
Frama-Clang Plug-in User Manual
version 0.0.14

for Frama-C version 27.x Cobalt

David R. Cok

Work licensed under Creative Commons BY-SA licence
https://creativecommons.org/licenses/by-sa/4.0/

© 2013-2024 CEA-List

https://creativecommons.org/licenses/by-sa/4.0/

Contents

Foreword 4

1 Introduction 5

2 Installation 6

3 Running the plug-in 8

3.1 C++ files . 8

3.2 Frama-clang executable . 8

3.3 Frama-clang options . 9

3.4 Include directories . 10

3.5 32 and 64-bit targets . 10

3.6 Warnings, errors, and informational output 10
3.6.1 Errors . 11
3.6.2 Warnings . 11
3.6.3 Informational output 11

4 Running the Frama-Clang front-end standalone 12

4.1 framaCIRGen specific options . 12

4.2 Clang options . 12

4.3 Default command-line . 13

5 Known Limitations 14

5.1 Implementation of Cpp . 14

5.2 Implementation of ACSL++ . 14

5.3 Other Frama-Clang limitations 15

6 Preprocessing 16

6.1 Frama-Clang preprocessor implementation 16

6.2 Trigraphs . 17

6.3 Digraphs . 17

6.4 Preprocessor tokens . 17

6.5 Preprocessor directives . 18

2

CONTENTS

7 Grammar and parser for ACSL++ 19

A Changes 21

Bibliography 23

3

Foreword

This is the user manual for the Frama-C plug-in Frama-Clang.1 The contents of this document correspond
to version 0.0.14 of the plug-in compatible with the 27.x Cobalt version of Frama-C [4, 1]. The development
of the Frama-Clang plug-in is still ongoing. Features described by this document will certainly evolve in
the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Virgile Prevosto, Armand
Puccetti and Franck Védrine.

This project has received funding from the European Union’s Horizon 2020 Programme under
grant agreement N° 731453 (VESSEDIA).

1 https://frama-c.com/frama-clang.html

4

https://frama-c.com/frama-clang.html

1Introduction

Frama-C [4, 1] is a modular analysis framework for the C programming language that supports the
ACSL specification language [2]. This manual documents the Frama-Clang plug-in of Frama-C, version
0.0.14. The Frama-Clang plug-in supports the ACSL++ extension of ACSL for C++ programs and
specifications; it is built on the Clang1 compiler infrastructure and uses Clang for parsing C++. The
plug-in extends Clang to parse ACSL++, translating source files containing C++ and ACSL++ into
Frama-C’s intermediate language for C and ACSL.

The Frama-Clang plug-in intends to provide a full translation of C++ and ACSL++ into the Frama-C
internal representation, and from there to allow C++ programs and ACSL++ specifications to be
analyzed by other Frama-C plug-ins. This is a work in progress. The following sections describe the
current status and limitations of the current implementation.

– The plug-in aims for the C++11 version of C++
– ACSL++ is described in the companion ACSL++ reference manual [3], also a part of the Frama-C

release.
– The plug-in is compatible with version 11.0-16.0 of Clang. This version of Clang supports C++

versions through C++17 (cf. https://clang.llvm.prg/cxx_status.html). However,
Frama-Clang may not support all of the features of C++ within annotations.

1 https://clang.llvm.org/

5

https://clang.llvm.prg/cxx_status.html

2Installation

Frama-Clang is currently still experimental and not part of regular Frama-C releases. It must be built
from source and added to a Frama-C installation. If you’re already using the opam package manager to
install Frama-C (see below), Frama-Clang can be installed directly with opam install frama-clang.

The remainder of this chapter gives the instructions for installing Frama-Clang manually. Frama-Clang
depends on two software packages:

– A current version of Frama-C itself. It is highly recommended to install Frama-C using opam,
as described in the installation procedures for Frama-C (https://frama-c.com/download.
html). Version 0.0.14 of Frama-Clang is compatible with version 27.x Cobalt of Frama-C.

– An installation of Clang, which is available as part of LLVM, which itself is available from
http://releases.llvm.org. Note that you will need Clang’s library and its headers, not just
the compiler itself. Version 0.0.14 of Frama-Clang is compatible with version 11.0-16.0 of Clang.

In addition, a third package is needed for compiling Frama-Clang, camlp5 (https://camlp5.
github.io/). Once Frama-Clang has been installed, camlp5 is not required anymore. Again, the
easiest way to install camlp5 itself is through opam. Finally, newer versions of OCaml have dropped
the Genlex and Streams modules from their standard library, so that another opam package must be
installed as well, namely camlp-streams.

Building and installing Frama-Clang has three effects:
– The Frama-Clang executable files are installed within the Frama-C installation. In particular,

if Frama-C has been installed using opam, then the principal executable framaCIRGen will be
installed in the opam bin directory. You must be sure that this directory is on your $PATH.
This is usually the default for standard opam installations. In doubt, you can try the command
which framaCIRGen after installation to be sure that framaCIRGen will be correctly detected
by your shell.

– The Frama-C plug-in itself is copied into the standard Frama-C plug-in directory (as given by
frama-c-config -print-plugin-path), so that it will be loaded automatically by the main
Frama-C commands at each execution.

– Include files containing ACSL++ specifications of C++ library functions are copied to directory
$FRAMAC_SHARE/frama-clang/libc++, where $FRAMAC_SHARE is the path given by the
command frama-c-config -print-share-path.

These include files are replacements for (a subset of) the standard system include files. They should have
the same definitions of C and C++ functions and classes, but with ACSL++ annotations giving their
specifications. Note however that this is still very much a work in progress, except for the headers that
are imported from the C standard library, which benefit from the specifications of the headers provided
by Frama-C itself.

The plugin can be built by hand from source using the following commands. Create a new directory
to which you download and unpack the source distribution. Then cd into the source directory itself
(one level down) and execute:

make
make install

6

https://frama-c.com/download.html
https://frama-c.com/download.html
http://releases.llvm.org
https://camlp5.github.io/
https://camlp5.github.io/

By default, Frama-Clang will install its files under the same root directory as Frama-C itself. In particu-
lar, if Frama-C has been installed from opam, the installation will be done under $(opam var prefix)
directory. To install it in another directory, you can set the PREFIX environment variable before executing
make install. Note that in that case, Frama-C may not be able to load the plug-in automatically.

7

3Running the plug-in

3.1 C++ files

Once installed the plugin is run automatically by Frama-C on any C++ files listed on the command-line.
C++ files are identified by their filename suffixes. The default suffixes recognized as C++ are these:
.cpp, .C, .cxx, .ii, .ixx, .ipp, .i++, .inl, .h, .hh

Currently this set of suffixes is compiled in the plugin (in file frama_Clang_register.ml) and
can only be changed by recompiling and reinstalling the plugin.

3.2 Frama-clang executable

The plug-in operates by invoking the executable framaCIRGen (which must be on the system $PATH)
on each file identified as C++, in turn. For each file it produces a temporary output file containing an
equivalent C AST, which is then translated and passed on as input to Frama-C. This executable is a
single-file-at-a-time command-line executable only. Various options control its behavior.

The file-system path identifying the executable is provided by the -cxx-clang-command <cmd>
option and is framaCIRGen by default. The path may be absolute; if it is a relative path, it is found by
searching the system $PATH.

The PARSING section of the output of frama-c -kernel-h lists some options for controlling the
behavior described above. This is notably the case for:

– -cpp-extra-args which contains arguments to be passed to the preprocessor (e.g. -D macro
definitions or -I search path directives). In case the project under analysis mixes C and C++ files
which require distinct preprocessor directives, it is possible to use the Frama-Clang-specific option
-fclang-cpp-extra-args. In that case, Frama-Clang will not consider -cpp-extra-args
at all. See section 3.4 for more information.

– -machdep which indicates the architecture on which the program is supposed to run. See
section 3.5 for more information

Apart from -fclang-cpp-extra-args, and -cxx-clang-command, Frama-Clang options gov-
erning the parsing of C++ files are:

– -cxx-c++stdlib-path, the path where Frama-Clang standard C++ headers are located.
– -cxx-cstdlib-path, the path where Frama-C standard C headers are located
– -cxx-nostdinc, instructs framaCIRGen not to consider Frama-Clang and Frama-C headers (i.e.

fall back to system headers).

8

3.3. FRAMA-CLANG OPTIONS

3.3 Frama-clang options

The options controlling Frama-Clang are of four sorts:
– options known to the Frama-C kernel
– options the Frama-Clang plug-in has registered with the Frama-C kernel. These also are recognized

by the FramaCcommand-line.
– options known to framaCIRGen directly (and not to FramaC, These must be included in the internal

command that invokes framaCIRGen using the -cpp-extra-args option. These options are
described in §4.

– Clang options, which must also be supplied using the -cpp-extra-args option, and are passed
through framaCIRGen to Clang. See §4.

The options in the first two categories are processed by the Frama-C kernel when listed on the
Frama-C command-line. The use of the FramaCcommand-line is described in the core Frama-C user
guide. There are many kernel options that affect all plugins and many options specific to Frama-Clang.
The command

frama-c -kernel-h
shows all kernel options; the command

frama-c -fclang-h
shows all Frama-Clang specific options.

The most important of the options are these:
– --help or -h – introduction to Frama-C help
– -kernel-h, -fclang-h – help information about FramaC the FramaCkernel and the Frama-

Clang plug-in
– -print – prints out the input file seen by FramaC when Frama-Clang is being used this is the

input file after pre-processing and translation from C++ to C. Thus this output can be useful to
see (and debug) the results of Frama-Clang’s transformations.

– -kernel-warn-key=annot-error=<val> sets the behavior of Frama-C, including Frama-
Clang, when a parsing error is encountered. The default value (set by the kernel) is abort, which
terminates processing upon the first error; a more useful alternative is active, which reports
errors but continues processing further annotations.

– -machdep <arg> – sets the target machine architecture, cf. §3.5
– -kernel-msg-key <categories> – sets the amount of informational messages according

to different categories of messages. See -kernel-msg-key help for a list of informational
categories.

– -kernel-warn-key <categories> – sets the amount and behavior of warnings.
See -kernel-warn-key help for a list of warning categories.

– -fclang-msg-key <categories> – sets the amount of informational messages according
to different categories of messages. See -fclang-msg-key help for a list of informational
categories.

– -fclang-warn-key <categories> – sets the amount and behavior of warnings.
See -fclang-warn-key help for a list of warning categories.

– -fclang-verbose <n> – sets the amount of information from the Frama-Clang plug-in
– -fclang-debug <n> – sets the amount of debug information from the Frama-Clang plug-in
– -annot – enables processing ACSL++ annotations (enabled by default)
– -no-annot – disables processing ACSL++ annotations
– -cxx-unmangling <key> indicates how mangled C++ symbols will be displayed by Frama-C

pretty-printing. key can be one of:
– help: outputs the list of existing key with a short description
– fully-qualified: each symbol is displayed with its fully-qualified C++ name
– without-qualifier: each symbol is displayed with its unqualified name. This gives

9

3.4. INCLUDE DIRECTORIES

shorter, but more ambiguous outputs.
– none: no demangling is performed, symbols are displayed as seen in the AST

– -cxx-parseable-output indicates that the pretty-printed code resulting from the translation
should be able to be parsed again by Frama-C. This implies -cxx-unmangling none.

Note that the Frama-C option -no-pp-annot is ignored by Frama-Clang. Preprocessing is always
performed on the source input (unless annotations are ignored entirely using -no-annot).

3.4 Include directories

By default framaCIRGen is given the paths to the two directories containing the Frama-Clang and Frama-C
header files, which include ACSL++ specifications for the C++ library functions. The default paths
(namely $FRAMAC_SHARE/libc++ and $FRAMAC_SHARE/libc) to these directories can be overriden
by the Frama-Clang options -cxx-c++stdlib-path and -cxx-cstdlib-path options.

Users typically have additional header files for their own projects. These are supplied to the
Frama-Clang preprocessor using the option -cpp-extra-args.

You can use -fclang-cpp-extra-args instead of cpp-extra-args; multiple such options
also have a cumulative effect. The Frama-Clang option only affects the Frama-Clang plugin, whereas
-cpp-extra-args may be seen by other plugins as well, if such plugins do their own preprocess-
ing. Also note that the presence of any instance of -fclang-cpp-extra-args will cause uses of
-cpp-extra-args to be ignored.

The system header files supplied by Frama-Clang does not include all C++ system files. Omissions
should be reported to the Frama-C team.

As an example, to perform wp checking of files a.cpp and inc/a.h, one might use the command-line
frama-c -cpp-extra-args="-Iinc" -wp a.cpp

3.5 32 and 64-bit targets

ACSL++ is for the most part machine-independent. There are some features of C++ that can be
environment-dependent, such as the sizes of fundamental datatypes. Consequently, Frama-C has some
options that allow the user to state what machine target is intended.

– The -machdep option to Frama-C. See the allowed values using the command
frama-c -machdep help.

For example, with a value of x86_32, sizeof(long) has a value of 4, whereas with the option
-machdep x86_64, sizeof(long) has a value of 8.

3.6 Warnings, errors, and informational output

Output messages arise from multiple places: from the Frama-Clang plugin, from the framaCIRGen lexer
and parser, from the Clang parser, and from the Frama-C kernel (as well as from any other plugins
that may be invoked, such as the wp plug-in). They are controlled by a number of options within the
Frama-C kernel and each plugin. Remember that Clang and framaCIRGen options must be put in the
-cpp-extra-args option.

Output messages, including errors, are written to standard out, not to standard error.

10

3.6. WARNINGS, ERRORS, AND INFORMATIONAL OUTPUT

3.6.1 Errors
Error messages are always output. The key question is whether processing stops or continues upon
encountering an error. Continuing can result in a cascade of unhelpful error messages, but stopping
immediately can hide errors that occur later in source files.

– --stop-annot-error is a framaCIRGen option that causes prompt termination on annotations
errors (the framaCIRGen default is to continue); this does not respond to errors in C++ code

– -kernel-warn-key=annot-error=abort is a Frama-Clang plug-in option that will invoke
framaCIRGen with --stop-annot-error. error and error_once (instead of abort) have
the same effect; other values for the key will allow continuing after errors. The default is abort.

3.6.2 Warnings
Warning messages from framaCIRGen can be controlled with the -warn option of framaCIRGen.

– -Werror is a clang and framaCIRGen option that causes any parser warnings to be treated as
errors

– -w is a clang and framaCIRGen option that causes any parser warnings to be ignored
The Clang options are not currently integrated with the Frama-C warning and error key system.

3.6.3 Informational output
This section is not yet written

The Clang informational output is not currently integrated with the Frama-C warning and error key
system.

11

4Running the Frama-Clang front-end
standalone

In normal use within Frama-C, the framaCIRGen executable is invoked automatically. However, it can
also be run standalone. In this mode it accepts command-line options and a single input file; it produces
a C AST representing the translated C++, in a text format similar to Cabs.

The exit code from framaCIRGen is
– 0 if processing is successful, including if only warnings or informational messages are emitted
– 0 if there are some non-fatal errors but --no-exit-code is enabled (the default)
– 1 if there are some non-fatal errors but --exit-code is enabled, or if there are warnings and
-Werror is enabled, but -w is not.

– 2 if there are fatal errors
Fatal errors are those resulting from misconfiguration of the system; non-fatal errors are the result of
errors in the user input (e.g. parsing errors).

The -Werror option causes warnings to be treated as errors.
All output is sent to the standard output.1

4.1 framaCIRGen specific options

These options are specific to framaCIRGen.
– -h – print help information
– -help – print more help information
– -{-}version – print version information
– -o <file> – specifies the name and location of the output file (that is, the file to contain the

generated AST). The output path may be absolute or relative to the current working directory.
This option is required.

– -v – verbose output
– -{-}stop-annot-error – if set, then parsing stops on the first error; default is off

4.2 Clang options

Frama-Clang is built on the Clang C++ parser. As such, the framaCIRGen executable accepts the
clang compiler options and passes them on to clang. There are many of these. Many of these are
irrelevant to Frama-Clang as they relate to code generation, whereas Frama-Clang only uses Clang for

1 Currently clang output goes to std err.

12

4.3. DEFAULT COMMAND-LINE

parsing, name and type resolution, and producing the AST. You can see a list of options by running
framaCIRGen -help

The most significant Clang options are these:
– -I <dir> – adds a directory to the include file search path. Using absolute paths is recommended;

relative paths are relative to the current working directory.
– -w – suppress clang warnings
– -Werror – treat warnings as errors
Although Clang can process languages other than C++, C++ is the only one usable with Frama-Clang.

4.3 Default command-line

The launching of framaCIRGen by Frama-C includes the following options by default. The FramaCoption
-fclang-msg-key=clang will show (among other information) the internal command-line being
invoked.

– -target <target> with the target being set according to the -machdep and -target options
given to Frama-C (cf. §3.5)

– -D__FC_MACHDEP_86_32 – also set according to the chosen architecture. The corresponding
__FC_MACHDEP_* macro is used in Frama-C- and Frama-Clang provided standard headers for
architecture-specific features.

– -std=c++11 – target C++11 features
– -nostdinc – use Frama-Clang and Frama-C system header files, and not the compiler’s own

header files
– -I$FRAMAC_SHARE/frama-clangs/libc++ -I$FRAMAC_SHARE/libc – include the Frama-

Clang and Frama-C header files, which contain system library definitions with ACSL++ anno-
tations (the paths used are controlled by the FramaCoptions -cxx-c++stdlib-path and
-cxx-cstdlib-path).

– --annot or --no-annot according to the -annot or -no-annot Frama-C kernel option
– -stop-annot-error if the corresponding option (-fclang-warn-key=annot-error=abort)

is given to Frama-C
– options to set the level of info messages and warning messages, based on options on the Frama-C

command-line

13

5Known Limitations

The development of the Frama-Clang plug-in is still ongoing. Frama-Clang does not implement all of
current C++ nor all of ACSL++ as defined in its language definition [3]. The most important such
limitations are listed in this section.

These lists are not (nearly) complete

5.1 Implementation of Cpp

The following C++ features are not implemented in ACSL++.
– preprocessing is restricted within ACSL++ annotations (cf. §6)
– uses of typename
– uses of templates are not robust
– uses of typeid
– implementation of the standard library is very rudimentary
– main target of Frama-Clang is C++11

5.2 Implementation of ACSL++

These ACSL++ features are not yet implemented
– Frama-Clang cannot process annotations that are separate from the source file
– ACSL++ specifications for standard C++ library functions are still quite limited
– ACSL++ definitions within template declarations
– ghost code is not yet implemented
– model declarations
– set comprehensions
– using (namespace) declarations (parsed but has no effect)
– pure functions (parsed but incompletely implemented)
– throws clause (parsed but not implemented in Frama-C)
– interaction of throws and noexcept
– parallel \let
– \count and \data are parsed but not yet implemented in Frama-C
– formal parameters that are references have pre and post states
– dynamic casting not yet implemented in Frama-C
– rounding mode and related builtin functions
– builtin types list and \set and related builtin functions
– \valid_function \allocable \freeable \fresh are not yet implemented by Frama-C
– extended quantifiers are not yet implemented by Frama-C

14

5.3. OTHER FRAMA-CLANG LIMITATIONS

– global invariants are not yet implemented by Frama-C
– generalized invariants are not yet implemented by Frama-C
– assigns with both \from and = is not yet implemented

5.3 Other Frama-Clang limitations

– -fclang-version is not implemented
– parsing routines need work to improve robustness, to improve accuracy of locations, and to guard

against leaking memory when parses fail
– the term/predicate parsing methods should be refactored to avoid deep call stacks
– resolve issues of tset representations
– cannot change the set of C++ suffixes
– frama-clang info/warn/error messages are not yet properly categorized and integrated with -fclang-

log, -fclang-msg-key, fclang-warn-key. In particular, clang messages are completely independent of
the Frama-C logging framework

15

6Preprocessing

This section describes the implementation of the C++ preprocessor for ACSL++ annotations. Recall
that the C++ preprocessor replaces comments (including ACSL++ comments) by white space, without
operations such as handling preprocessor directives. Accordingly, Frama-Clang must handle standard
preprocessing within ACSL++ annotations itself.

As a refresher, the C/C++ preprocessor (CPP) (cf. https://gcc.gnu.org/onlinedocs/cpp/)
conceptually implements the following operations on a C++ source file:

– The input is translated into a basic set of characters, including replacing trigraph sequences by
their source character set equivalents

– Any backslash-whitespace-line-terminator sequence is removed and the line that it ends is combined
with the following line, producing a sequence of logical lines.

– Comments are replaced by single spaces. This requires tokenizing the input to avoid recognizing
comment markers within strings as indicating a comment. Note that this allows block comments
to hide line terminations.

– The input text is divided into preprocessing tokens grouped in logical lines. Each preprocessor
token becomes a compiler token (except where ## concatenation occurs). However, ACSL++
tokens are slightly different, as described below.

– The source text is transformed according to any preprocessing directives contained within it. Each
preprocessing directive must be contained within one logical line. The result has no preprocessing
directives remaining.

– Adjacent string literals (separated only by white-space or line-endings) are concatenated into a
single string literal.

The result is a sequence of preprocessing tokens that is passed on to the remaining compiler phases.

6.1 Frama-Clang preprocessor implementation

The Frama-Clang implementation operates as follows, on each ACSL++ annotation comment in turn:
– A simplified custom lexer converts the text into preprocessor tokens, without doing macro substi-

tution, to find instances of forbidden preprocessor directives. If possible and reasonable, these are
elided from the input text and processing continues.

– The text is then submitted to Clang to obtain the complete sequence of preprocessor tokens, now
with full preprocessing (except for adjacent string concatenation).

– Frama-Clang transforms the clang preprocessor tokens into ACSL++ tokens, which are then passed
on to the ACSL++ parser to produce the desired AST.

16

https://gcc.gnu.org/onlinedocs/cpp/

6.2. TRIGRAPHS

6.2 Trigraphs

Trigraphs are defined for C++ but will currently be removed in C++17. Since trigraph processing by
clang occurs before any recognition of comments, trigraphs in ACSL++ annotations are translated, if
enabled in Clang. As they will be removed from C++, they are not recommended for use in ACSL++
annotations. Preprocessing of trigraphs is enabled by default.

6.3 Digraphs

Digraphs are alternate spellings of preprocessor tokens, in particular, of punctuation character sequences.
Digraphs in ACSL++ annotations are translated just as they are in C++ (by Clang). Using digraphs is
not recommended.

6.4 Preprocessor tokens

Preprocessor tokens (per CPP) belong to one of several categories: identifiers, literals (including numeric,
character and string literals), header names, operators, punctuation, and single other characters. White
space (space, tab) serves only to separate tokens; it is not needed between tokens whose concatenation is
not a single token. Line terminators also separate tokens and also delineate certain features: preprocessing
directives and string literals do not extend over more than one (logical) line.

Dollar signs are also allowed as non-digit identifier characters if the clang option
-fdollars-in-identifiers is enabled, which it is by default.
Enable with -fdollars-in-identifiers ;
disable with -fno-dollars-in-identifiers .

Numeric literals are more general than a C++ or ACSL number. Nevertheless, aside from token
concatenation, each preprocessing token becomes a compiler token, which then may be an illegal compiler
token.

The token definitions imply that arbitrary text can always be broken into legitimate preprocessor
tokens, with the exception of a few characters and of badly formed unicode sequences.

Note that not all preprocessor tokens are valid C/C++ parser tokens. Tokens in the other category
have no meaning to C/C++ and the number category allows many sequences that are not legal C/C++
numeric tokens. These tokens will generally provoke compiler errors. For example in C/C++, 0..2 is one
token and is not interpreted as two consecutive numeric tokens.

ACSL and ACSL++ have slightly different tokens than the preprocessor, so the preprocessor tokens
need to be re-tokenized in some cases:

– The @ token is a whitespace character in the interior of a ACSL++ annotation.
– There are some ACSL++ multi-character punctuator tokens that are not single preprocessor tokens:

– all ACSL++ keywords that begin with a backslash, such as \result.
– ==> (logical implies)
– --> (bit-wise implies)
– <==> (logical equality)
– <--> (bit-wise equality)
– ^^ (logical inequality)
– ^* (list repetition)
– [| and |] (list creation)

These ACSL++ tokens need to be assembled from multiple CPP tokens (and those CPP tokens

17

6.5. PREPROCESSOR DIRECTIVES

must not be separated by white space)
– A CPP numeric token that contains .. will not be a legal C/C++ number, but may be a sequence

of legal ACSL++ tokens with the .. representing the range operator. For example, the single CPP
token 0..last is retokenized for ACSL++ as if it were written 0 .. last .

– ACSL++ allows certain built-in non-ASCII symbols. An example is ∀ (unicode 0x2200) to designate
a universal quantifier, which is an alternative form of \forall. A complete list of such tokens is
given in the ACSL++ language definition.

6.5 Preprocessor directives

A preprocessing directive consists of a single logical line (after the previous preprocessing phases have
been completed) that begins with optional white space, the # character, additional optional white space,
and a preprocessor directive identifier. The preprocessing language contains a fixed set of preprocessing
directive identifiers:

– define, undef
– if, ifdef, ifndef, elif, else, endif
– warning, error
– include
– line
– pragma

In addition, identifiers that have been defined (by a #define directive) as macros are expanded
according to the macro expansion rules (not described here).

Because ACSL++ annotations are contained in C/C++ comments, any directives contained in the
annotation are not seen when the source file is processed simply as a C/C++ source file. However, the
effect of some directives lasts until the end of the source file. Accordingly, ACSL++ imposes constraints
on the directives that may be present within annotations:

– define and undef are not permitted in an annotation. (If they were to be allowed, their scope
would have to extend only to the end of the annotation, which could be confusing to readers.)

– macros occurring in an annotation but defined by define statements prior to the annotation are
expanded according to the normal rules, including concatenation by ## operators. The context of
macro definitions corresponds to the textual location of the annotation, as would be the case if the
annotation were not embedded in a comment.

– if, ifdef, ifndef, elif, else, endif are permitted but must be completely nested within
the annotation in which they appear (an endif and its corresponding if, ifdef, ifndef, or
elif must both be in the same annotation comment.)

– warning and error are permitted
– include is permitted, but will cause errors if it contains, as is almost always the case, other

disallowed directives
– line is not permitted
– pragma and the _Pragma operator are not permitted
– stringizing (#) and string concatenation (##) operators are permitted
– the defined operator is permitted
– the standard predefined macro names are permitted: __cpluscplus (in C++ compilers),
__DATE__, __TIME__, __FILE__, __LINE__, __STDC_HOSTED__

18

7Grammar and parser for ACSL++

This section summarizes some of the technical implementation considerations in writing a parser for
ACSL++ within Frama-Clang. This material may be useful for developers and maintainers of Frama-Clang;
it is not needed by users of Frama-Clang

Recall that Frama-Clang uses clang to parse C++ and a custom parser to parse ACSL++ annotations,
jointly producing a representation of the C++ and ACSL++ source input in the Frama-C intermediate
language. The first version of the ACSL++ custom parser, written during the STANCE project, used
a hand-written bison-like parser, but with function pointers to record state and actions rather than
using a tool-generated table to drive the parsing. This design proved to be too brittle and difficult to
efficiently evolve as new features were added to ACSL++. Consequently during the VESSEDIA project,
the scanner and parser were completely rewritten, largely retaining the previous design’s connections to
clang, token definitions, name lookup and type resolution, and AST generation.

The new parser uses a recursive descent design in which the names of functions doing the parsing can
match the names of non-terminals in the grammar. Consequently the implementation of the parser is
much more readable, human checkable, and modifiable as the ACSL++ language evolves. The drawback
of this design is that ACSL++ is not LL(1); it is not even LL(k) for fixed k. Thus some amount of
lookahead and backtracking is required. The bulleted paragraphs below describe the problematic aspects
of ACSL++ and how they are addressed.

The principal goal of an LL(k) formulation of a grammar is to be able to predict which grammar
production is being seen in the input stream from a small amount of look-ahead. Most ACSL++
constructs start with a unique keyword (e.g., clauses begin with requires, ensures etc.) which
serves this purpopse. But the constructs inherited from C++ pose some challenges.

– Left recursion. Expression grammars are typically left recursive, which is problematic for recursive
descent parsers. However, it is well-known how to factor out left recursion. The precedence order
of operators is largely hard-coded into the grammar implementation; the usual left recursion poses
no particular challenge.

– terms vs. predicates. ACSL++ distinguishes terms and predicates, following the distinction
between propositional and predicate logic. However, terms and predicates have very similar
grammars. Furthermore, ACSL++ allows boolean-value terms to be implicitly converted to
predicates and allows predicates to be used within terms (such as for the conditional sub-expression
in a ternary expression). This makes it not possible to distinguish terms and predicates in top-
down parsing. However, Frama-C has different AST nodes for the two, so it would require a
very significant refactoring of Frama-C and all its plugins to unify terms and predicates (as other
specification languages have done). Note that this problem is a challenge for any parser design.
The previous and current parser designs adopted the same solution: maintain two parallel parses
of expressions — one as a term and one as a predicate. Error messages are emitted only when
both parses fail or when a particular grammar production calls for a particular type of AST (term
or predicate) and that one is not available.

– terms vs. tsets. Similarly, the ACSL++ language definition defines tsets (sets of locations) with
grammar productions separately from terms. However, the grammars for the two are very similar.
ACSL++ is much easier to parse and to implement if tsets are seen as terms with a specific type,

19

namely sets. Many operations on a data type are also simply element-by-element operations on
sets of such data types. Also, errors found during type-checking can be associated with more
readable error messages than those found during parsing.

– cast vs. parenthesized expression To determine whether an input like (T)-x is (a) the
difference of the parenthesized expression (T) and x or (b) a cast of -x to the type T, one must
know whether T is a variable or type. This is a classic problem in parsing C++; it requires that
identifiers be known to be either type names or variable names in the scanner. In addition, T
here can be an arbitrary type expression. For example, in C++, a type expression can contain
pointer operators that can look, at least initially like multiplications and they can contain template
instantiations that look initially like comparisons. Frama-Clang handles this situation by allowing
a backtrackable parse. When a left parenthesis is parsed in an expression context, the parser
proceeds by attempting a parse of a cast expression. If the contents of the parenthesis pair is
successfully parsed as a type expression, it is assumed to be a cast expression.
If such a parse fails, no error messages are emitted; rather the parse is rewound and proceeds again
assuming the token sequence to be a parenthesized expression.

– set comprehension. The syntax of the set comprehension expression follows traditional mathe-
matics: { expr | binders ; predicate}. This structure poses two difficulties for parsers. First,
the expression expr may contain bitwise-or operators, so it is not known to the parser whether an
occurence of | is the beginning of the binders or is just a bitwise-or operator. Second, the expression
will use the variables declared in the binders section. However, the binders are not seen until after
the expression is scanned. Note that these problems are not unique to a recursive descent design;
they would challenge a LR parser just as much. This particular feature is not yet implemented in
Frama-Clang, nor in Frama-C and so is not yet resolved in the parser implementation.

– labeled expressions. ACSL++ allows expressions to have labels, designated by a id : prefix.
So the parser cannot know whether an initial id is a variable or just a label until the colon is
parsed. Thus this situation requires a lookahead of 2 tokens.
Ambiguity arises with the use of a colon for the else part of a conditional expression. So in an
expression such as a ? b ? c : d : e : f, it is ambiguous whether c or d or e is a label.
Parenthesizing must be used to solve this problem. Frama-Clang presumes that if the then part of
a conditional expression is being parsed, a following colon is always the colon introducing the else
part. That is, the binding to a conditional expression has tighter precedence than to a naming
expression.

20

AChanges

This chapter summarizes the changes in Frama-Clang and its documentation between each release, with
the most recent releases first.

Version 0.0.15

– Better handling of mixed C/C++ code and extern "C" declarations
– Compatibility with Clang 17
– Compatibility with Frama-C 28.x Nickel

Version 0.0.14

– Compatibility with Frama-C 27.x Cobalt.
– Compatibility with Clang 15.0 and 16.0. Clang 10.0 is not supported anymore.
– Frama-Clang has an official opam package.

Version 0.0.13

– Compatibility with Frama-C 25.0
– added limits and ratio headers (contributed by T-Gruber)

Version 0.0.12

– compatibility with Clang 13.0 and Clang 14.0
– Clang >= 10 is now required
– compatibility with Frama-C 24.0
– support for C++14 generic lambdas (contributed by S. Gränitz)
– option for printing reparseable code and using demangling also on non-C++ sources

21

Version 0.0.11

– compatibility with Clang 12.0
– compatibility with Frama-C 23.0
– Slightly improved ACSL++ parsing
– Various bug fixes

Version 0.0.10

– compatibility with Clang 11.x
– compatibility with Frama-C 22.x
– don’t generate code for implicit member functions and operators when they’re not used
– don’t generate code for templated member functions that are in fact never instantiated

Version 0.0.9

– compatibility with Clang 10.0
– compatibility with Frama-C 21.x
– support for implicit initialization of POD objects.

Version 0.0.8

– compatibility with Clang 9.0
– compatibility with Frama-C 20.0
– proper conversion of ghost statements
– support for ACSL++ \exit_status
– C++-part of the plug-in is now free from g++ warnings
– move away from camlp4 in favor of camlp5

Version 0.0.7

– First release of this manual.

22

Bibliography

[1] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai Kosmatov,
André Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. The
Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform. Communications
of the ACM, 64(8):56–68, August 2021.

[2] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and
Virgile Prevosto. ACSL: ANSI/ISO C Specification Language.

[3] David R. Cok. ACSL++: ANSI/ISO C++ Specification Language.

[4] Loïc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand Puccetti,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual. http://frama-c.cea.fr/
download/user-manual.pdf.

23

http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf

	Foreword
	1 Introduction
	2 Installation
	3 Running the plug-in
	3.1 C++ files
	3.2 Frama-clang executable
	3.3 Frama-clang options
	3.4 Include directories
	3.5 32 and 64-bit targets
	3.6 Warnings, errors, and informational output
	3.6.1 Errors
	3.6.2 Warnings
	3.6.3 Informational output

	4 Running the Frama-Clang front-end standalone
	4.1 framaCIRGen specific options
	4.2 Clang options
	4.3 Default command-line

	5 Known Limitations
	5.1 Implementation of Cpp
	5.2 Implementation of ACSL++
	5.3 Other Frama-Clang limitations

	6 Preprocessing
	6.1 Frama-Clang preprocessor implementation
	6.2 Trigraphs
	6.3 Digraphs
	6.4 Preprocessor tokens
	6.5 Preprocessor directives

	7 Grammar and parser for ACSL++
	A Changes
	Bibliography

