.dynamic while Section 4.4.2 explains
how to integrate it in Makefile.in.

4.4.1 Using Makefile.dynamic

In this section, we detail how to write a Make�le for its own plug-in. Even if it is still
possible to write such a Make�le from scratch, Frama-C provides a generic Make�le, called
Makefile.dynamic, which helps the plug-in developer to write it. This �le is installed in the
Frama-C share directory. So for writting your plug-in speci�c Make�le, you have to:

4Using := only sets the variable value from the a�ectation point (as usual in most programming langages)
whereas using = would rede�ne the variable value for each of its occurrences in the make�le (see Section 6.2
�The Two Flavors of Variables� of the GNU Make Manual [6]).

36

4.4. PLUG-IN SPECIFIC MAKEFILE

1. set some variables for customizing your plug-in;

2. include Makefile.dynamic.

Example 4.5 A minimal Makefile is shown below. That is the Make�le of the plug-in Hello

World presented in the tutorial (see Section 2.1.2). Each variable set in this example has to
be set by any plug-in.

Example of Makefile for dynamic plugins
###

Frama−c should be properly instal led with "make insta l l "
before any use of this makefile

FRAMAC_SHARE=$(shell frama -c.byte -print -path)

FRAMAC_LIBDIR=$(shell frama -c.byte -print -libpath)

PLUGIN_NAME=Hello

PLUGIN_CMO=hello_world

i n c l u d e $(FRAMAC_SHARE)/ Makefile.dynamic

FRAMAC_SHARE must be set to the Frama-C share directory while FRAMAC_LIB must be set to the
Frama-C lib directory. PLUGIN_NAME is the capitalized name of your plug-in while PLUGIN_CMO

is the list of the �les .cmo generated from your OCaml sources.

For running your speci�c Make�le, you must have properly installed Frama-C before.

Eventually it may be required to do make depend before running make.

Which variable can be set and how they are useful is explained Section 5.3.3. Furthermore,
Section 5.3.4 explains the speci�c features of Makefile.dynamic.

4.4.2 Calling a Plug-in Speci�c Make�le from the Frama-C Make�le

Target readers: kernel-integrated plug-in developers using the SVN repository of Frama-C.

Even if you are writting a kernel-integrated plug-in, it is useful to have your plug-in speci�c
Make�le. For instance, it allows you to easily release your plug-in independently of Frama-C.
However, if your version of Frama-C is changing frequently, it is useful to compile together
Frama-C and your plug-in without installing Frama-C each time. To reach this goal, you have
to mix the integration in Makefile.in described in Section 4.3 and the solution presented
in this section: in the section �Plug-ins� of Makefile.in you just have to set few variables
before including your plug-in speci�c Make�le

Example 4.6 For compiling the plug-in Ltl_to_acsl, the following lines are added into
Makefile.in.

PLUGIN_ENABLE := @ENABLE_LTL_TO_ACSL@

PLUGIN_DIR :=src/ltl_to_acsl

PLUGIN_DYNAMIC := @DYNAMIC_LTL_TO_ACSL@

DISTRIB_FILES += $(PLUGIN_DIR)/ Makefile

i n c l u d e $(PLUGIN_DIR)/ Makefile

37

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.5 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-
regression and unit tests.

ptests runs the Frama-C toplevel on each speci�ed test (which are usually C �les). Speci�c
directives can be used for each test. Each result of the execution is compared from the
previously saved result (called the oracle). Test is successful if and only if there is no di�erence.
Actually the number of results is twice that the number of tests because standard and error
outputs are compared separately.

First Section 4.5.1 shows how to use ptests. Next Section 4.5.2 explains how to con�gure tests
through directives. Last Section 4.5.3 describes how to set up various testing goals for the
same test base.

4.5.1 Using ptests

The simplest way of using ptests is through make tests which is roughly equivalent to

$ t ime ./bin/ptests.byte

This command runs all the tests belonging to a sub-directory of directory tests. ptests also
accepts speci�c test suites in arguments. A test suite is either a name of a sub-directory in
directory tests or a �lename (with its complete path).

Example 4.7 If you want to test plug-in sparecode and speci�c test tests/pdg/variadic.c,
just run

$./bin/ptests.byte sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)

% Dispatch finished , waiting for workers to complete

% Comparisons finished , waiting for diffs to complete

% Diffs finished. Summary:

Run = 8

Ok = 16 of 16

ptests accepts di�erent options which are used in order to customize one test sequence. These
options are detailed in Section 5.4.

Example 4.8 If code of plug-in plug-in has changed, a typical sequence of tests is the fol-
lowing one.

$./bin/ptests.byte plug -in

$./bin/ptests.byte -update plug -in

$ make tests

So we �rst run the tests suite corresponding to plug-in in order to display what tests have
been modi�ed by the changes. After checking the displayed di�erences, we validate the changes
by updating the oracles. Finally we run all the test suites in order to ensure that the changes
do not break anything else in Frama-C.

38

4.5. TESTING

4.5.2 Con�guration

In order to exactly perform the test that you wish, some directives can be set in three di�erent
places. We indicate �rst these places and next the possible directives.

The places are:

• inside �le tests/test_config;

• inside �le tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test �le, in a special comment of the form

/* run.config

... directives ...

*/

In each of the above case, the con�guration is done by a list of directives. Each directive has
to be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The di�erent directives (i.e. possibilities for
CONFIG_OPTION) are detailed in Section 5.4.

Example 4.9 Test tests/sparecode/calls.c declares the following directives.

/* run.config

OPT: -sparecode -analysis

OPT: -slicing -level 2 -slice -return main -slice -print

*/

They say that we want to test sparecode and slicing analyses on this �le. Thus running the
following instruction executes two test cases.

$./bin/ptests.byte tests/sparecode/calls.c

% Dispatch finished , waiting for workers to complete

% Comparisons finished , waiting for diffs to complete

% Diffs finished. Summary:

Run = 2

Ok = 4 of 4

4.5.3 Alternative Testing

You may want to set up di�erent testing goals for the same test base. Common cases include:

• checking the result of an analysis with or without an option;

• checking a preliminary result of an analysis, in particular if the complete analysis is
costly;

• checking separately di�erent results of an analysis.

This is possible with option -config of ptests, which takes as argument the name of a special
test con�guration, as in

$./bin/ptests.byte -config <special_name > plug -in

Then, the directives for this test can be found:

39

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• inside �le tests/test_config_<special_name>;

• inside �le tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test �le, in a special comment of the form

/* run.config_ <special_name >

... directives ...

*/

All operations for this test con�guration should take option -config in argument, as in

$./bin/ptests.byte -update -config <special_name > plug -in

In addition, tests relying on custom dynamically-linked plug-ins must either be always exe-
cuted in bytecode or provide an alternative con�guration named no_native_dynlink which
performs the test in bytecode, in order for the test to be launched on architectures which
do not support native dynlink. If those tests have other special con�gurations, they must
similarly provide for each them a corresponding <special_name>_no_native_dynlink.

4.6 Plug-in General Services

Module Plugin provides an access to some general services available for all plug-ins. The
goal of this module is twofold. First, it helps the developper to use some features of Frama-C.
Second, it allows to provide to the end-user a common set of features for all plug-ins. To
access to these services, you have to apply the functor Plugin.Register.

Each plug-in must apply this functor exactly once.

Example 4.10 Here is how the plug-in From applies the functor Plugin.Register for its
own use.

i n c l u d e Plugin .Reg i s t e r
(s t r u c t

l e t name = "from analysis"

l e t shortname = "from"

l e t desc r = "functional dependencies"

end)

Applying this functor mainly provides two di�erent services. First it gives access to functions
for printing messages in a Frama-C-compliant way (see Section 4.7). Second it allows to de�ne
plug-in speci�c parameters available as option on the Frama-C command line for the end-user
(see Section 4.12).

4.7 Writing messages

TODO: not written yet

4.8 Types as �rst class values

TODO: not written yet

40

4.9. JOURNALISATION

4.9 Journalisation

TODO: not written yet

4.10 Plug-in Registration and Access

In this section, we present how to register plug-ins and how to access them. Actually there
are two di�erent ways to register plug-ins depending on whether they are kernel-integrated
or not (cf Section 3.4).

Section 4.10.1 indicates how to register and access a kernel-integrated plug-in while Sec-
tion 4.10.2 details how to register and access a standard plug-in.

4.10.1 Kernel-integrated Registration and Access

Target readers: kernel-integrated plug-ins developers.

Prerequisite: Accepting to modify the Frama-C kernel. Otherwise, you can still register
your plug-in as any standard plug-in (see Section 4.10.2 for details).

A database, called Db (in directory src/kernel), groups together the API of all kernel-
integrated plug-ins. So it permits easy plug-in collaborations. Each kernel-integrated plug-in
is only visible through Db. For example, if a plug-in A wants to know the results of another
plug-in B, it uses the part of Db corresponding to B. A consequence of this design is that each
plug-in has to register in Db by setting a function pointer to the right value in order to be
usable from others plug-ins.

Example 4.11 Plug-in Impact registers function compute_pragmas in the following way.

File src/impact/register.ml

l e t compute_pragmas () = ...

l e t () = Db. Impact.compute_pragmas ← compute_pragmas

So each developer who wants to use this function calls it by pointer dereferencing like this.

l e t () = !Db. Impact.compute_pragmas ()

If a kernel-integrated plug-in has to export some datatypes usable by other plug-ins, such
datatypes have to be visible from module Db. Thus they cannot be declared in the plug-in
implementation itself like any other plug-in declaration because postponed type declarations
are not possible in Objective Caml.

Such datatypes are called plug-in types. The solution is to put these plug-ins types in some �les
linked before Db; hence you have to put them in another directory than the plug-in directory.
The best way is to create a directory dedicated to types even if it is possible to put a single �le
in another directory or to put a single type in an existing �le (like src/kernel/db_types.mli).

Recommendation 4.2 The suggested name for this directory is p_types for a plug-in p.

41

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

If you add such a directory, you also have to modify Makefile.in by extending variable
UNPACKED_DIRS (see Section 5.3.3).

Example 4.12 Suppose you are writing a plug-in plug-in which exports a speci�c type t

corresponding to the result of the plug-in analysis. The standard way to proceed is the following.

File src/plugin_types/plugin_types.mli

t ype t = ...

File src/kernel/db.mli

module Plugin : s i g
v a l run_and_get: (uni t → Plugin_types. t) r e f

(∗∗ Run plugin analysis (i f i t was never launched before) .
@return result of the analysis . ∗)

end

File Make�le.in

UNPACKED_DIRS= ... plugin_types

Extend this variable with the new directory

This design choice has a side e�ect : it reveals exported types. You can always hide them
using a module to encapsulate the types (and provide corresponding getters and setters to
access them).

At this point, part of the plug-in code is outside the plug-in implementation. This code should
be linked before Db 5.

To this e�ect, the �les containing the exterior plug-in code must be added to the Makefile

variable PLUGIN_TYPES_CMO (see Section 5.3.3).

4.10.2 Dynamic Registration and Access

Target readers: standard plug-ins developers.

Registration of kernel-integrated plug-ins requires to modify module Db which belongs to
the Frama-C kernel. Such a modi�cation is not possible for standard plug-ins which are
fully independent of Frama-C. Consequently, the Frama-C kernel provides another way for
registering a plug-in through the module Dynamic.

Shortly, you have to use the function Dynamic.register in order to register a value from
a dynamic plug-in and you have to use function Dynamic.get in order to apply a function
previously registered with Dynamic.register.

Registering a value The signature of Dynamic.register is as follows.

v a l r e g i s t e r : s t r i n g → 'a Type. t → 'a → uni t

5A direct consequence is that you cannot use the whole Frama-C functionalities inside this code, such as
module Db.

42

4.11. PROJECT MANAGEMENT SYSTEM

The �rst argument is a binding name of the registered OCaml value. It must not be used
for value registration anywhere else in the Frama-C world. It is required for another plug-in
in order to access to this value (see next paragraph). The second argument is the so-called
type value of the registered value, i.e. an OCaml value representing its type (see Section 4.8
for additional details). It is required for safety reasons when accessing to the registered value
(see next paragraph). Prede�ned type values exist in modules Type (for usual OCaml types
like int) and Kernel_type (for usual Frama-C types like Cil_types.varinfo). The third
argument is the value itself.

Example 4.13 Here is how the function run of the plug-in hello of the tutorial is registered.
The type of this function is unit → unit.

l e t run () = ...

l e t () = Dynamic. r e g i s t e r "Hello.run" (Type. func Type. uni t Type. uni t) run

If the string "Hello.run" is already used to register a dynamic value, then the exception
Type.AlreadyExists is raised during plug-in initialisation (see Section 4.13).

The function call Type.func Type.unit Type.unit returns the type value of unit → unit.
Note that, because of the type of Dynamic.register and the types of its arguments, the
OCaml type checker complains if the third argument (here the value run) has not the type
unit → unit.

Calling a previously-registered function The signature of function Dynamic.get is as
follows.

v a l get : s t r i n g → 'a Type. t → 'a

The �rst argument must be the binding name of the OCaml value registered with
Dynamic.register. The second argument is the type value of this registered value. It is
required for safety reasons. The third argument is the value itself.

Example 4.14 Here is how the previously registered function run of Hello may be applied.

l e t () = Dynamic. get "Hello.run" (Type. func Type. s t r i n g Type. uni t) ()

The given string and the given type value have to be the same than the ones used
when registering the function. Otherwise, the exceptions Type.Unbound_value and
Type.StringTbl.Incompatible_Type are respectively raised. Furthermore, because of the
type of Dynamic.get and the types of its arguments, the OCaml type checker complains either
if the third argument (here ()) is not of type unit or if the returned value (here () also) is
not of type unit.

4.11 Project Management System

Prerequisite: knowledge of OCaml module system and labels.

In Frama-C, a key notion detailed in this section is the one of project. Technical details may
also be found in a related article [13]. Section 4.11.1 �rst introduces the general principle of
project. Then Section 4.11.2 explains how to simply use them. Section 4.11.3 introduces the
so-called internal states for which registration is detailed in Sections 4.11.4, 4.11.5 and 4.11.6.
Section 4.11.4 is dedicated to so-called datatypes. Section 4.11.5 is dedicated to the internal
states themselves. Section 4.11.6 is dedicated to low-level registration. Finally Section 4.11.7
shows how to handle projects and internal states in a clever and proper way.

43

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.11.1 Overview and Key Notions

In Frama-C, many (mostly global) data are attached to an AST. For example, there are the
AST itself, options of the command line (see Section 4.12) and tables containing results of
analyses (Frama-C extensively uses memoization [10, 11] in order to avoid re-computating
analyses). The set of all these data is called a project . It is the only value savable on the disk
and restorable by loading.

Several ASTs can exist at the same time in Frama-C and thus several projects as well; there
is one AST per project. Besides each data has one value per AST: thus there are as many
values for each data as projects/ASTs.

The set of all the projects stands for the internal state of Frama-C : it consists of all the ASTs
de�ned in Frama-C and, for each of them, the corresponding values of all the attached data.

A related notion is internal state of a data d. That is the di�erent values of d in projects:
for each data, the cardinal of this set is equal to the cardinal of the internal state of Frama-C

(i.e. the number of existing projects).

These notions are summarized in Figure 4.1. One row contains the value of each data for a
speci�c project and one line represents an internal state of a speci�c data.

hhhhhhhhhhhhhhhhhInternal states
Projects

Project p1 . . . Project pn

AST a value of a in p1 . . . value of a in pn

data d1 value of d1 in p1 . . . value of d1 in pn

.
data dm value of dm in p1 . . . value of dm in pn

Figure 4.1: Representation of the Frama-C Internal State.

4.11.2 Using Projects

Actually Frama-C maintains a current project (Project.current ()) and a current AST
(Ast.get ()) which all operations are automatically performed on. But sometimes plug-in
developers have to explicitly use them, for example when the AST is modi�ed (usually through
the use of a copy visitor, see Section 4.15) or replaced (e.g. if a new one is loaded from disk).

An AST must never be modi�ed inside a project. If such an operation is
required, you must create a new project with a new AST, usually by using
File.init_project_from_cil_file or File.init_project_from_visitor.

Operations over projects are grouped together in module Project. A project has type
Project.t. Function Project.set_current sets the current project on which all operations
are implicitly performed on the new current project.

Example 4.15 Suppose that you saved the current project into �le foo.sav in a previous
Frama-C session6 thanks to the following instruction.

Pro j ec t . save "foo.sav"

6A session is one execution of Frama-C (through frama-c or frama-c-gui).

44

4.11. PROJECT MANAGEMENT SYSTEM

In a new Frama-C session, executing the following lines of code (assuming the value analysis
has never been computed previously)

l e t print_computed () = Format. p r i n t f "%b@." (Db.Value. is_computed ()) i n
print_computed (); (∗ fa l se ∗)
l e t o ld = Pro j ec t . cur rent () i n
t r y

l e t f oo = Pro j ec t . load ~name:"foo" "foo.sav" i n
Pro j ec t . set_current foo ;
!Db.Value.compute ();

print_computed (); (∗ true ∗)
Pro j ec t . set_current o ld ;
print_computed () (∗ fa l se ∗)

with Pro j ec t . IOError _ →
e x i t 1

displays

false

true

false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An alternative to the use of Project.set_current is the use of Project.on which applies
an operation on a given project without changing the current project (i.e. locally switch the
current project in order to apply the given operation and, after, restore the initial context).

Example 4.16 The following code is equivalent to the one given in Example 4.15.

l e t print_computed () = Format. p r i n t f "%b@." (Db.Value. is_computed ()) i n
print_computed (); (∗ fa l se ∗)
t r y

l e t f oo = Pro j ec t . load ~name:"foo" "foo.sav" i n
Pro j ec t .on foo

(fun () → !Db.Value.compute (); print_computed () (∗ true ∗)) ();

print_computed () (∗ fa l se ∗)
with Pro j ec t . IOError _ →

e x i t 1

It displays

false

true

false

4.11.3 Internal State: Principle

If a data should be part of the internal state of Frama-C, you must register it as an internal
state (also called a computation because it is often related to memoization).

Here we �rst explain what are the functionalities of each internal state and then we present
the general principle of registration.

Internal State Functionalities

Whenever you want to attach a data (e.g. a table containing results of an analysis) to an
AST, you have to register it as an internal state. The main functionalities provide to each
internal state are the following.

45

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• It is automatically updated whenever the current project changes: so your data is always
consistent with the current project.

• It is part of the information saved on disk for restoration in a later session.

• It may be part of a selection which is, roughly speaking, a set of internal states. Which
such a selection, you can control which internal states project operations are applied
on (see Section 4.11.7). For example, it is possible to clear all the internal states which
depend of the value analysis.

• It is possible to ensure inter-analysis consistency by setting internal state dependen-
cies. For example, if the entry point of the analysed program is changed (using
Globals.set_entry_point), all the results of analyses depending of it (like the value
analysis) are automatically reset. If such a reset was not performed, the results of the
value analysis would be not consistent with the current entry point.

Example 4.17 Suppose that the value analysis has previously been computed.

Format. p r i n t f "%b@." (!Db.Value. is_computed ()); (∗ true ∗)
Globals . set_entry_points "f" t r u e ;
Format. p r i n t f "%b@." (!Db.Value. is_computed ()); (∗ fa l se ∗)

As the value analysis has been reset by setting the entry point, the above code outputs

true

false

Internal State Registration: Overview

For registering a new internal state, functor Project.Computation.Register is provided.
Actually it is quite a low-level functor. Higher-level functors are provided to the developer
by modules Computation and Kernel_computation that register internal states in a simpler
way. They internally apply the low-level functor in a proper way. Module Computation

provides internal state builders for standard OCaml datastructures like hashtables whereas
Kernel_computation does the same for standard Frama-C datastructures (like hashtables
indexed by AST statements)7.

Registering a new internal state must be performed before parsing com-
mand line option. For this purpose, you can register your function through
Cmdline.run_after_extending_stage (see Section 4.13).

Section 4.11.5 details how to register a new computation.

The registration of a data of type τ requires to register the type τ itself as a datatype us-
ing functor Project.Datatype.Register. A datatype is a type that is aware of projects.
Similarly to computations, module Datatype (resp. Kernel_datatype) provides pre-de�ned
datatypes and datatypes-builder for elaborated types8. Section 4.11.4 details how to register
a new datatype.

Example 4.18 If you have to register a reference to a boolean initialized to false as an
internal state, you have to write the following code.

7These datastructures are only mutable datastructures (like hashtables, arrays and references) because
global states are always mutable.

8On the contrary to computations, these types are either mutable or persistent because the registration of
a type may require the registration of its subtypes (in the sense of syntactically contained in).

46

4.11. PROJECT MANAGEMENT SYSTEM

module My_Bool_Ref =

Computation.Ref
(s t r u c t i n c l u d e Datatype.Bool l e t de f au l t = f a l s e end)
(s t r u c t l e t dependenc ies = [] l e t name = "My_Bool_Ref" end)

4.11.4 Registering a New Datatype

In order to register a new datatype, you have to apply functor Project.Datatype.Register
which is a quite low-level functor. In most cases, a direct application of this functor is actually
not required because some higher-level and easier-to-use functor does it for you. We explain
here the three di�erent possible situations.

Simple registration If the datatype to register is not hash-consed9 or does not contain
hash-consed ones (i.e. it is not itself hash-consed or composed of Cil_types.fundec, or any
Frama-C abstract interpretation type), the easiest way of registering a new datatype d is to
apply one of functors Persistent or Imperative of module Project.Datatype, depending
on the nature of d (whether it is persistent). The only di�erence between both functors is
that you have to provide a copy function for imperative (i.e. mutable) datatypes. This copy
function is only used by Project.copy.

Example 4.19 For registering a type t containing an immutable �eld a, just do

t ype a = { a : i n t }

Pro j ec t .Datatype.Pe r s i s t e n t (s t r u c t t ype t = a l e t name = "a" end)

If the �eld a is mutable, just write

t ype a = { mutable a : i n t }

Pro j ec t .Datatype. Imperat ive
(s t r u c t

t ype t = a
l e t copy x = { a = x.a }

l e t name = "a"

end)

Using prede�ned datatypes or datatype builders For most useful types, the corre-
sponding datatypes are already provided in modules Datatype (e.g. Datatype.Int for type
int) and Kernel_datatype (e.g. Kernel_datatype.Stmt for type Cil_types.stmt). More-
over both modules provides a bunch of functors which help to build complex datatypes when
Project.Datatype.Persistent and Project.Datatype.Imperative cannot be used. Inter-
faces of modules Datatype and Kernel_datatype provided all the available modules.

Example 4.20 For registering the type of an hashtable associating varinfo to list of kernel
functions, it is not possible to apply functor Project.Datatype.Imperative because a kernel
function is composed of Cil_types.fundec. But it is still easy to perform the registration
thanks to prede�ned functors:

Kernel_datatype.VarinfoHashtbl
(Datatype. L i s t (Kernel_datatype.KernelFunction))

9Hash-consing is a programming technique saving memory blocks and speeds up operations on datastruc-
tures when sharing is maximal [5, 8, 2, 3].

47

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Direct use of the low-level functor In some cases (e.g. registering a new variant type
composed of a kernel function), applying functor Project.Datatype.Register is required.
As input, one has to provide:

• The type itself.

• How to copy and to rehash it (usually just rebuild the structure by applying the right
copy and rehash functions on subterms).

• A name for the datatype.

Example 4.21 The type of postdominators is the following variant.

t ype postdominator = Value o f C i l u t i l .StmtSet. t | Top

The corresponding registed datatype used to store results of the postdominator computation is
the following (see �le src/postdominators/compute.ml).

Pro j ec t .Datatype.Reg i s t e r
(s t r u c t

t ype t = postdominator
l e t map f = f u n c t i o n

| Top → Top
| Value s e t → Value (f s e t)

l e t copy = map Kernel_datatype.StmtSet.copy
l e t rehash = map Kernel_datatype.StmtSet. rehash
l e t name = "postdominator"

end)

4.11.5 Registering a New Internal State

Here we explain how to register and use an internal state in Frama-C. Registration through
the use of low-level functor Project.Computation.Register is postponed in Section 4.11.6
because it is more tricky and rarely useful.

In most non-Frama-C applications, a state is a (usually global) mutable value. One can use it
in order to store results of the analysis. For example, inside Frama-C, the following piece of
code would use value state in order to memoize some information attached to statements.

open C i l u t i l
t ype i n f o = Kernel_funct ion . t * Cil_types . va r i n f o
l e t s t a t e : i n f o StmtHashtbl. t = StmtHashtbl. c r e a t e 97

l e t compute_info = ...

l e t memoize s =

t r y StmtHashtbl. f i nd s t a t e s
with Not_found → StmtHashtbl.add s t a t e s (compute_info s)

l e t run () = ... !Db.Value.compute (); ... memoize some_stmt ...

However, if one puts this code inside Frama-C, it does not work because this state is not
registered as a Frama-C internal state. A direct consequence is that it is not saved on the
disk. For this purpose, one has to transform the above code into the following one.

module State =

Kernel_computation.StmtHashtbl
(Datatype.Couple

(Kernel_datatype.KernelFunction)(Kernel_datatype.Varinfo))
(s t r u c t

l e t s i z e = 97

l e t name = "state"

l e t dependenc ies = [Db.Value. s e l f]

end)
l e t compute_info = ...

l e t memoize = State .memo compute_info
l e t run () = ... !Db.Value.compute (); ... memoize some_stmt ...

48

4.11. PROJECT MANAGEMENT SYSTEM

A quick look on this code shows that the declaration of the state itself is much more com-
plicated (it uses a functor application) but the use of state is simpler. Actually what has
changed?

1. To declare a new internal state, apply one of the prede�ned functors in modules
Computation or Kernel_computation (see interfaces of these modules for the list
of available modules). Here we use StmtHashtbl which provides an hashtable in-
dexed by statements. The type of values associated to statements is a couple of
Kernel_function.t and Cil_types.varinfo. The �rst argument of the functor is
the datatype corresponding to this type (see Section 4.11.4). The second argument pro-
vides some additional information: the initial size of the hashtable (an integer similar to
the argument of Hashtbl.create), a name for the resulting state and its dependencies.
This list of dependencies is built upon values self which are provided by the application
of the low-level functor Project.Computation.Register. This value is called the kind
of the internal state (also called state kind and can be used for this purpose. Roughly
speaking, it represents the internal state itself.

2. From outside, a state actually hides its internal representation in order to ensure some
invariants: operations on states implementing hashtable does not take an hashtable in
argument because they implicitly use the hidden hashtable. In our example, a prede-
�ned memo function is used in order to memoize the computation of compute_info.
This memoization function implicitly operates on the hashtable hidden in the internal
representation of State.

Postponed dependencies A plug-in p may want to export its state kind (in the previous
example, that is value State.self). This exportation o�ers the possibility to other plug-ins
to depend on this state. It is a bit tricky because the state kind has to be accessible through
Db.

There is two ways to achieve such a goal. First, the internal state has to be compiled before
Db: usually the internal state has to be somewhere in directory p_types (see Section 4.10.1).
Actually it is quite di�cult because the computation of the internal state may be complex
and so should not be in p_types.

The second way is to put a delayed reference to self (i.e. the state kind) in Db thanks to
Project.Computation.dummy which provides a dummy kind. This reference is going to be
initialised at the plug-in initialisation time (see Section 4.13). Now if another plug-in has an
internal state which depends on !Db.My_plugin.self, it cannot put the dependence when the
functor creating the state is applied because the order of plug-in initialisation is not speci�ed
(see Section 4.13 for more details about initialisation steps). So you have to postpone the addi-
tion of this dependency; usually by using the function Cmdline.run_after_extending_stage

(see Section 4.13).

Example 4.22 Plug-in from postpones its internal state in the following way.

File src/kernel/db.mli

module From = s t r u c t
...

v a l s e l f : Pro j ec t .Computation. t r e f
end

File src/kernel/db.ml

49

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

module From = s t r u c t
...

v a l s e l f = r e f Pro j ec t .Computation.dummy (∗ postponed ∗)
end

File src/from/register.ml

module Functionwise_Dependencies =

Kernel_funct ion .Make_Table
(Function_Froms.Datatype)
(s t r u c t

l e t name = "functionwise_from"

l e t s i z e = 97

l e t dependenc ies = [Value. s e l f]

end)
l e t () =

(∗ performed at module in i t i a l i sa t ion runtime . ∗)
Db.From. s e l f ← Functionwise_Dependencies. s e l f

Plug-in pdg uses from for computing its own internal state. So it declares this dependency as
follow.

File src/pdg/register.ml

module Tbl =

Kernel_funct ion .Make_Table
(PdgTypes.Pdg.Datatype)
(s t r u c t

l e t name = "Pdg.State"

l e t dependenc ies = [] (∗ postponed ∗)
l e t s i z e = 97

end)
l e t () =

Cmdline. run_after_extending_stage
(fun () → Pro j ec t .Computation.add_dependency Tbl. s e l f !Db.From. s e l f)

For standard plug-ins, it is possible to register state kinds in the same way that any other
value through Dynamic.register (see Section 4.10.2).

4.11.6 Direct Use of Low-level Functor Project.Computation.Register

Functor Project.Computation.Register is the only functor which really registers an internal
state. All the others internally use it. In some cases (e.g. if you de�ne your own mutable
record used as a state), you have to use it. Actually, in the Frama-C kernel, there is no direct
use of this functor.

This functor takes three arguments. The �rst and the third ones respectively correspond to
the datatype and to information (name and dependencies) of the internal states: they are
similar to the corresponding arguments of the high-level functors (see Section 4.11.5).

The second argument explains how to handle the local version of the value of the internal state
(under registration). Indeed here is the key point: from the outside, only this local version
is used for e�ciency purpose. It would work if projects do not exist. Each project knows a
global version: the set of these global versions is the so-called internal states. The project
management system automatically switches the local version when the current project changes
in order to conserve a physical equality between local version and current global version. So,
for this purpose, the second argument provides a type t (type of values of the state) and
four functions create (creation of a new fresh state), clear (cleaning a state), get (getting
a state) and set (setting a state).

50

4.11. PROJECT MANAGEMENT SYSTEM

The following invariants must hold:10

create () returns a fresh value (4.1)

∀p of type t, create () = (clear p; set p; get ()) (4.2)

∀p of type t, copy p returns a fresh value (4.3)

∀p1, p2 of type tsuch that p1 != p2, (set p1; get ()) != p2 (4.4)

Invariant 4.1 ensures that there is no sharing with any fresh value of a same internal state:
so each new project has got its own fresh internal state. Invariant 4.2 ensures that cleaning a
state resets it to its initial value. Invariant 4.3 ensures that there is no sharing with any copy.
Invariant 4.4 is a local independence criteria which ensures that modifying a local version
does not a�ect any other version (di�erent of the global current one) by side-e�ect.

Example 4.23 To illustrate this, we show how functor Computation.Ref (registering a state
corresponding to a reference) is implemented.

module Ref(Data:REF_INPUT)(In f o : Signature .NAME_DPDS) = s t r u c t
t ype data = Data. t
l e t c r e a t e () = r e f Data. de f au l t
l e t s t a t e = r e f (c r e a t e ())

Here we use an additional reference: our local version is a reference on the right state. We
can use it in order to safely and easily implement get and set required by the registration.

i n c l u d e Pro j ec t .Computation.Reg i s t e r
(Datatype.Ref(Data))
(s t r u c t

t ype t = data r e f (∗ we register a reference on the given type ∗)
l e t c r e a t e = c r e a t e
l e t c l e a r tb l = t b l ← Data. de f au l t
l e t get () = ! s t a t e
l e t s e t x = s t a t e ← x

end)
(In f o)

For users of this module, we export �standard� operations which hide the local indirection
required by the project management system.

l e t s e t v = ! s t a t e ← v
l e t get () = !(! s t a t e)
l e t c l e a r () = ! s t a t e ← Data. de f au l t

end

As you can see, the above implementation is error prone; in particular it uses a double indi-
rection (reference of reference). So be happy that higher-level functors like Computation.Ref

are provided which hide you such implementations.

4.11.7 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have two
optional parameters only and except of type Project.Selection.t. These parameters allow
to specify which internal states the operation applies on:

• If only is speci�ed, the operation is only applied on the selected internal states.

10As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

51

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• If except is speci�ed, the operation is applied on all internal states, except the selected
ones.

• If both only and except are speci�ed, the operation only applied on the only internal
states, except the except ones.

A selection is roughly speaking a set of internal states. Moreover it handles states dependencies
(that is the speci�city of selections).

Example 4.24 The following statement clears all the results of the value analysis and all its
dependencies in the current project.

Pro j ec t . c l e a r
~ only :

(Pro j ec t . S e l e c t i o n . s i n g l e t on Db.Value. s e l f Kind.Select_Dependencies)
()

The argument Kind.Select_Dependencies says that we also want to clear all the states which
depend on the value analysis.

Use selections carefully: if you apply a function f on a selection s and if f handles a state
which does not belong to s, then the Frama-C state becomes lost and inconsistent.

Example 4.25 The following statement applies a function f in the project p (which is not
the current one). For e�ciency purpose, we restrict the considered states to the command
line options (see Section 4.12).

Pro j ec t .on ~ only :(Plugin . ge t_se l e c t i on ()) p f ()

This statement only works if f gets only values of the command line options. If it tries to
get the value of another state, the result is unspeci�ed and all actions using any state of the
current project and of project p also become unspeci�ed.

4.12 Command Line Options

Prerequisite: knowledge of the OCaml module system.

Values associated with command line options are called parameters. The parameters of the
Frama-C kernel are stored in module Parameters while the plug-in speci�c ones have to be
de�ned in the plug-in source code.

In Frama-C, a parameter is actually a structure implementing signature Plugin.Parameter

in order to handle projects: each parameter is indeed an internal state (see Section 4.11.5).
Actually a bunch of signatures extended Plugin.Parameter are provided in order to deal with
the usual parameter types. For example, there are signatures Plugin.INT and Plugin.BOOL

for integer and boolean parameters. Mostly, these signatures provide getters and setters for
parameters.

Implementing such an interface is very easy thanks to internal functors provided by the output
module of Plugin.Register. Indeed, you have just to choose the right functor according to
your option type and eventually the wished default value. Below is a list of most useful
functors (see the signature Plugin.General_services for an exhaustive list).

52

4.12. COMMAND LINE OPTIONS

1. False (resp. True) builds a boolean option initialised to false (resp. true).

2. Int (resp. Zero) builds an integer option initialised to a speci�ed value (resp. to 0).

3. String (resp. EmptyString) builds a string option initialised to a speci�ed value (resp.
to the empty string "").

4. IndexedVal builds an option for any datatype τ as soon as you provides a partial
function from strings to value of type τ .

Each functor takes as argument (at least) the name of the command line option corresponding
to the parameter and a short description for this option.

Example 4.26 The parameter corresponding to the option -occurrence of the plug-in
occurrence is the module Print (de�ned in the �le src/occurrence/options.ml). It is
implemented as follow.

module Print =

False
(s t r u c t

l e t option_name = "-occurrence"

l e t desc r = "print results of occurrence analysis"

end)

So it is a boolean parameter initialised by default to false. The declared interface for this
module is simply

module Print : Plugin .INT

Another example is the parameter corresponding to the option -security-lattice of the
plug-in security is the module Lattice (de�ned in the �le src/security/options.ml). It
is implemented as follow.

module Lat t i c e =

St r ing
(s t r u c t

l e t option_name = "-security -lattice"

l e t de f au l t = "weak"

l e t arg_name = ""

l e t desc r = "specify security lattice"

end)

So it is a string parameter initialised by default to the string "weak". The �eld arg_name is
set to the empty string: so a default name for the argument of this option will be choose by
Frama-C while displaying the help of this parameter. The �eld descr is the help message. The
Interface for this module is simple:

module Lat t i c e : Plugin .STRING

Recommendation 4.3 Parameters of a same plug-in plugin should belong to a module
called Options or Plugin_options inside the plug-in directory.

Using a kernel parameters of a parameter of your own plug-in is very simple: you have simply
to call the function get corresponding to your parameter.

Example 4.27 To know whether Frama-C uses unicode, just write

Parameters.UseUnicode. get ()

53

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

Inside the plug-in From, just write

From_parameters.ForceCallDeps . get ()

in order to know whether callsite-wise dependencies has been required.

Using a parameter of a plug-in p outside p (for instance in another plug-in) requires the use of
module Parameters.Dynamic because the module de�ning the parameter is not visible from
the outside of its plug-in, so the option is accessible by any other plug-ins (and by the Frama-C

kernel as well). Functions of sub-modules of module Parameters.Dynamic takes a string in
argument which is the option name associated with the parameter.

Example 4.28 Outside the plug-in From, just write

Parameters.Dynamic.Bool. get "-calldeps"

in order to know whether callsite-wise dependencies has been required.

4.13 Initialisation Steps

Prerequisite: knowledge of linking of OCaml �les and OCaml labels.

In a standard way, Frama-C modules are initialised in the link order which remains mostly
unspeci�ed, so you have to use side-e�ects at module initialisation time carefully.

As side e�ects are sometimes useful, Frama-C provides some ways to put it at di�erent initial-
isation times. For this purpose, the module Cmdline provides di�erent functions to register
an hook executed at di�erent stages of the parsing of the Frama-C command line (see Sec-
tion 4.11.5). Actually, the whole Frama-C initialisation process is enclosed in module Boot

(the last linked module) which is the main entry point of Frama-C.

In order to clear what is done when Frama-C is booting, we better specify the Frama-C ini-
tialisation order below.

1. Running each Frama-C compilation unit in a mostly unspeci�ed order. The only as-
sumptions are the following:

• the dependency order speci�ed in the architecture overview (Figure 3.1, Section 3.1)
is preserved;

• for each plug-in p, the non-gui �les of p are run before the the gui �les of p (if any)
;

• the �le src/kernel/bool.ml is the last linked module.

In particular, the initialisation of the module Cmdline performs a very early parsing
stage of the command line in order to detect the initial con�guration. A plug-in devel-
oper cannot customize this parsing stage.

2. Starting the journal if required (see Section 4.9)

3. Creating the default project

4. Parsing each command line option register at the stage Cmdline.Extending.

54

4.14. LOCATIONS

5. Running each function registered through Cmdline.run_after_extending_stage in an
unspeci�ed order. Most functions initialise postponed internal-state dependencies (see
Section 4.11.5).

6. Parsing each command line option register at the stage Cmdline.Exiting.

7. Running each function registered through Cmdline.run_after_exiting_stage in an
unspeci�ed order. These functions may stop Frama-C quickly.

8. Parsing each command line option register at the stage Cmdline.Loading.

9. Running each function registered through Cmdline.run_after_loading_stage in an
unspeci�ed order. These functions set the initial stage of Frama-C.

10. Parsing each command line option register at the stage Cmdline.Configuring.

11. Running each function registered through Cmdline.run_after_configuring_stage in
an unspeci�ed order. Usually these functions initialise plug-ins according to the argu-
ments provided on the command line.

12. Running each function registered through Cmdline.run_as_the_main in an unspec-
i�ed order. Usually these functions are used in order to launch the right Frama-C

entry point. For instance, one of them usually run each function registered through
Db.Main.extendMain.extend.

4.14 Locations

Prerequisite: Nothing special (apart of core OCaml programming).

In Frama-C, di�erent representations of C locations exist. Section 4.14.1 presents them. More-
over, maps indexed by locations are also provided. Section 4.14.2 introduces them.

4.14.1 Representations

There are four di�erent representations of C locations. Actually only three are really relevant.
All of them are de�ned in module Locations. They are introduced below. See the documen-
tation of src/memory_state/locations.mli for details about the provided operations on
these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int)
&a) + 13. With this representation, there is no way to know the size of a value while
it is still possible to join two values. Roughly speaking it is represented by a mapping
between C variable and o�sets in bytes.

• Type location is used to represent the right part of a C a�ectation (including bit�elds).
It is represented by a Location_Bits.t (see below) attached to a size. It is possible to
join two locations if and only if they have the same sizes.

• Type Location_Bits.t is similar to location_Byte.t with o�sets in bits instead of
bytes. Actually it should only be used inside a location.

55

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

• Type Zone.t is a set of bits (without any speci�c order). It is possible to join two zones
even if they have di�erent sizes.

Recommendation 4.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of di�erent sizes. If you
require to convert locations to zones, use function Locations.valid_enumerate_bits.

As join operators are provided for these types, they can be easily used in abstract interpre-
tation analyses (which can themselves be implemented thanks to one of functors of module
Dataflow, see Section 5.1.1).

4.14.2 Map Indexed by Locations

Modules Lmap and Lmap_bitwise provide functors implementing maps indexed by locations
and zones (respectively). The argument of these functors have to implement values attached
to indices (locations or zones).

These implementations are quite more complex than simple maps because they automati-
cally handle overlaps of locations (or zones). So such implementations actually require that
structures implementing values attached to indices are lattices (i.e. implement signature
Abstract_interp.Lattice). For this purpose, functors of the abstract interpretation tool-
box can help (see in particular module Abstract_interp).

4.15 Visitors

Prerequisite: knowledge of OCaml object programming.

Cil o�ers a visitor, Cil.cilVisitor that allows to traverse (parts of) an AST. It is a class
with one method per type of the AST, whose default behavior is simply to call the method
corresponding to its children. This is a convenient way to perform local transformations
over a whole Cil_types.file by inheriting from it and rede�ning a few methods. However,
the original Cil visitor is of course not aware of the internal state of Frama-C itself. Hence,
there exists another visitor, Visitor.generic_frama_c_visitor, which handles projects in
a transparent way for the user. There are very few cases where the plain Cil visitor should be
used.

Basically, as soon as the initial project has been built from the C source �les (i.e. one of
the functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few di�erences between the two (the Frama-C visitor inherits from the Cil one).
These di�erences are summarized in Section 4.15.6, which the reader already familiar with Cil

is invited to read carefully.

4.15.1 Entry Points

Cil o�ers various entry points for the visitor. They are functions called Cil.visitCilAstType
where astType is a node type in the Cil's AST. Such a function takes as argument an in-
stance of a cilVisitor and an astType and gives back an astType transformed according to
the visitor. The entry points for visiting a whole Cil_types.file (Cil.visitCilFileCopy,
Cil.visitCilFile and visitCilFileSameGlobals) are slightly di�erent and do not support
all kinds of visitors. See the documentation attached to them in cil.mli for more details.

56

4.15. VISITORS

4.15.2 Methods

As said above, there is a method for each type in the Cil AST (including for logic an-
notation). For a given type astType, the method is called vastType11, and has type
astType→astType' visitAction, where astType' is either astType or astType list (for in-
stance, one can transform a global into several ones). visitAction describes what should
be done for the children of the resulting AST node, and is presented in the next section. In
addition, there are two modes for visiting a varinfo: vvdec to visit its declaration, and vvrbl

to visit its uses. More detailed information can be found in cil.mli.

For the Frama-C visitor, three methods, vstmt, vfile, and vglob take care of maintaining
the coherence between the transformed AST and the internal state of Frama-C . Thus they
must not be rede�ned. One should rede�ne vstmt_aux and vglob_aux instead.

4.15.3 Action Performed

The return value of visiting methods indicates what should be done next. There are four
possibilities:

• SkipChildren the visitor do not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• DoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the children
of v, and when it is �nished, f is applied to the result.

• ChangeToPost(v,f) the old is replaced by v, and f is applied to the result. This is
however not exactly the same thing as returning ChangeTo(f(v)). Namely, in the case
of vstmt_aux and vglob_aux, f will be applied to v only after the operations needed
to maintain the consistency of Frama-C's internal state with respect to the AST have
been performed.

4.15.4 Visitors and Projects

The visitors takes an additional argument, which is the project in which the transformed
AST should be put in. Note that an in-place visitor (see next section) should operate on the
current project (otherwise, two projects would share the same AST). If this is not the case,
it is up to the developer to ensure that the copy is done by other means, so that there is no
sharing.

Note that the tables of the new project are not �lled immediately. Instead, actions are queued,
and performed when a whole Cil_types.file has been visited. One can access the queue with
the get_filling_actions method, and perform the associated actions on the new project
with the fill_global_tables method.

11This naming convention is not strictly enforced. For instance the method corresponding to offset is
voffs.

57

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.15.5 In-place and Copy Visitors

The visitors take as argument a visitor_behavior, which comes in two �avors:
inplace_visit and copy_visit. In the in-place mode, nodes are visited in place, while in the
copy mode, nodes are copied and the visit is done on the copy. For the nodes shared across
the AST (varinfo, compinfo, enuminfo, typeinfo, stmt, logic_info, predicate_info and
fieldinfo), sharing is of course preserved, and the mapping between the old nodes and their
copy can be manipulated explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as
the identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known,
it behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the
old value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original
AST nodes. Its result must not be modi�ed in place (this would defeat the purpose of
operating on a copy to leave the original AST untouched). Moreover, note that whenever
the index used for name is modi�ed in the copy, the internal state of the visitor behavior
must be updated accordingly (via the set_name function) for get_original_name to
give correct results.

The list of such indices is given Figure 4.2.

Type Index

varinfo vid

compinfo ckey

enuminfo ename

typeinfo tname

stmt sid

logic_info l_name

predicate_info p_name

logic_var lv_id

fieldinfo fname and fcomp.ckey

Figure 4.2: Indices of AST nodes.

Last, when using a copy visitor, the actions (see previous section) SkipChildren and
ChangeTo must be used with care, i.e one has to ensure that the children are fresh. Other-
wise, the new AST will share some nodes with the old one. Even worse, in such a situation
the new AST might very well be left in an inconsistent state, with uses of shared node
(e.g. a varinfo for a function f in a function call) which do not match the corresponding
declaration (e.g the GFun de�nition of f).

58

4.15. VISITORS

4.15.6 Di�erences Between the Cil and Frama-C Visitors

As said in Section 4.15.2, vstmt and vglob should not be rede�ned. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in
Frama-C tables are considered more or less as children of the node. In particular, if the
method returns ChangeTo action (see Section 4.15.3), it is assumed that it has taken care
of updating the tables accordingly, which can be a little tricky when copying a file from a
project to another one. Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren

action implies that the visit will stop, but the information associated to the old value will be
associated to the new one. If the children are to be visited, it is unde�ned whether the table
entries are visited before or after the children in the AST.

4.15.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating
that the divisor is not zero:

open Cil_types
open Ci l

c l a s s non_zero_divisor p r j = o b j e c t (s e l f)
i n h e r i t Vi s i t o r . gener ic_frama_c_vis i tor (Ci l . copy_vis i t ()) pr j

(∗ A division i s an expression : we override the vexpr method ∗)
method vexpr = f u n c t i o n

BinOp((Div|Mod),_,e2 ,_) →
l e t t = Ci l . typeOf e2 i n
l e t l og ic_e2 =

Logic_const.mk_dummy_term
(TCastE(t ,Logic_const.expr_to_term e2)) t

i n
l e t a s s e r t i o n = Logic_const. p r e l (Rneq, logic_e2 ,Ci l . l z e r o ()) i n
(∗ At this point , we have built the assertion we want to insert .

It remains to attach i t to the correct statement . The c i l v is i tor
maintains the information of which statement i s currently visited
in the current_stmt method, which returns None when outside
of a statement , e . g . when vis it ing a global declaration . Here , i t
necessarily returns Some. ∗)

l e t stmt = Ext l ib . the (s e l f # current_stmt) i n
(∗ Since we are copying the f i l e in a new project , we can ' t insert
the annotation into the current table , but in the table of the new
project . To avoid the cost of switching projects back and forth ,
a l l operations on the new project are queued until the end of the
vis it , as mentioned above . This i s done in the following
statement . ∗)

Queue.add
(fun () → Annotations .add_assert stmt ~ be f o r e : t r u e a s s e r t i o n)
s e l f # g e t_ f i l l i n g_ac t i o n s ;

(∗ Do not forget to recurse on the children of the
division . ∗)

DoChildren
| _ → DoChildren (∗ do not do anything on other expressions

(except vis it ing their children)∗)
end

(∗ This function returns a new project in i t ia l i zed with
the current f i l e plus the annotations related to division . ∗)

l e t create_syntact ic_check_project =

F i l e . create_pro jec t_from_vis i tor
"syntactic check"

(new Syntact ic_check .non_zero_divisor);

59

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

4.16 GUI Extension

Prerequisite: knowledge of Lablgtk2.

Each plug-in can extend the Frama-C graphical user interface (aka gui) in order to sup-
port its own functionalities in the Frama-C viewer. For this purpose, a plug-in developer
has to register a function of type Design.main_window_extension_points -> unit thanks
to Design.register_extension. Design.main_window_extension_points is a class type
properly documented providing access to the main widgets of a Frama-C gui.

Such a code has to be put in separate �les into the plug-in directory. Moreover, in
Makefile.in, variable PLUGIN_GUI_CMO has to be set in order to compile the gui plug-in
code (see Section 5.3.3).

Besides computations taking time have to call time to time function !Db.progress in order
to keep the gui reactive.

Mainly that's all! The gui implementation uses Lablgtk2 [7]: so you can use any Lablgtk2-
compatible code in your gui extension. A complete exemple of gui extension may be found in
plug-in Occurrence (see �le src/occurrence/register_gui.ml).

Potential problems All the gui plug-in extensions share the same window and same
widgets. So con�icts can occur, especially if you specify some attributes on a prede�ned
object. For example, if a plug-in wants to highlight a statement s in yellow and another
one wants to highlight s in red at the same time, the behaviour is not speci�ed but it
could be quite di�cult to understand for an user.

4.17 Documentation

Prerequisite: knowledge of ocamldoc.

Here we present some hints on the way to document your plug-in. First Section 4.17.1 intro-
duces a quick general overview about the documentation process. Next Section 4.17.2 focus on
the plug-in source documentation. Finaly Section 4.17.3 explains how to modify the Frama-C

website.

4.17.1 General Overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index �le is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).

The previous command takes some times. So command make html only generates the ker-
nel documentation (i.e. Frama-C without any plug-in) while make $(PLUGIN_NAME)_DOC (by
substituting the right value for $(PLUGIN_NAME)) generates the documentation for a single
plug-in.

60

4.17. DOCUMENTATION

4.17.2 Source Documentation

Each plug-in should be properly documented. Frama-C uses ocamldoc and so you can write
any valid ocamldoc comments.

The special tag @plugin developer guide must be attached to each function used in this
document.

First of all, a plug-in should export itself no function: the only visible plug-in interface should
be in Db.

Recommendation 4.5 To ensure this invariant, the best way is to provide an empty inter-
face for the plug-in.

The interface name of a plug-in plugin must be Plugin.mli. Be careful to capitalisation
of the �lename which is unusual in OCaml but here required for compilation purpose.

Besides, the documentation generator also produces an internal plug-in documentation which
may be useful for the plug-in developer itself. This internal documentation is available via
�le doc/code/plugin/index.html for each plug-in plugin. You can add an introduction to
this documentation into a �le. This �le has to be assigned into variable PLUGIN_INTRO of
Makefile.in (see Section 5.3.3).

In order to ease the access to this internal documentation, you have to manually edit �le
doc/index.html in order to add an entry for your plug-in in the plug-in list.

4.17.3 Website

Target readers: developers with a CVS access.

The html sources of the Frama-C website belong to directory doc/www/src. Each plug-in avail-
able through the Frama-C website (http://www.frama-c.cea.fr) may have its own webpage.

For each plug-in p, the source of its webpage should be called p.prehtml: this �le is pre-
processed by the make�le generating the whole website. The format of this page looks like
below.

<#head>
<h1>Impact plug−in</h1>

· · · Plug−in description · · ·
<#foot>

This page should be referenced from the page http://www.frama-c.cea.fr/plugins.html.
For this purpose, you have to edit �les plugins.prehtml and index.prehtml.

In order to generate the html pages from directory doc/www/src, just execute

$ make

61

http://www.frama-c.cea.fr
http://www.frama-c.cea.fr/plugins.html

CHAPTER 4. ADVANCED PLUG-IN DEVELOPMENT

The generated website is available in directory doc/www/export and the homepage is
doc/www/export/index.html.

The html pages belonging to directory doc/www/src must not be used in order to display
the website because relative links are not the same than those of the real website. Use
html pages of directory doc/www/export instead.

Recommendation 4.6 You can use the address http: // validator. w3. org/ #validate_
by_ upload in order to check the validity of your html code.

If you want to o�cially put the webpage on the Frama-C website, you have to contact CEA.

4.18 License Policy

Target readers: developers with a CVS access.

Prerequisite: knowledge of make.

If you want to redistribute a plug-in inside Frama-C, you have to de�ne a proper license policy.
For this purpose, some stu�s are provide in Makefile.in. Mainly we distinguish two cases
described below.

• If the wished license is already used inside Frama-C , just extend the variable
corresponding to the wished license in order to include �les of your plug-in. Next run
make headers.

Example 4.29 Plug-in slicing is released under LGPL and is proprietary of both
CEA and INRIA. So, in the make�le, there is the following line.

CEA_INRIA_LGPL= ... \
src/slicing_types/*.ml* src/slicing/*.ml*

• If the wished license is unknown inside Frama-C , you have to:

1. Add a new variable v corresponding to it and assign �les of your plug-in;

2. Extend variable LICENSES with this variable;

3. Add a text �le in directory licenses containing your licenses

4. Add a text �le in directory headers containing the headers to add into �les of your
plug-in (those assigned by v).

The �lename must be the same than the variable name v. Moreover this �le
should contain a reference to the �le containing the whole license text.

5. Run make headers.

62

http://validator.w3.org/#validate_by_upload
http://validator.w3.org/#validate_by_upload

Chapter 5

Reference Manual

This chapter is a reference manual for plug-in developers. it provides full details which
complete Chapter 4.

5.1 File Tree

This Section introduces main parts of Frama-C in order to quickly �nd useful information
inside sources. Our goal is not to introduce the Frama-C software architecture (that is the
purpose of Chapter 3) nor to detail each module (that is the purpose of the source docu-
mentation generated by make doc). Directory containing Cil implementation is detailed in
Section 5.1.1 while directory containing the Frama-C implementation itself is presented in
Section 5.1.2.

Figure 5.1 shows directories useful for a plug-in developer. More details are provided below.

Kind Name Speci�cation Reference

. Frama-C root directory

Sources
src Frama-C implementation Section 5.1.2
cil Cil source �les Section 5.1.1

external Source of external free libraries

Tests
tests Frama-C test suites Section 4.5
ptests ptests implementation

Generated Files
bin Binaries
lib Some compiled �les

Documentations
doc Documentation directory

headers Headers of source �les Section 4.18
licenses Licenses used by plug-ins and kernel Section 4.18

Shared libraries share Shared �les

Figure 5.1: Frama-C directories.

• The Frama-C root directory contains the con�guration �les, the main Make�le
Makefile.in and some information �les (in uppercase).

• Frama-C sources are split in three directories: src (described in Section 5.1.2) contains
the core of the implementation while cil (described in Section 5.1.1) and external

63

CHAPTER 5. REFERENCE MANUAL

respectively contains the implementation of Cil (extended with ACSL) and external
libraries included in the Frama-C distribution.

• Directory tests contains the Frama-C test suite which is used by tool ptests (see
Section 4.5).

• Directories bin and lib contains binary �les mainly produced by Frama-C compilation.
Frama-C executables belong to directory bin, directories lib/plugins and lib/gui

receives the compiled plug-ins and directory libfc received the compiled kernel interface.
You should never add yourself any �le in these directories.

• Documentations (including plug-in speci�c, source code and ACSL documentations) are
provided in directory doc. Directories headers and licenses contains �les useful for
copyright noti�cation (see Section 4.18).

• Directory share contains useful libraries for Frama-C users such as the Frama-C C library
(e.g. ad-hoc libraries libc and malloc for Frama-C) and user-oriented Make�les.

5.1.1 Directory cil

The source �les of Cil belong to �ve directories shown Figure 5.2. More details are provided
below.

Name Speci�cation

ocamlutil OCaml useful utilities
src Main Cil �les

src/ext Syntactic analysis provided by Cil

src/frontc C frontend
src/logic ACSL frontend

Figure 5.2: Cil directories.

• ocamlutil contains some OCaml utilities useful for a plug-in developer. Most important
modules are Inthash and Cilutil. The �rst one contains an implementation of hashta-
bles optimized for integer keys while the second one contains some useful functions (e.g.
out_some which extract a value from an option type) and datastructures (e.g. module
StmtHashtbl implements hashtables optimized for statement keys).

• src contains the main �les of Cil. Most important modules are Cil_types and Cil.
The �rst one contains type declarations of the Cil AST while the second one contains
very useful operations over this AST.

• src/ext contains syntactic analysis provided by Cil . For example, module Cfg pro-
vides control �ow graph, module Callgraph provides a syntactic callgraph and module
Dataflow provides parameterised forward/backward data �ow analysis.

• src/frontc is the C frontend which converts C code to the corresponding Cil AST. It
should not be used by a Frama-C plug-in developer.

64

5.1. FILE TREE

• src/logic is the ACSL frontend which converts logic code to the corresponding Cil

AST. The only useful modules for a Frama-C plug-in developer are Logic_const which
provides some prede�ned logic constructs (terms, predicates, . . .) and Logic_typing

which allows to dynamically extend the logic type system.

5.1.2 Directory src

The source �les of Frama-C are split into di�erent sub-directories inside src. Each sub-
directory contains either a plug-in implementation or some parts of the Frama-C kernel.

Each plug-in implementation can be split into two di�erent sub-directories, one for ex-
ported type declarations and related implementations visible from Db (see Chapter 3 and
Section 4.10.1) and one-other for the implementation provided in Db.

Kernel directories are shown Figure 5.3. More details are provided below.

Kind Name Speci�cation Reference

Toolboxes
kernel Kernel toolbox
ai Abstract interpretation toolbox Section 4.14

memory_states Memory-state toolbox Section 4.14

Libraries
project Project library Section 4.11

lib Miscellaneous libraries
misc Additional useful operations

Entry points
toplevel Frama-C toplevel Sections 4.13 and 4.12

gui Graphical User Interface Section 4.16

Figure 5.3: Kernel directories.

• Directory kernel contains the kernel toolbox over Cil. Main kernel modules are shown
in Figure 5.4.

• Directories ai and memory_states are the abstract interpretation and memory-state
toolboxes (see section 4.14). In particular, in ai, module Abstract_interp de�nes
useful generic lattices and module Ival de�nes some pre-instantiated arithmetic lat-
tices while, in memory_states, module Locations provides several representations of C
locations and modules Lmap and Lmap_bitwise provide maps indexed by such locations.

• Directory project is the project library fully described in Section 4.11.

• Directories lib and misc contain datastructures and operations used in Frama-C. In
particular, module Extlib is the Frama-C extension of the OCaml standard library
whereas module Type is the interface for type values (the OCaml values representing
OCaml types) required by dynamic plug-in registrations and uses and journalisation
(see Section 4.8).

• Directory toplevel1 contains the Frama-C toplevel. In particular, module Main de�nes
the main Frama-C entry point (see Section 4.13).

• Directory gui1 contains the gui implementation part common to all plug-ins. See
Section 4.16 for more details.

1From the outside, gui and toplevel may be seen as plug-ins with some exceptions because it has to be
linked at the end of the link process.

65

CHAPTER 5. REFERENCE MANUAL

Kind Name Speci�cation Reference

AST
Ast The Cil AST for Frama-C

Ast_info Operations over the Cil AST

Global
tables

File AST creation and access to C �les
Globals Operations on globals

Kernel_function Operations on functions
Annotations Operations on annotations

Loop Operations on loops

Database

Db Static plug-in database Section 4.10.1
Db_types Type declarations required by Db Section 4.10.1
Dynamic Interface for dynamic plug-ins Section 4.10.2
Kui High-level Frama-C front-end, quite deprecated

Base
Modules

Config Information about Frama-C version
Plugin General services for plug-ins Section 4.6
Cmdline Command line parsing Section 4.12
Log Operations for printing messages Section 4.7

Parameters Kernel Parameters Section 4.12
Journal Journalisation Section 4.9
CilE Useful Cil extensions
Alarms Alarm management

Kernel_type Type value for kernel types Section 4.10.2
Stmts_graph Accessibility checks using CFG

Visitor Visitor Frama-C visitors (subsume Cil ones) Section 4.15

Pretty
printers

Ast_printer Pretty-printers for AST node
Printer Main class for pretty-printing

Initializer
Boot Last linked module Section 4.13

Gui_init Very early initialisation of the GUI Section 4.13
Special_hooks Registration of kernel hooks

Figure 5.4: Main kernel modules.

66

5.2. CONFIGURE.IN

5.2 Con�gure.in

Figure 5.5 presents the di�erent parts of configure.in in the order that they are introduced
in the �le. The second row of the tabular says whether the given part has to be modi�ed
eventually by a kernel-integrated plug-in developer. More details are provided below.

Id Name Mod. Reference

1 Con�guration of make no
2 Con�guration of OCaml no
3 Con�guration of mandatory tools/libraries no
4 Con�guration of non-mandatory tools/libraries no
5 Platform con�guration no
6 Wished Frama-C plug-in YES Sections 4.2.2 and 4.2.3
7 Con�guration of plug-in tools/libraries YES Section 4.2.5
8 Checking plug-in dependencies YES Section 4.2.4
9 Make�le creation YES Section 4.2.2
10 Summary YES Section 4.2.2

Figure 5.5: Sections of configure.in.

1. Con�guration of make checks whether the version of make is correct. Some useful
option is �enable-verbosemake (resp. �disable-verbosemake) which set (resp. unset)
the verbose mode for make. In verbose mode, right make commands are displayed on
the user console: it is useful for debugging the make�le. In non-verbose mode, only
command shortcuts are displayed for user readibility.

2. Con�guration of OCaml checks whether the version of OCaml is correct.

3. Con�guration of other mandatory tools/libraries checks whether all the external
mandatory tools and libraries required by the Frama-C kernel are present.

4. Con�guration of other non-mandatory tools/libraries checks which external non-
mandatory tools and libraries used by the Frama-C kernel are present.

5. Platform Con�guration sets the necessary platform characteristics (operating sys-
tem, speci�c features of gcc, etc) for compiling Frama-C.

6. Wished Frama-C Plug-ins sets which Frama-C plug-ins the user wants to compile.

7. Con�guration of plug-in tools/libraries checks the availability of external tools
and libraries required by plug-ins for compilation and execution.

8. Checking Plug-in Dependencies sets which plug-ins have to be disable (at least
partially) because they depend on others plug-ins which are not available (at least
partially).

9. Make�le Creation creates Makefile from Makefile.in including information pro-
vided by this con�guration.

10. Summary displays summary of each plug-in availability.

67

CHAPTER 5. REFERENCE MANUAL

5.3 Make�les

In this section, we detail the organization of the di�erent Make�les existing in Frama-C. First
Section 5.3.1 presents a general overview. Next Section 5.3.2 details the di�erent sections of
Makefile.config.in and Makefile.in. Next Section 5.3.3 introduces variables customizing
Makefile.plugin and Makefile.dynamic. Finally Section 5.3.4 shows speci�c details of
Makefile.dynamic.

5.3.1 Overview

Frama-C uses four di�erent Make�les if one excludes the plug-in speci�c ones. They are:

• Makefile.in: the general Make�le of Frama-C;

• Makefile.config.in: the Make�le con�guring some general variables (especially the
ones provided by configure) and setting some general rules;

• Makefile.plugin: the Make�le introducing speci�c stu� for plug-in compilation;

• Makefile.dynamic: the Make�le usable by plug-in speci�c Make�les.

The three last ones are part of directory share of the Frama-C distribution. Each Make�le
either includes or is included into at least another one. Figure 5.6 shows these inclusion
relationship. Makefile.in and Makefile.dynamic are independent: the �rst one is used to

Make�le.con�g.in

Make�le.in . . . Make�le.plugin Make�le.dynamic

speci�c Make�le for plug-in 1 . . . speci�c Make�le for plug-in n

Caption:

m1 m2 Make�le m1 is included into Make�le m2

Figure 5.6: Relationship between the Make�les

compile the Frama-C kernel while the second one is used to compile the Frama-C plug-ins. Their
common variables and rules are de�ned in Makefile.config.in. Makefile.plugin de�nes
generic rules and variables for compiling plug-ins. It is used both by Makefile.in for kernel-
speci�c plug-ins integrated compiled from the Frama-C Make�le and by Makefile.dynamic

for plug-ins with their own Make�les.

68

5.3. MAKEFILES

5.3.2 Sections of Makefile.in and Makefile.config.in

Figure 5.7 presents the di�erent parts of Makefile.config.in and Makefile.in in the order
that they are introduced in these �les. The third row of the tabular says whether the given
part may be modi�ed by a kernel-integrated plug-in developer. More details are provided
below.

Id Name File Mod. Reference

1 Working directories Make�le.con�g.in no
2 Installation paths Make�le.con�g.in no
3 Ocaml stu� Make�le.con�g.in no
4 Libraries Make�le.con�g.in no
5 Miscellaneous Make�le.con�g.in no
6 Verbosing Make�le.con�g.in no
7 Shell commands Make�le.con�g.in no
8 Command pretty printing Make�le.con�g.in no
9 Tests Make�le.con�g.in no
10 Generic rules Make�le.con�g.in no

11 Global plug-in variables Make�le.in no
12 Additional global variables Make�le.in no
13 Main targets Make�le.in no
14 Coverage Make�le.in no
15 Ocamlgraph Make�le.in no
16 Frama-C Kernel Make�le.in no
17 Plug-in sections Make�le.in YES Section 4.3
18 Generic variables Make�le.in no
19 Toplevel Make�le.in no
20 GUI Make�le.in no
21 Standalone obfuscator Make�le.in no
22 Tests Make�le.in no
23 Emacs tags Make�le.in no
24 Documentation Make�le.in no
25 Installation Make�le.in YES TODO: not written yet
26 File headers: license policy Make�le.in YES Section 4.18
27 Make�le rebuilding Make�le.in no
28 Cleaning Make�le.in no
29 Depend Make�le.in no
30 ptests Make�le.in no
31 Source distribution Make�le.in no

Figure 5.7: Sections of Makefile.config.in and Makefile.in.

1. Working directories de�nes the main directories of Frama-C. In particular, it declares
the variable UNPACKED_DIRS which should be extended by a plug-in developer if he uses
�les which do not belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO
is set, see Section 5.3.3).

2. Installation paths de�nes where Frama-C has to be installed.

3. Ocaml stu� de�nes the Objective Caml compilers and speci�c related �ags.

69

CHAPTER 5. REFERENCE MANUAL

4. Libraries de�nes variables for libraries required by Frama-C.

5. Miscellaneous de�nes some additional variables.

6. Verbosing sets how make prints the command. In particular, it de�nes the variable
VERBOSEMAKE which must be set yes in order to see the right make commands in the
user console. The typical use is

$ make VERBOSEMAKE=yes

7. Shell commands sets all the shell commands eventually executed while calling make.

8. Command pretty printing sets all the commands to be used for pretty printing.

Example 5.1 Consider the following target foo in a plug-in speci�c Make�le.

foo: bar

$(PRINT_CP) $@
$(CP) $< $@

Executing

$ make foo

prints

Copying to foo

while executing

$ make foo VERBOSEMAKE=yes

prints

cp -f bar foo

If one of the two commands is missing for the target foo, either make foo or make foo

VERBOSEMAKE=yes will not work as expected.

9. Tests de�nes a generic templates for testing plug-ins.

10. Generic rules contains rules in order to automatically produces di�erent kinds of �les
(e.g. .cm[iox] from .ml or .mli for Objective Caml �les)

11. Global plug-in variables declares some plug-in speci�c variables used throughout the
make�le.

12. Additional global variables declares some other variables used throughout the make-
�le.

13. Main targets provides the main rules of the make�le. The most important ones are
top, byte and opt which respectively build the Frama-C interactive, bytecode and native
toplevels.

14. Coverage de�nes how compile this library.

15. Ocamlgraph de�nes how compile this library.

16. Frama-C Kernel provides variables and rules for the Frama-C kernel. Each part is
described in speci�c sub-sections.

70

5.3. MAKEFILES

17. After Section �Kernel�, there are several sections corresponding to plug-ins (see
Section 5.3.3). This is the part that a plug-in developer has to modify in order to
add compilation directives for its plug-in.

18. Generic variablesprovides variables containing �les to be linked in di�erent contexts.

19. Toplevel provides rules for building the �les of the form bin/toplevel.*.

20. GUI provides rules for building the �les of the form bin/viewer.*

21. Standalone obfuscator provides rules for building the Frama-C obfuscator.

22. Tests provides rules to execute tests (see Section 4.5).

23. Emacs tags provides rules which generate emacs tags (useful for a quick search of
OCaml de�nitions).

24. Documentation provides rules generating Frama-C source documentation (see Sec-
tion 4.17).

25. Installation provides rules for installing di�erent parts of Frama-C.

26. File headers: license policy provides variables and rules to manage the Frama-C

license policy (see Section 4.18).

27. Make�le rebuilding provides rules in order to automatically rebuild Makefile and
configure when required.

28. Cleaning provides rules in order to remove �les generated by make�le rules.

29. Depend provides rules which compute Frama-C source dependencies.

30. Ptests provides rules in order to build ptests (see Section 4.5).

31. Source distribution provides rules usable for distributing Frama-C.

5.3.3 Variables of Makefile.dynamic and Makefile.plugin

Figures 5.8 and 5.9 presents all the variables that can be set before including Makefile.plugin
or Makefile.dynamic (see Sections 4.3 and 4.4). The last column is set to no if and only if
the line is not relevant for a standard plug-in developer. Details are provided below.

• Variable PLUGIN_NAME is the module name of the plug-in.

So it must be capitalised (as each OCaml module name).

• Variable PLUGIN_DIR is the directory containing plug-in source �les. It is usually set to
src/plugin where plugin is the plug-in name.

• Variable PLUGIN_ENABLE must be set to yes if the plug-in has to be compiled. It is
usually set to @plugin_ENABLE@ provided by configure.in where plugin is the plug-in
name.

• Variable PLUGIN_DYNAMIC must be set to yes if the plug-in has to be dynamically linked
with Frama-C.

71

CHAPTER 5. REFERENCE MANUAL

Kind Name Speci�cation

Usual
information

PLUGIN_NAME Module name of the plug-in
PLUGIN_DIR Directory containing plug-in source

�les
no

PLUGIN_ENABLE Whether the plug-in has to be com-
piled

no

PLUGIN_DYNAMIC Whether the plug-in is dynamically
linked with Frama-C

no

PLUGIN_HAS_MLI Whether the plug-in gets an interface

Source �les

PLUGIN_CMO .cmo plug-in �les
PLUGIN_CMI .cmi plug-in �les without correspond-

ing .cmo

PLUGIN_TYPES_CMO .cmo plug-in �les not belonging to
$(PLUGIN_DIR)

PLUGIN_GUI_CMO .cmo plug-in �les not belonging to
$(PLUGIN_DIR)

Compilation
�ags

PLUGIN_BFLAGS Plug-in speci�c �ags for ocamlc
PLUGIN_OFLAGS Plug-in speci�c �ags for ocamlopt

PLUGIN_LINK_BFLAGS Plug-in speci�c �ags for linking with
ocamlc

PLUGIN_LINK_OFLAGS Plug-in speci�c �ags for linking with
ocamlopt

PLUGIN_LINK_GUI_BFLAGS Plug-in speci�c �ags for linking a GUI
with ocamlc

PLUGIN_LINK_GUI_OFLAGS Plug-in speci�c �ags for linking a GUI
with ocamlopt

Figure 5.8: Standard parameters of Makefile.dynamic and Makefile.plugin.

72

5.3. MAKEFILES

• Variable PLUGIN_HAS_MLI must be set to yes if plug-in plugin gets a �le .mli (which
must be capitalised: Plugin.mli, see Section 4.17) describing its API. Note that this
API should be empty in order to enforce the architecture invariant which is that each
plug-in is used through Db (see Chapter 3).

• Variables PLUGIN_CMO and PLUGIN_CMI are respectively .cmo plug-in �les and .cmi �les
without corresponding .cmo plug-in �les. For each of them, do not write their �le path
nor their �le extension: they are automatically added ($(PLUGIN_DIR)/f.cm[io] for a
�le f).

• Variable PLUGIN_TYPES_CMO is the .cmo plug-in �les which do not belong to
$(PLUGIN_DIR). They usually belong to src/plugin_types where plugin is the plug-in
name (see Section 4.10.1). Do not write �le extension (which is .cmo): it is automatically
added.

• Variable PLUGIN_GUI_CMO is the .cmo plug-in �les which have to be linked with the GUI
(see Section 4.16). As for variable PLUGIN_CMO, do not write their �le path nor their �le
extension.

• Variables of the form PLUGIN_*_FLAGS are plug-in speci�c �ags for ocamlc, ocamlopt,
ocamldep or ocamldoc.

• Variable PLUGIN_GENERATED is �les which must be generated before computing plug-
in dependencies. In particular, this is where .ml �les generated by ocamlyacc and
ocamllex must be placed if needed.

• Variable PLUGIN_DEPENDS is the other plug-ins which must be compiled before the con-
sidered plug-in. Note that, in a normal context, it should not be used because a plug-in
interface should be empty (see Chapter 3).

• Variable PLUGIN_UNDOC is the source �les for which no documentation is provided. Do
not write their �le path which is automatically set to $(PLUGIN_DIR).

• Variable PLUGIN_TYPES_TODOC is the additional source �les to document with the plug-
in. They usually belong to src/plugin_types where plugin is the plug-in name (see
Section 4.10.1).

• Variable PLUGIN_INTRO is the text �le to append to the plug-in documentation intro-
duction. Usually this �le is doc/code/intro_plugin.txt for a plug-in plugin. It can
contain any text understood by ocamldoc.

• Variable PLUGIN_HAS_EXT_DOC is set to yes if the plug-in has its own reference manual.
It is supposed to be a pdf �le generated by make in directory doc/$(PLUGIN_NAME)

• Variable PLUGIN_NO_TEST must be set to yes if there is no speci�c test directory for the
plug-in.

• Variable PLUGIN_TESTS_DIRS is the directories containing plug-in tests. Its default value
is tests/$(notdir $(PLUGIN_DIR))).

• Variable PLUGIN_TESTS_LIB is the .cmo plug-in speci�c �les used by plug-in tests. Do
not write its �le path (which is $(PLUGIN_TESTS_DIRS)) nor its �le extension (which is
.cmo).

73

CHAPTER 5. REFERENCE MANUAL

Kind Name Speci�cation

Dependencies
PLUGIN_DEPFLAGS Plug-in speci�c �ags for ocamldep
PLUGIN_GENERATED Plug-in �les to compiled before

running ocamldep

PLUGIN_DEPENDS Other plug-ins to compiled before
the considered one

no

Documentation

PLUGIN_DOCFLAGS Plug-in speci�c �ags for ocamldoc
PLUGIN_UNDOC Source �les with no provided doc-

umentation
PLUGIN_TYPES_TODOC Additional source �les to docu-

ment
PLUGIN_INTRO Text �le to append to the plug-in

introduction
PLUGIN_HAS_EXT_DOC Whether the plug-in has an exter-

nal pdf manual

Testing

PLUGIN_NO_TESTS Whether there is no plug-in spe-
ci�c test directory

PLUGIN_TESTS_DIRS tests to be included in the default
test suite

PLUGIN_TESTS_DIRS_DEFAULT Directories containing tests
PLUGIN_TESTS_LIBS Speci�c .cmo �les used by plug-in

tests
PLUGIN_NO_DEFAULT_TEST Whether to include tests in default

test suite.

Distribution
PLUGIN_DISTRIBUTED_BIN Whether to include the plug-in in

binary distribution
no

PLUGIN_DISTRIBUTED Whether to include the plug-in in
source distribution

no

PLUGIN_DISTRIB_EXTERNAL Additional �les to be included in
the distribution

no

Figure 5.9: Special parameters of Makefile.dynamic and Makefile.plugin.

74

5.3. MAKEFILES

• Variable PLUGIN_NO_DEFAULT_TEST indicates whether the test directory of the plug-in
should be considered when running Frama-C default test suite. When set to a non-empty
value, the plug-in tests are run only through make $(PLUGIN_NAME)_tests.

• Variable PLUGIN_DISTRIB_BIN indicates whether the plug-in should be included in a
binary distribution.

• Variable PLUGIN_DISTRIBUTED indicates whether the plug-in should be included in a
source distribution.

• Variable PLUGIN_DISTRIB_EXTERNAL is the list of �les that should be included in the
source distribution for this plug-in, outside of the src/$(PLUGIN_NAME) directory (and
the test and documentation directories if any).

As previously said, the above variables is set before including Makefile.plugin in order to
customize its behavior. Nevertheless they must not be use anywhere else in the make�le. In
order to deal with this issue, for each plug-in p, Makefile.plugin provides some variables
which may be used after its inclusion de�ning p. These variables are listed in Figure 5.10.
For each variable of the form p_VAR, its behavior is exactly equivalent to the value of the
parameter PLUGIN_VAR for the plug-in p2.

Kind Name3

Usual information plugin_DIR

Source �les

plugin_CMO
plugin_CMI
plugin_CMX

plugin_TYPES_CMO
plugin_TYPES_CMX

Compilation �ags

plugin_BFLAGS
plugin_OFLAGS

plugin_LINK_BFLAGS
plugin_LINK_OFLAGS

plugin_LINK_GUI_BFLAGS
plugin_LINK_GUI_OFLAGS

Dependencies
plugin_DEPFLAGS
plugin_GENERATED

Documentation
plugin_DOCFLAGS

plugin_TYPES_TODOC

Testing
plugin_TESTS_DIRS
plugin_TESTS_LIB

Figure 5.10: Variables de�ned by Makefile.plugin.

5.3.4 Makefile.dynamic

TODO: not written yet

2Variables of the form p_*CMX have no PLUGIN_*CMX counterpart but their meanings should be easy to
understand.

3plugin is the module name of the considered plug-in (i.e. as set by $(PLUGIN_NAME)).

75

CHAPTER 5. REFERENCE MANUAL

5.4 Testing

Section 4.5 explains how to test a plug-in. Here Figure 5.11 details the options of ptests while
Figure 5.12 shows all the directives that can be used in a con�guration headers of a test (or
a test suite). Some details about them are provided below.

kind Name Speci�cation Default

Toplevel
-add-options Additional options passed to the

toplevel
-byte Use bytecode toplevel no
-opt Use native toplevel yes

Behavior

-run Delete current results; run tests and
examine results

yes

-examine Only examine current results; do not
run tests

no

-show Run tests and show results, but do
not examine them; implies -byte

no

-update Take current results as new oracles;
do not run tests

no

Misc.

-exclude suite Do not consider the given suite

-diff cmd Use cmd to show di�erences between
results and oracles when examining
results

diff -u

-cmp cmd Use cmd to compare results against
oracles when examining results

cmp -s

-use-diff-as-cmp Use the same command for di� and
cmp

no

-j n Set level of parallelism to n 4
-v Increase verbosity (up to twice) 0

-help Display helps no

Figure 5.11: ptests options.

The commands provided through the -diff and -cmp options play two related but distinct
roles. cmp is always used for each test (in fact it used twice: one for the standard output and
one for the error output). Only its exit code is taken into account by ptests and the output
of cmp is discarded. An exit code of 1 means that the two �les have di�erences. The two
�les will then be analyzed by diff, whose role is to show the di�erences between the �les.
An exit code of 0 means that the two �les are identical. Thus, they won't be processed by
diff. An exit code of 2 indicates an error during the comparison (for instance because of the
corresponding oracle does not exist). Any other exit code results in a fatal error. It is possible
to use the same command for both cmp and diff with the -use-diff-as-cmp option, which
will take as cmp command the command used for diff.

The -exclude option can take as argument a whole suite or an individual test. It can be used
with any behavior.

Any directive can identify a �le using a relative path. The default directory considered for
. is always the parent directory of directory tests. The DONTRUN directive does not need to
have any content, but it is useful to provide an explanation of why the test should not be

76

5.4. TESTING

Kind Name Speci�cation default

Command

CMD Program to run ./bin/toplevel.opt

OPT Options given to the program -val -out -input -deps

STDOPT Add and remove options from
the default set

None

EXECNOW Run a command before the
test

None

FILTER Command used to �lter re-
sults

None

Test suite
DONTRUN Do not execute this test None
FILEREG selects the �les to test .*\.\(c|i\)

Miscellaneous
COMMENT Comment in the con�guration None
GCC Unused (compatibility only) None

Figure 5.12: Directives in con�guration headers of test �les.

run (e.g test of a feature that is currently developed and not fully operational yet). If a test
�le is explicitly given on the command line of ptests, it is always executed, regardless of the
presence of a DONTRUN directive.

As said in Section 4.5.2, these directives can be found in di�erent places:

1. default value of the directive (as speci�ed in Fig. 5.12);

2. inside �le tests/test_config;

3. inside �le tests/subdir/test_config (for each sub-directory subdir of tests); or

4. inside each test �le

As presented in Section 4.5.3, alternative directives for test con�guration <special_name>
can be found in slightly di�erent places:

• default value of the directive (as speci�ed in Fig. 5.12);

• inside �le tests/test_config_<special_name>;

• inside �le tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test �le.

For a given test tests/suite/test.ml, each existing �le in the sequence above is read in
order and de�nes a con�guration level (the default con�guration level always exists).

• At a given con�guration level, the default value for directive CMD is the last CMD directive
of the preceding con�guration level. Each directive CMD is used only with the next
directive OPT or STDOPT. No test case is generated if there is no further OPT directive.
Following OPT or STDOPT directives are applied on the default program until another
directive CMD is given.

77

CHAPTER 5. REFERENCE MANUAL

• If there are several directives OPT in the same con�guration level, they correspond to
di�erent test cases. The OPT directive(s) of a given con�guration level replace(s) the
ones of the preceding level.

• The STDOPT directive takes as default set of options the last OPT directive of the preceding
con�guration level. The syntax for this directive is the following.

STDOPT: [[+-]"opt" ...]

options are always given between quotes. An option following a + is added to the current
set of options while an option following a - is removed from it. The directive can be
empty (meaning that the corresponding test will use the standard set of options). As
with OPT, each STDOPT corresponds to a test case.

• The syntax for directive EXECNOW is the following.

EXECNOW: [[LOG file | BIN file] ...] cmd

Files after LOG are log �les generated by command cmd and compared from oracles,
whereas �les after BIN are binary �les also generated by cmd but not compared from
oracles. Full access path to these �les have to be speci�ed only in cmd. All the commands
described by directives EXECNOW are executed in order and before running any of the
following tests. EXECNOW directives from a given level are added to the directives from
preceding levels.

• FILEREG directive contains a regular expression indicating which �les in the directory
containing the current test suite are actually part of the suite. This directive is only
usable in a test_config con�guration �le.

78

AppendixA

Changes

This chapter summarizes the changes in this documentation in each Frama-C release. First
we list changes of the last release.

We list changes of previous releases below.

• Initialisation Steps: update according to the new implementation

• Command Line Options: update according to the new implementation

• Plug-in General Services: fully new section introducing the new module Plugin

• File Tree: update according to changes in the kernel

• Make�les: update according to the new �le Makefile.dynamic and the new �le
Makefile.config.in

• Architecture: update according to the recent implementation changes

• Tutorial: update according to API changes and the new way of writting plug-ins

• con�gure.in: update according to changes in the way of adding a simple plug-in

• Plug-in Registration and Access: update according to the new API of module Type

Lithium-20081201

• Changes: fully new appendix

• Command Line Options: new sub-section Storing New Dynamic Option Values

• Con�gure.in: compliant with new implementations of configure_library and
configure_tool

• Exporting Datatypes: now embeded in new section Plug-in Registration and Access

• GUI: update, in particular the full example has been removed

• Introduction: improved

• Plug-in Registration and Access: fully new section

79

APPENDIX A. CHANGES

• Project: compliant with the new interface

• Reference Manual: integration of dynamic plug-ins

• Software architecture: integration of dynamic plug-ins

• Tutorial: improve part about dynamic plug-ins

• Tutorial: use Db.Main.extend to register an entry point of a plug-in.

• Website: better highlighting of the directory containing the html pages

Lithium-20081002+beta1

• GUI: fully updated

• Testing: new sub-section Alternative testing

• Testing: new directive STDOPT

• Tutorial: new section Dynamic plug-ins

• Visitor: ChangeToPost in sub-section Action Performed

Helium-20080701

• GUI: fully updated

• Make�le: additional variables of Makefile.plugin

• Project: new important note about registration of internal states in Sub-section Inter-
nal State: Principle

• Testing: more precise documentation in the reference manual

Hydrogen-20080502

• Documentation: new sub-section Website

• Documentation: new ocamldoc tag @plugin developer guide

• Index: fully new

• Project: new sub-section Internal State: Principle

• Reference manual: largely extended

• Software architecture: fully new chapter

Hydrogen-20080501

• First public release

80

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Speci�cation Language,
April 2008.

[2] Sylvain Conchon and Jean-Christophe Filliâtre. Type-Safe Modular Hash-Consing. In
ACM SIGPLAN Workshop on ML, Portland, Oregon, United States, September 2006.

[3] Pascal Cuoq and Damien Doligez. Hashconsing in an incrementally garbage-collected
system, a story of weak pointers and hashconsing in ocaml 3.10.2. In ACM SIGPLAN
Workshop on ML, Victoria, British Columbia, Canada, September 2008.

[4] Pascal Cuoq and Virgile Prevosto. Documentation of the static analysis tool ValViewer,
May 2008. http://www.frama-c.cea.fr/support.html.

[5] A. P. Ershov. On programming of arithmetic operations. Communication of the ACM,
1(8):3�6, 1958.

[6] Free Software Foundation. GNU 'make', April 2006. http://www.gnu.org/software/

make/manual/make.html#Flavors.

[7] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2.
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[8] Eiichi Goto. Monocopy and Associative Algorithms in Extended Lisp. Technical Report
TR-74-03, University of Toyko, 1974.

[9] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. The
Objective Caml system. http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

[10] Donald Michie. Memo functions: a language feature with "rote-learning" properties.
Research Memorandum MIP-R-29, Department of Machine Intelligence & Perception,
Edinburgh, 1967.

[11] Donald Michie. Memo functions and machine learning. Nature, 218:19�22, 1968.

[12] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs. In
CC '02: Proceedings of the 11th International Conference on Compiler Construction,
pages 213�228, London, UK, 2002. Springer-Verlag.

[13] Julien Signoles. Foncteurs impératifs et composés: la notion de projet dans Frama-C. In
Proceedings of the Journées Francophones des Langages Applicatifs 2009, January 2009.
In French.

81

http://www.frama-c.cea.fr/support.html
http://www.gnu.org/software/make/manual/make.html#Flavors
http://www.gnu.org/software/make/manual/make.html#Flavors
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

LIST OF FIGURES

List of Figures

2.1 Plug-in Integration Overview. 14

2.2 Kernel-integrated Plug-in Integration Overview. 17

3.1 Architecture Design. 26

3.2 Di�erences between standard plug-ins and kernel-integrated ones. 28

4.1 Representation of the Frama-C Internal State. 44

4.2 Indices of AST nodes. 58

5.1 Frama-C directories. 63

5.2 Cil directories. 64

5.3 Kernel directories. 65

5.4 Main kernel modules. 66

5.5 Sections of configure.in. 67

5.6 Relationship between the Make�les . 68

5.7 Sections of Makefile.config.in and Makefile.in. 69

5.8 Standard parameters of Makefile.dynamic and Makefile.plugin. 72

5.9 Special parameters of Makefile.dynamic and Makefile.plugin. 74

5.10 Variables de�ned by Makefile.plugin. 75

5.11 ptests options. 76

5.12 Directives in con�guration headers of test �les. 77

83

INDEX

Index

plugin_BFLAGS, 75

plugin_CMI, 75

plugin_CMO, 75

plugin_CMX, 75

plugin_DEPFLAGS, 75

plugin_DIR, 75

plugin_DOCFLAGS, 75

plugin_GENERATED, 75

plugin_LINK_BFLAGS, 75

plugin_LINK_GUI_BFLAGS, 75

plugin_LINK_GUI_OFLAGS, 75

plugin_LINK_OFLAGS, 75

plugin_OFLAGS, 75

plugin_TESTS_DIRS, 75

plugin_TESTS_LIB, 75

plugin_TYPES_CMO, 75

plugin_TYPES_CMX, 75

plugin_TYPES_TODOC, 75

@ENABLE_plugin@, 19

Abstract Interpretation, 56

Lattice, see Lattice

Toolbox, 27, 56, 65

Type, 47

Abstract Syntax Tree, see AST

Abstract_interp, 27, 56, 65

Lattice, 56

ACSL, 25, 27, 32, 64

Frontend, 65

ai, 65

Alarms, 66

Annotation, 27, 57, 66

Annotations, 66

ANSI C Speci�cation language, see ACSL

Architecture, 13, 16, 25

AST, 25, 27, 44, 45, 56, 57, 64, 66

Copying, 57�59

Initialiser, 66

Modi�cation, 27, 31, 44, 57, 58

Sharing, see Sharing

Ast, 66

get, 44

Ast_info, 66

Ast_printer, 66

bin, 64

Binary, 64

Boot, 54, 66

C Intermediate Language, see Cil

Call graph computation, 27

Callgraph, 27, 64

CEA_INRIA_LGPL, 62

CEA_LGPL, 23

CFG, 66

Cfg, 64

check_plugin, 18, 33

CIL, 64

Syntactic Analysis, 64

Visitor, 66

Cil, 25, 26, 27, 31, 56

API, 26, 27

AST, see AST

Visitor, 56

Entry Point, 56

Cil, 27, 64

ChangeDoChildrenPost, 59

ChangeTo, 57�59

ChangeToPost, 57

cilVisitor, 56, 56

copy_visit, 58, 59

DoChildren, 57, 59

DoChildrenPost, 57

fill_global_tables, 57

get_name, 58

get_filling_actions, 57, 59

get_original_name, 58

inplace_visit, 58

lzero, 59

reset_behavior_name, 58

set_name, 58

SkipChildren, 57�59

85

INDEX

typeOf, 59

vexpr, 59

vfile, 57

vglob, 57

visitAction, 57

visitCilAstType, 56

visitCilFile, 56

visitCilFileCopy, 56

visitCilFileSameGlobals, 56

visitor_behavior, 58

voffs, 57

vstmt, 57

vvdec, 57

vvrbl, 57

cil, 31, 63, 64

ocamlutil, 64

src, 27, 64

ext, 64

frontc, 64

logic, 65

Cil_types, 27, 64

BinOp, 59

compinfo, 58

Div, 59

enuminfo, 58

fieldinfo, 58

file, 56, 57, 59

fundec, 47

global, 57

logic_info, 58

logic_var, 58

Mod, 59

offset, 57

predicate_info, 58

Rneq, 59

stmt, 47, 58

TCastE, 59

typeinfo, 58

varinfo, 43, 48, 49, 57, 58

CilE, 66

Cilutil, 27, 64

out_some, 64

StmtHashtbl, 48, 64

StmtSet, 48

Cmdline, 54

Cmdline, 28, 54, 66

Configuring, 55

Exiting, 55

Extending, 54

Loading, 55
run_after_configuring_stage, 55
run_after_exiting_stage, 55
run_after_extending_stage, 46, 49, 50,

55

run_after_loading_stage, 55
run_as_the_main, 55

Command Line
Option, 40, 44, 46, 52, 52
Parsing, 54

Compilation, see Makefile.in

Computation, see Internal State
Computation, 46, 49

Ref, 46, 51
Con�guration, see configure.in

configure.in, 17, 18, 32, 67
check_plugin, 19, 33
configure_library, 34
configure_tools, 34
DYNAMIC_plugin, 33
ENABLE_plugin, 33
FORCE_plugin, 33
HAS_library, 33, 34
LIB_SUFFIX, 35
OBJ_SUFFIX, 35
REQUIRE_library, 33, 34
REQUIRE_plugin, 33, 34
SELECTED_library, 35
USE_library, 33, 34
USE_plugin, 33, 34

Consistency, 28, 31, 46, 52, 57, 58
Context Switch, 45, 50
Control Flow Graph, see CFG
Copyright, 23, 62
CP, 70

Dataflow, 27, 56, 64
Data�ow analysis, 27, 64
Datatype, 46, 49, 50

Copying, 48
Mutable, 47
Name, 48
Persistent, 47
Registration, 47
Rehashing, 48

Datatype, 46, 47
Bool, 46
Couple, 48
Int, 47
List, 47

86

INDEX

Nop, 48
Ref, 51

Db, 17, 18, 20, 26, 28, 41, 41, 42, 49, 55, 61,
65, 66

From.self, 49
Impact.compute_pragmas, 41
Main, 14, 17
Main.extend, 14, 15
progress, 60
Value.compute, 45, 48
Value.is_computed, 45, 46
Value.self, 52

Db_types, 41, 66
Design, 14, 17

main_window_extension_points, 60
register_extension, 60

DISTRIB_FILES, 37
doc, 64
Documentation, 17, 21, 60, 64, 71

Kernel, 60
Plug-in, see Plugin Documentation
Source, 60

Dynamic, 14, 17, 28, 42, 66
get, 42, 43
register, 15, 42, 42, 43, 50

Emacs tags, see Tags
Entry Point, 46

Frama-C, 55, 65
Entry point, 14
Equality

Physical, 50, 51
Structural, 51

except, 51
external, 63
Extlib, 27, 65

mk_fun, 20
NotYetImplemented, 20
the, 59

File, 66
create_project_from_visitor, 59
init_from_c_files, 56
init_from_cmdline, 56
init_project_from_cil_file, 44, 56
init_project_from_visitor, 44, 56

ForceCallDeps, 54
FRAMAC_LIBDIR, 15, 37
FRAMAC_SHARE, 15, 37
From, 34, 49, 50

Function, 27

Globals, 27, 66
set_entry_point, 46

GUI, 14, 17, 60, 65
gui, 65
Gui_init, 66

Hash-consing, 47
Hashtable, 46, 47, 49, 64
Header, 23, 62, 71
headers, 62, 64
Hello, 18, 31
Highlighting, 60
Hook, 14, 18

index.html, 60, 61
index.prehtml, 61
Initialisation, 20, 43, 46, 49, 54
Internal State

Cleaning, 51
Internal

Kind, see State Kind
Internal State, 44, 45, 50, 51, 52, 56, 57

Cleaning, 52
Dependency, 46, 49, 50, 52
Postponed, 49, 55

Functionalities, 45
Global Version, 50
Kind, 49
Local Version, 50, 51
Name, 49, 50
Registration, 45, 46, 48
Selection, see Selection
Sharing, 51
The Frama-C One, 44, 52

Inthash, 64
Ival, 27, 65

Journal, 54
Journal, 14, 17, 28, 66
Journalisation, 41

Kernel, 25, 26, 27, 32, 50, 65, 70
Toolbox, 65

kernel, 65
Kernel Function, 47, 48
Kernel_computation, 46, 49

StmtHashtbl, 48
Kernel_datatype, 46, 47

KernelFunction, 47, 48

87

INDEX

Stmt, 47
Varinfo, 48
VarinfoHashtbl, 47

Kernel_function, 48, 66
Make_Table, 49

Kernel_type, 43, 66
Kind

Select_Dependencies, 52
Kui, 66

Lablgtk, 34, 35, 60
Lablgtksourceview, 35
Lattice, 26, 27, 56, 65
Lattice, 53
Lesser General Public License, see LGPL
Lexing, 26, 27
LGPL, 23, 62
lib, 64, 65

fc, 64
gui, 64
plugins, 64

Library, 32, 64
Con�guration, 34, 67
Dependency, 33

licences, 62
License, 23, 62, 71
LICENSES, 62
licenses, 64
Linking, 26�28, 54
Lmap, 27, 56, 65
Lmap_bitwise, 27, 56, 65
Loading, 44, 46
Location, 55, 65
Locations, 27, 55, 65

location, 55
Location_Bits, 55
Location_Bytes, 55
valid_enumerate_bits, 56
Zone, 56

Log, 28, 66
Logic Type System, 65
Logic_const, 65

expr_to_term, 59
mk_dummy_term, 59
prel, 59

Logic_typing, 65
Loop, 66
Ltl_to_acsl, 37

Main, 65

Makefile.config.in, 68, 68, 69
Makefile.dynamic, 14, 15, 17, 36, 36, 37, 68,

68, 71
Makefile.in, 17�19, 21, 35, 60�63, 67, 68,

68, 69
Makefile.plugin, 19, 36, 68, 68, 71
memo, 48
Memoization, 44, 45, 48, 49
Memory State, 26, 27
Memory States

Toolbox, 65
memory_states, 65
misc, 65
Module Initialisation, see Initialisation

Occurrence, 33, 60
only, 51, 52
Oracle, 22, 38, 38, 76

Parameters, 52
Parameters, 52, 66

Dynamic, 54
Dynamic.Bool, 54
UseUnicode, 53

Parsing, 26, 27
Pdg, 50
PdgTypes

Pdg.Datatype, 50
Platform, 67
Plug-in, 13, 25, 28

Access, 42
Compilation, 71
Compiled, 64
Database, see Db

Dependency, 32, 32, 34, 67, 73
Directory, 18, 60, 71
Distribution, 75
Documentation, 60, 61, 73
From, see From
GUI, 14, 17, 34, 54, 60, 73
Hello, see Hello
Implementation, 65
Initialisation, see Initialisation
Interface, 17, 18, 21, 61, 73
Kernel-integrated, 13, 16, 28
Access, 41
Registration, 41

License, 62
Name, 71
Occurrence, see Occurrence

88

INDEX

Pdg, see Pdg

Registration, 42

Slicing, see Slicing

Sparecode, see Sparecode

Status, 32

Test, 73, 75

Tests Suite, 17

Types, 17, 26, 29, 41, 65, 73

Value, see Value

Wished, 67

plugin_types, 41, 49

Plugin

Kernel-integrated, 67, 69

Plugin, 14, 17, 28, 40, 66

BOOL, 52

General_services, 52

General_services.EmptyString, 53

General_services.False, 53, 53

General_services.IndexedVal, 53

General_services.Int, 53

General_services.String, 53, 53

General_services.True, 53

General_services.Zero, 53

get_selection, 52

INT, 52, 53

Parameter, 52

Register, 15, 40, 52

False, 15

STRING, 53

PLUGIN_BFLAGS, 73

PLUGIN_CMI, 73

PLUGIN_CMO, 15, 20, 36, 37, 73

PLUGIN_DEPENDS, 73

PLUGIN_DEPFLAGS, 73

PLUGIN_DIR, 20, 36, 37, 71

PLUGIN_DISTRIB_BIN, 75

PLUGIN_DISTRIB_EXTERNAL, 75

PLUGIN_DISTRIBUTED, 75

PLUGIN_DOCFLAGS, 73

PLUGIN_DYNAMIC, 37, 71

PLUGIN_ENABLE, 19, 36, 37, 71

PLUGIN_GENERATED, 73

PLUGIN_GUI_CMO, 36, 60, 73

PLUGIN_HAS_EXT_DOC, 73

PLUGIN_HAS_MLI, 21, 36, 73

PLUGIN_INTRO, 61, 73

PLUGIN_LINK_BFLAGS, 73

PLUGIN_LINK_GUI_BFLAGS, 73

PLUGIN_LINK_GUI_OFLAGS, 73

PLUGIN_LINK_OFLAGS, 73
PLUGIN_NAME, 15, 19, 21, 36, 37, 60, 71, 75
PLUGIN_NO_DEFAULT_TEST, 75
PLUGIN_NO_TEST, 20, 21, 36, 73
PLUGIN_OFLAGS, 73
PLUGIN_TESTS_DIRS, 73
PLUGIN_TESTS_LIB, 73
PLUGIN_TYPES_CMO, 36, 42, 69, 73
PLUGIN_Types_TODOC, 73
PLUGIN_UNDOC, 36, 73
plugins.prehtml, 61
Postdominator, 48
Preprocessing, 27
Print, 53
PRINT_CP, 70
Printer, 66
Project, 31, 44, 52, 54, 56, 57, 65

Current, 44, 46, 50, 52, 57
Initial, 56
Use, 44

Project, 14, 17, 26, 28, 44
clear, 51, 52
Computation

add_dependency, 50
dummy, 49
Register, 46, 49, 50, 51

copy, 47
current, 44, 45
Datatype

Imperative, 47, 47
Persistent, 47, 47
Register, 46, 48, 48

IOError, 45
load, 45
on, 45, 51, 52
save, 44
Selection, 51
singleton, 52

set_current, 44, 45
t, 44

project, 65
Ptests, 22, 38, 71, 76

Rangemap, 27
Register, 18

Saving, 31, 44, 46, 48
Selection, 46, 51
self, 48, 49, 49
Session, 44

89

INDEX

share, 64
Sharing, 57, 58

Widget, 60
Side-E�ect, 51, 54
Slicing, 62
Sparecode, 38
Special_hooks, 66
src, 31, 63, 65

ai, 27
kernel, 27
lib, 27
memory_state, 27
misc, 27
project, 28

State Kind, 49
Stmts_graph, 66
SVN, 23

Tags, 17, 71
Test, 17, 21, 38, 71, 76

Con�guration, 39
Directive, 39
Header, 39, 40
Suite, 18, 38, 38, 64

Test

Directive

CMD, 77
COMMENT, 77
DONTRUN, 77
EXECNOW, 77, 78
FILEREG, 77, 78
FILTER, 77
GCC, 77
OPT, 22, 39, 77
STDOPT, 77, 78

test_config, 39, 77, 78
tests, 38, 64, 76
Tool, 32

Con�guration, 34, 67
Dependency, 33

toplevel, 65
Type

First class value, 40
Type, 14, 17, 28, 43, 65

AlreadyExists, 43
func, 15, 43
StringTbl.Incompatible_Type, 43
t, 42, 43
Unbound_value, 43
unit, 15, 43

Type value, 43
Type value, 43, 65
Typing, 26, 27

UNPACKED_DIRS, 36, 42, 69

Value, 34, 36
Variable

Global, 27
VERBOSEMAKE, 35, 70
Version, 66
Visitor, 56

Behavior, 58, 58
Cil, see Cil Visitor
Copy, 44, 58, 58
In-Place, 57, 58

Visitor, 27, 66
generic_frama_c_visitor, 56, 59
vglob_aux, 57
vstmt_aux, 57

Website, 61

90

	Foreword
	Introduction
	Tutorial
	Standard Plug-in
	Plug-in Integration Overview
	Hello Frama-C World

	Kernel-integrated Plug-in
	Setup
	Plug-in Integration Overview
	Hello Frama-C World
	Configuration and Compilation
	Connection with the Frama-C World
	Testing
	Copyright your Work

	Software Architecture
	General Description
	Cil: C Intermediate Language
	Kernel
	Plug-ins

	Advanced Plug-in Development
	File Tree Overview
	Configure.in
	Principle
	Addition of a Simple Plug-in
	Addition of Library/Tool Dependencies
	Addition of Plug-in Dependencies
	Configuration of New Libraries or Tools

	Makefile.in
	Plug-in Specific Makefile
	Using Makefile.dynamic
	Calling a Plug-in Specific Makefile from the Frama-C Makefile

	Testing
	Using ptests
	Configuration
	Alternative Testing

	Plug-in General Services
	Writing messages
	Types as first class values
	Journalisation
	Plug-in Registration and Access
	Kernel-integrated Registration and Access
	Dynamic Registration and Access

	Project Management System
	Overview and Key Notions
	Using Projects
	Internal State: Principle
	Registering a New Datatype
	Registering a New Internal State
	Direct Use of Low-level Functor Project.Computation.Register
	Selections

	Command Line Options
	Initialisation Steps
	Locations
	Representations
	Map Indexed by Locations

	Visitors
	Entry Points
	Methods
	Action Performed
	Visitors and Projects
	In-place and Copy Visitors
	Differences Between the Cil and Frama-C Visitors
	Example

	GUI Extension
	Documentation
	General Overview
	Source Documentation
	Website

	License Policy

	Reference Manual
	File Tree
	Directory cil
	Directory src

	Configure.in
	Makefiles
	Overview
	Sections of Makefile.in and Makefile.config.in
	Variables of Makefile.dynamic and Makefile.plugin
	Makefile.dynamic

	Testing

	Changes
	Bibliography
	List of Figures
	Index

