
Developer Manual

Plug-in Development Guide

Release Oxygen-20120901

Julien Signoles with Loïc Correnson and Virgile Prevosto

CEA LIST, Software Reliability Laboratory, Saclay,F-91191

c©2009-2012 CEA LIST

This work has been supported by the ANR project CAT (ANR-05-RNTL-00301) and the
ANR project U3CAT (08-SEGI-02101).

Contents

Foreword 9

1 Introduction 11

1.1 About this document . 11

1.2 Outline . 12

2 Tutorial 13

2.1 Standard Plug-in . 13

2.1.1 Plug-in Integration Overview . 13

2.1.2 Hello Frama-C World . 14

2.2 Kernel-integrated Plug-in . 16

2.2.1 Setup . 16

2.2.2 Plug-in Integration Overview . 17

2.2.3 Hello Frama-C World . 17

2.2.4 Con�guration and Compilation . 19

2.2.5 Connection with the Frama-C World 20

2.2.6 Testing . 22

2.2.7 Copyright your Work . 24

3 Tutorial of the Future 25

3.1 What a Plug-in Look Like? . 25

3.2 A Simple Script . 25

3.3 Registering a Script as a Plug-in . 25

3.4 Displaying Messages . 25

3.5 Adding Command Line Options . 25

3.6 Writing a Make�le . 26

3.7 Writing a Con�gure Script . 26

3.8 Testing your Plug-in . 26

3.9 Getting your Plug-in Usable by Others . 26

3.10 Writing your Plug-in into the Journal . 26

5

CONTENTS

3.11 Visiting the AST . 26

3.12 Getting your plug-in Usable in a Multi Projects Setting 26

3.13 Extending the Frama-C GUI . 26

3.14 Documenting your Source Code . 27

4 Software Architecture 29

4.1 General Description . 29

4.2 Cil: C Intermediate Language . 31

4.3 Kernel . 31

4.4 Plug-ins . 32

5 Advanced Plug-in Development 35

5.1 File Tree Overview . 35

5.2 Frama-C Con�gure.in . 36

5.2.1 Principle . 36

5.2.2 Addition of a Simple Plug-in . 37

5.2.3 Con�guration of New Libraries or Tools 37

5.2.4 Addition of Library/Tool Dependencies 38

5.2.5 Addition of Plug-in Dependencies . 39

5.3 Plug-in Speci�c Con�gure.in . 39

5.4 Frama-C Make�le . 40

5.5 Plug-in Speci�c Make�le . 41

5.5.1 Using Makefile.dynamic . 41

5.5.2 Compiling Frama-C and external plug-ins at the same time 42

5.6 Testing . 42

5.6.1 Using ptests . 43

5.6.2 Con�guration . 44

5.6.3 Alternative Testing . 45

5.6.4 Detailed options . 46

5.6.5 Detailed directives . 46

5.7 Plug-in General Services . 48

5.8 Logging Services . 49

5.8.1 From printf to Log . 50

5.8.2 Log Quick Reference . 50

5.8.3 Logging Routine Options . 51

5.8.4 Advanced Logging Services . 52

5.9 The Type library: Type Values and Datatypes 54

5.9.1 Type Value . 55

6

CONTENTS

5.9.2 Datatype . 55

5.10 Plug-in Registration and Access . 58

5.10.1 Kernel-integrated Registration and Access 58

5.10.2 Dynamic Registration and Access . 59

5.11 Journalization . 62

5.12 Project Management System . 62

5.12.1 Overview and Key Notions . 62

5.12.2 State: Principle . 63

5.12.3 Registering a New State . 64

5.12.4 Direct Use of Low-level Functor State_builder.Register 67

5.12.5 Using Projects . 68

5.12.6 Selections . 69

5.13 Command Line Options . 70

5.13.1 De�nition . 70

5.13.2 Tuning . 72

5.14 Initialization Steps . 72

5.15 Visitors . 75

5.15.1 Entry Points . 75

5.15.2 Methods . 75

5.15.3 Action Performed . 76

5.15.4 Visitors and Projects . 77

5.15.5 In-place and Copy Visitors . 77

5.15.6 Di�erences Between the Cil and Frama-C Visitors 78

5.15.7 Example . 78

5.16 Logical Annotations . 79

5.17 Locations . 80

5.17.1 Representations . 80

5.17.2 Map Indexed by Locations . 80

5.18 GUI Extension . 81

5.19 Documentation . 81

5.19.1 General Overview . 81

5.19.2 Source Documentation . 82

5.19.3 Website . 82

5.20 License Policy . 83

7

CONTENTS

6 Reference Manual 85

6.1 File Tree . 85

6.1.1 The cil directory . 86

6.1.2 The src directory . 87

6.2 Con�gure.in . 89

6.3 Make�les . 90

6.3.1 Overview . 90

6.3.2 Sections of Makefile, Makefile.config.in and Makefile.common . . 92

6.3.3 Variables of Makefile.dynamic and Makefile.plugin 96

6.3.4 Makefile.dynamic . 99

A Changes 101

Bibliography 107

List of Figures 109

Index 111

8

Foreword

This is the documentation of the Frama-C implementation1 which aims to help developers
integrate new plug-ins inside this platform. It started as a deliverable of the task 2.3 of the
ANR RNTL project CAT2.

The content of this document corresponds to the version Oxygen-20120901 (September 17,
2012) of Frama-C. However the development of Frama-C is still ongoing: features described
here may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin, Richard
Bonichon, Pascal Cuoq, Florent Garnier, Pierre-Loïc Garoche, Philippe Herrmann, Boris
Hollas, Nikolaï Kosmatov, Benjamin Monate, Yannick Moy, Anne Pacalet, Armand Puccetti,
Muriel Roger and Boris Yakobowski. We also thank Johannes Kanig for his Mlpost support3,
the tool used for making �gures of this document.

1http://frama-c.com
2http://www.rntl.org/projet/resume2005/cat.htm
3http://mlpost.lri.fr

9

http://frama-c.com
http://www.rntl.org/projet/resume2005/cat.htm
http://mlpost.lri.fr

Chapter 1

Introduction

Frama-C (Framework for Modular Analyses of C) is a software platform which helps the
development of static analysis tools for C programs thanks to a plug-ins mechanism.

This guide aims at helping developers program within the Frama-C platform, in particular for
developing a new analysis or a new source-to-source transformation through a new plug-in.
For this purpose, it provides a step-by-step tutorial, a general presentation of the Frama-C

software architecture, a set of Frama-C-speci�c programming rules and an overview of the
API of the Frama-C kernel. However it does not provide a complete documentation of the
Frama-C API and, in particular, it does not describe the API of existing Frama-C plug-ins.
This API is documented in the html source code generated by make doc (see Section 5.19.1
for additional details about this documentation).

This guide introduces neither the use of Frama-C which is the purpose of the user manual [4],
nor the use of plug-ins which are documented in separated and dedicated manuals [8, 5, 2].
We assume that the reader of this guide already read the Frama-C user manual and knows
the main Frama-C concepts.

The reader of this guide may be either a Frama-C beginner who just �nished reading the user
manual and wishes to develop his/her own analysis with the help of Frama-C, an intermediate-
level plug-in developer who would like to have a better understanding of one particular aspect
of the framework, or a Frama-C expert who wants to remember details about one speci�c
point of the Frama-C development.

Frama-C is fully developed within the Objective Caml programming language (aka OCaml) [12].
Motivations for this choice are given in a Frama-C experience report [9]. However this guide
does not provide any introduction to this programming language: the World Wide Web
already contains plenty resources for OCaml developers (see for instance http://caml.inria.
fr/resources/doc/index.en.html).

1.1 About this document

To ease reading, section heads may state the category of readers they are intended for and a
set of prerequisites.

Appendix A references all the changes made to this document between successive Frama-C

releases.

In the index, page numbers written in bold italics (e.g. 1) reference the de�ning sections
for the corresponding entries while other numbers (e.g. 1) are less important references.

11

http://caml.inria.fr/resources/doc/index.en.html
http://caml.inria.fr/resources/doc/index.en.html

CHAPTER 1. INTRODUCTION

Furthermore, the name of each OCaml value in the index corresponds to an actual Frama-

C value. In the Frama-C source code, the ocamldoc documentation of such a value contains
the special tag @plugin development guide while, in the html documentation of the Frama-C

API, the note �Consult the Plugin Development Guide for additional details� is attached
the value name.

The most important paragraphs are displayed inside gray boxes like this one. A plug-in
developer must follow them very carefully.

There are numerous code snippets in this document. Beware that copy/pasting them from
the PDF to your favorite text editor may prevent your code from compiling, because the
PDF text can contain non-ASCII characters.

1.2 Outline

This guide is organised in four parts.

Chapter 2 is a step-by-step tutorial for developing a new plug-in within the Frama-C plat-
form. At the end of this tutorial, a developer should be able to extend Frama-C with a
simple analysis available as a Frama-C plug-in.

Chapter 4 presents the Frama-C software architecture.

Chapter 5 details how to use all the services provided by Frama-C in order to develop a fully
integrated plug-in.

Chapter 6 is a reference manual with complete documentation for some particular points of
the Frama-C platform.

12

Chapter 2

Tutorial

Target readers: beginners.

This chapter aims at helping a developer to write his �rst Frama-C plug-in. At the end of the
tutorial, any developer should be able to extend Frama-C with a simple analysis available as
a Frama-C plug-in. This chapter was written as a step-by-step explanation on how to proceed
towards this goal. It will get you started but does not tell the whole story. In particular,
some very important aspects for the integration in the framework are omitted here and are
described in chapter 5.

Section 2.1 explains the basis for writing a standard Frama-C plug-in while section 2.2 explains
the basis for writing a plug-in integrated with the Frama-C kernel: this is slightly more involved
but allows deeper integration within the Frama-C architecture. You should do this only if you
intend to contribute a large and very general purpose plug-in to the community.

2.1 Standard Plug-in

This section will teach you how to write the most basic plug-in and run it from the Frama-C

toplevel.

Prerequisite: To follow this tutorial:

• Frama-C needs to be installed in your path;

• the Objective Caml compilers must be installed in your path. These must be the same
compilers as the ones you used to compile Frama-C1;

• GNU make must be in your path.

2.1.1 Plug-in Integration Overview

Figure 2.1 shows how a plug-in can integrate with the Frama-C platform. This tutorial focuses
on speci�c parts of this �gure.

1If you have an Objective Caml version < 3.11 then only bytecode plug-ins are available. Upgrade to
Objective Caml ≥ 3.11 if you need native code plug-ins.

13

CHAPTER 2. TUTORIAL

Db.Main

Dynamic?

Plugin

Type?

Journal?

Project?

Make�le.dynamic

Design?

(GUI extension point)

Caption:

? part not covered in this chapter (tutorial)

registration points

Plug-in directory

Plug-in implementation

Register

Options

. . .

Make�le

Plug-in GUI?

. . .

Figure 2.1: Plug-in Integration Overview.

The implementation of the plug-in is provided inside a speci�c directory. The plug-in registers
with the Frama-C platform through kernel-provided registration points. These registrations
are performed through hooks (by applying a function or a functor). For instance, the next
section shows how to:

• extend the Frama-C entry point thanks to the function Db.Main.extend if you want to
run plug-in speci�c code whenever Frama-C is executed;

• use speci�c plug-in services provided by the module Plugin, such as adding a new
Frama-C option.

2.1.2 Hello Frama-C World

A very basic plug-in is the 'Hello World' plug-in. This plug-in adds a command line option
-hello to Frama-C and pretty prints the message 'Hello World!' whenever the option is set.
It is possible to program such an option just with the module Arg provided by the Objective

Caml standard library and without the addition of a Frama-C plug-in, but we use this example
to introduce the bases of plug-in development. This plug-in is our running example in this
chapter.

14

2.1. STANDARD PLUG-IN

The 'Hello World' plug-in consists of only two �les: Makefile and hello_world.ml2.

1. Create the two �les Makefile and hello_world.ml containing the lines given in the
frames at the end of this section.

The name of each compilation unit (here hello_world) must be di�erent of the
plug-in name set by the Makefile (here Hello) in order to compile a plug-in.

2. Run make to compile it.

3. Run make install to install the plug-in. You need to have write access to the
$(FRAMAC_LIBDIR)/plugins directory.

4. Test your plug-in with frama-c.byte -hello. The sentence 'Hello Frama-C World!' is
printed.

File Make�le

Example of Makefile for dynamic plugins
###

Frama−c should be properly instal led with "make insta l l "
before any use of this makefile

FRAMAC_SHARE :=$(shell frama -c.byte -print -path)

FRAMAC_LIBDIR :=$(shell frama -c.byte -print -libpath)

PLUGIN_NAME = Hello

PLUGIN_CMO = hello_world

i n c l u d e $(FRAMAC_SHARE)/ Makefile.dynamic

File hello_world.ml

(∗∗ The traditional 'Hello world ! ' plugin .
It contains one boolean state [Enabled] which can be set by the
command line option "−hello ".
When this option i s set i t just pretty prints a message on the standard
output . ∗)

(∗∗ Register the new plug−in "Hello World" and provide access to some plug−in
dedicated features . ∗)

module S e l f =

Plugin .Reg i s t e r
(s t r u c t

l e t name = "Hello world"

l e t shortname = "hello"

l e t help = "The famous 'Hello world ' plugin"

end)

(∗∗ Register the new Frama−C option "−hello ". ∗)
module Enabled =

S e l f .False
(s t r u c t

l e t option_name = "-hello"

l e t help = "pretty print \" He l l o world !\""

end)

l e t pr in t () = S e l f . r e s u l t "Hello world!"

(∗∗ The function [print] below is not mandatory : you can ignore i t in a f i r s t
reading . It provides an API for the plug−in , so that the function [run] i s
cal lable by another plug−in and journalized : f i r s t , each plug−in can ca l l

2Both �les are distributed within Frama-C and they are available from the directory
src/dummy/hello_world of the source distribution.

15

CHAPTER 2. TUTORIAL

[Dynamic. get "Hello . run" (Datatype . func Datatype . unit Datatype . unit)] in
order to ca l l [print] and second , each ca l l to [print] i s written in the
Frama−C journal . ∗)

l e t pr in t =

Dynamic. r e g i s t e r
∼comment:"[Dynamic.get \" He l l o .run\" (Datatype.func Datatype.unit \

Datatype .unit)] calls [run] and pretty prints \" He l l o world !\""

∼p l u g i n :"Hello"
"run"

∼ j o u r n a l i z e : t r u e
(Datatype. func Datatype. uni t Datatype. uni t)
pr in t

(∗∗ Print 'Hello World! ' whenever the option i s set . ∗)
l e t run () = i f Enabled. get () then pr in t ()

(∗∗ Register the function [run] as a main entry point . ∗)
l e t () = Db.Main. extend run

2.2 Kernel-integrated Plug-in

Writing a plug-in this way is deprecated, except for very speci�c tasks. Before writing
a kernel-integrated plug-in, you must be sure that it is not possible to write it in the
standard way described in the previous section.

Target readers: It is only for:

• beginners who have to implement a plug-in requiring very deep integration within the
Frama-C architecture;

• new Frama-C-kernel developers.

Prerequisite: Getting the Frama-C source.

This section will teach you how to write the most basic kernel-integrated plug-in and run it
from the Frama-C toplevel. This plug-in will be linked with the Frama-C kernel and with all the
other kernel-integrated plug-ins. It is slightly more involved but allows a deeper integration
within the Frama-C architecture. The running example in this section is the very same plug-in
'Hello World' than the one in the previous section.

2.2.1 Setup

Frama-C uses a make�le which is generated by the script configure. This script checks
your system to determine the most appropriate Frama-C con�guration, in particular the plug-
ins that should be made available. This �le is itself generated by the autotool autoconf.
Consequently, you have to execute the following commands:

$ au tocon f
$./ c o n f i g u r e

This generates a proper make�le and lists the available plug-ins. Now you are able to compile
sources with make.

$ make

16

2.2. KERNEL-INTEGRATED PLUG-IN

This compilation produces the following binaries (in a standard con�guration):

• bin/toplevel.byte and bin/toplevel.opt (Frama-C toplevel);

• bin/viewer.byte and bin/viewer.opt (Frama-C GUI);

• bin/ptests.byte (Frama-C testing tool).

Su�xes .byte and .opt respectively correspond to the bytecode and native versions of bina-
ries. If you wish, and before having fun with Frama-C, you can:

• test the compiled platform with make tests;

• generate the source documentation with make doc;

• generate navigation tags for emacs with make tags.

2.2.2 Plug-in Integration Overview

Figure 2.2 shows how a kernel-integrated plug-in may integrate in the Frama-C platform. Some
elements of this �gure are pragmatically explained in the remaining sections of this tutorial.

The implementation of the plug-in is provided inside a speci�c directory and is connected to
the Frama-C platform thanks to some registration points. These registrations are performed
either through hooks (by applying a function or a functor) or directly by modifying some
speci�c part of Frama-C �les. That is the very major di�erence with integrating standard
plug-ins: standard plug-ins never modify Frama-C �les. For instance, you have to extend Db

with your plug-in-speci�c operations and to register them inside it if you want people to be
able to use your plug-in (see Section 2.2.5). However most of the registration (for instance,
extending the Frama-C entry point) works the same as for standard plug-ins (see Section 2.1).

You also have to modify the �les Makefile and configure.in in order to properly link your
plug-in with Frama-C (see Section 2.2.4).

Moreover, the developer may provide a plug-in interface (which should usually be empty, see
Section 2.2.5) and eventually speci�c test suites (see Section 2.2.6).

2.2.3 Hello Frama-C World

This section explains how to write the core of a kernel-integrated Hello plug-in. This is a
plug-in which pretty-prints 'Hello World!' whenever the option -hello is set on the Frama-C

command line.

First, we add a new subdirectory hello in directory src.

$ mkdir src/hello

This new directory is going to contain the source �le of our new plug-in3. If you want, you
can have a quick look at src which contains the kernel and existing plug-ins. We only use a
few �les from this directory in this tutorial.

We can now edit the source �le of hello, called src/hello/register.ml. It should contain
exactly the same code than the �le hello_world.ml given page 15 in Section 2.1.2: in this
regard, there is no big di�erence between kernel-integrated plug-ins and the other ones.

3As the plug-in hello is tiny, it has only one source �le.

17

CHAPTER 2. TUTORIAL

Db

Db.Main

Plugin

Type?

Journal?

Project?

Plug-in tests suite

. . .
Make�le con�gure.in

Plug-in types?

. . .

Design?

(GUI extension point)

Caption:
? part not covered in this tutorial

registration points through hooks

insertion points directly into the pointed �le

Plug-in directory

Plug-in implementation

Register

Options

. . .

Empty plug-in interface

Plug-in GUI?

. . .

Figure 2.2: Kernel-integrated Plug-in Integration Overview.

18

2.2. KERNEL-INTEGRATED PLUG-IN

Recommendation 2.1 In Frama-C, the name of the �main� �le of a plug-in p should always
be called either register.ml or p_register.ml.

At this point, we have a compilable plug-in made of a main function run.

2.2.4 Con�guration and Compilation

Here we explain how to compile the hello plug-in. Section 5.2 and 5.4 provide more details
about the con�guration and compilation of plug-ins.

Con�guration As explained in Section 2.2.1, Frama-C uses both autoconf and make in
order to compile. Consequently, we have to modify both �les configure.in and Makefile

in order to compile our plug-in within Frama-C. In both �les, prede�ned scripts help with
plug-in integration.

In order to compile the hello plug-in, �rst add the following lines into configure.in4. They
indicate how to con�gure hello, especially whether it has to be compiled or not.

File con�gure.in

Add the following l ines after other plug−in configurations ,
in the section 'Plug−in sections ' .

hello
#######
check_plugin(hello ,src/hello ,[support for hello plug -in],yes ,no)

These lines correspond to the standard way of con�guring a new plug-in. The function
check_plugin is de�ned in configure.in. Its �rst argument is the plug-in name, the second
one is the plug-in directory (the directory containing the plug-in source �les), the third one
is a help message, the fourth one indicates whether the plug-in is available by default (here
yes says that the plug-in is available by default and a user may use option �disable-hello

to deactivate the plug-in) and the last one indicates whether the plug-in will be dynamically
linked within Frama-C (here no says that the plug-in will be statically linked).

Now we are ready to execute

$ au tocon f
$./ c o n f i g u r e

and to check that the new plug-in hello is going to compile: you should have the line

checking for src/hello ... yes

hello ... yes

in the con�guration summary.

Compilation Once configure.in is extended, we also have to modify

share/Makefile.config.in and Makefile with the following lines. File Make�le.con�g.in

Add the following l ine at the end of the section 'Variables for plug−ins '
ENABLE_HELLO ?= @ENABLE_HELLO@

4In this document, a comment containing ... among lines of code represents an undisplayed piece of code
written either previously in the document or by someone else.

19

CHAPTER 2. TUTORIAL

share/Makefile.config.in is used by configure to produce share/Makefile.config that
de�nes all con�guration speci�c variables. This �le is included by the main Frama-C Makefile.

File Make�le

Add the following l ines after other plug−ins compilation directives ,
in the section 'Plug−in sections ' .

#########
Hello
#########
PLUGIN_ENABLE :=$(ENABLE_HELLO)

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

PLUGIN_NO_TEST :=yes

i n c l u d e Makefile.plugin

These lines use the prede�ned make�le Makefile.plugin which is a generic make�le dedicated
to the compilation of plug-ins. There are more than twenty variables than can be used to
customize the behavior of Makefile.plugin. These variables are all described in Section 6.3.3,
but most of them have reasonable default values so that it is not necessary to describe more
than the few ones above:

• PLUGIN_ENABLE indicates that the plug-in should be compiled. Here we use the variable
@ENABLE_HELLO@ set by configure.in.

• PLUGIN_NAME is the name of the plug-in.

The variable PLUGIN_NAME must hold a valid OCaml module name (in particular it
must be capitalized).

• PLUGIN_DIR is the directory containing the source �le(s) for the plug-in.

• PLUGIN_CMO is the list of the .cmo �les (without the extension .cmo nor the plug-in
path) required to compile the plug-in.

• PLUGIN_NO_TEST is set to yes because there is no speci�c test directory for the plug-in
(see Section 2.2.6 about plug-in testing).

Now we are ready to compile Frama-C with the new plug-in hello.

$ make

At this point, the plug-in works properly: a Frama-C user can run the plug-in safely.

$./ b in /toplevel.byte -hello

Hello World!

2.2.5 Connection with the Frama-C World

The plug-in hello is now compiled but it is not fully registered within the Frama-C framework.
In particular, our plug-in should be added in the plug-in database Db in order to be simply
used by other plug-ins (see Chapter 4 for details).

20

2.2. KERNEL-INTEGRATED PLUG-IN

Extension of the Plug-in Database For this purpose, we have to extend Db with the
new plug-in hello.

File src/kernel/db.mli

...

(∗∗ Hello World plug−in .
@see <. . / hello/index .html> internal documentation . ∗)

module Hel lo : s i g
v a l run: (uni t → uni t) r e f (∗∗ Print "hello world" i f −hello i s set . ∗)

end
...

File src/kernel/db.ml

...

module Hel lo = s t r u c t l e t run = mk_fun "Hello_world.run" end
...

The interface declares a new module Hello containing a single function run. Indeed run is
a reference to a function. This reference is not initialized in the implementation of Db: we
use mk_fun (declared in the opened module Extlib) in order to declare the reference without
instantiating it. This instantiation has to be done by the plug-in itself. Otherwise, a call
to !Db.run raises the exception Extlib.Unregistered_function. In order to �x this, we
modify the module Register as follows.

File src/hello/register.ml

... d e f i n i t i o n o f run
l e t () = Db.Hel lo . run ← run

It is important to note that the reference Db.Hello.run is set at the OCaml module initial-
ization step. So the body of each Frama-C function can safely dereference it.

Documentation We have properly documented the interface of Db with ocamldoc through
special comments between (** and *). This documentation is generated by make doc. In par-
ticular, this command also generates an internal documentation for hello which is accessible
in the directory doc/code/hello.

Hiding the Implementation Finally, we hide the implementation of hello to other de-
velopers in order to enforce the architecture invariant which is that each plug-in should be
used through Db (see Chapter 4). For this purpose we add an empty interface to the plug-in
in the following way.

File src/hello/Hello.mli

(∗∗ Hello World plug−in .

No function i s directly exported : they are registered in {!Db.Hello }. ∗)

Note the unusual capitalization of the �lename Hello.mli which is required for compilation
purposes.

Indeed, thanks to Makefile.plugin, each plug-in is packed into a single module
$(PLUGIN_NAME) (here Hello) and we simply export an empty interface for it.

21

CHAPTER 2. TUTORIAL

We also have to explain to Makefile.plugin that we use our own interface hello.mli

for Hello. For this purpose, in Makefile, we add the following line before including
Makefile.plugin.

File Make�le

#########
Hello
#########
PLUGIN_ENABLE := @ENABLE_HELLO@

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

PLUGIN_NO_TEST :=yes

PLUGIN_HAS_MLI :=yes # Add this single l ine
i n c l u d e Makefile.plugin

2.2.6 Testing

Frama-C provides a tool, called ptests, in order to perform non-regression and unit tests. This
tool is detailed in Section 5.6. This section only covers the basic use of ptests. First we have
to create a test directory for hello

$ mkdir tests/hello

and, in Makefile, we have to remove the line PLUGIN_NO_TEST:=yes.

File Make�le

#########
Hello
#########
PLUGIN_ENABLE := @ENABLE_HELLO@

PLUGIN_NAME := Hello

PLUGIN_DIR :=src/hello

PLUGIN_CMO := register

#PLUGIN_NO_TEST:=yes # Remove this single l ine
PLUGIN_HAS_MLI :=yes

i n c l u d e Makefile.plugin

Now we can add the following test hello.c in directory tests/hello.

File tests/hello/hello.c

/* run.config

OPT: -hello

*/

/* A test of the plug -in hello does not require C code anyway. */

It is possible to test the new plug-in on this �le with the command

$./bin/toplevel.byte -hello tests/hello/hello.c

which should display

[preprocessing] running gcc -C -E -I. tests/hello.c

Hello Frama -C World!

The speci�c output of the plug-in hello is the last line.

It is also possible to use ptests to run tests automatically. For that, we �rst have to create
to subdirectory of tests/hello/: tests/hello/result/ and tests/hello/oracle. The
former will contain the result of running the current version of Frama-C against the test �les,

22

2.2. KERNEL-INTEGRATED PLUG-IN

while the latter will contain the oracle, that is the expected result of the test. Of course, a
new test does not have any oracle at �rst. It must be created. For that, we use the following
command

$./bin/ptests.byte -show hello

The above command runs the Frama-C toplevel on each C �le contained in the directory
tests/hello. For each of them, it also uses directives following run.config given at the top
of �les. Here, for the test tests/hello/hello.c, the directive speci�es that the toplevel has
to be executed with the option -hello. With the -show option, ptests does not attempt to
compare the result with the oracle, but simply displays its result on its standard output, as
well as the command and relevant variables that led to it, as shown below:

Env:

FRAMAC_BYTE = "bin/toplevel.byte"

FRAMAC_OPT = "bin/toplevel.opt"

OCAMLRUNPARAM = ""

FRAMAC_PLUGIN_GUI = "./gui"

FRAMAC_LIB = "./lib"

FRAMAC_PLUGIN = "./lib/plugins"

FRAMAC_SHARE = "./share"

Command:

FRAMAC_MAIN_SRC/bin/frama -c tests/hello/hello.c -hello

2>tests/hello/result/hello.err.log >tests/hello/result/hello.res.log

[kernel] preprocessing with "gcc -C -E -I. tests/hello/hello.c"

[hello] Hello world!

Env:

Env:

FRAMAC_BYTE = "bin/toplevel.byte"

FRAMAC_OPT = "bin/toplevel.opt"

OCAMLRUNPARAM = ""

FRAMAC_PLUGIN_GUI = "./gui"

FRAMAC_LIB = "./lib"

FRAMAC_PLUGIN = "./lib/plugins"

FRAMAC_SHARE = "./share"

Command:

FRAMAC_MAIN_SRC/bin/frama -c tests/hello/hello.c -hello

2>tests/hello/result/hello.err.log >tests/hello/result/hello.res.log

There are in fact two outputs: the �rst one is the standard output of Frama-C, while the
second is its error channel (which happens to contain nothing in our case). Once we are
con�dent that this is the output we want, we instruct ptests to consider it as the oracle for
this test:

$./bin/ptests.byte -update hello

Now, each time one executes ptests.byte, di�erences with the saved oracles are displayed.
Furthermore, you can easily check whether the changes in plug-in hello are compliant with
all existing tests. For example, if we execute one more time:

$./bin/ptests.byte hello

% Diffs finished. Summary:

Run = 2

Ok = 2 of 2

This indicates that everything is alright.

Finally, you can also check if your changes break something else in the Frama-C kernel or in
other plug-ins by executing ptests on all default tests with make tests.

Note to SVN users If you have write access to the SVN repository, you may commit your
changes into the archive. Before that, you have to perform non-regression tests in order to
ensure that your modi�cations do not break the archive.

23

CHAPTER 2. TUTORIAL

So you must execute the following commands.

$ svn add ... # Do not forget new oracles

$ svn up

$ make tests

$ emacs5 Changelog

$ svn commit -m "informative message"

If you created any new �les, use the svn add command to add them into the archive.
The svn up command updates your local directory with respect to the root repository.
The make tests command performs the non-regression tests. Finally, if and only if the
regression tests do not expose any problem, update the �le Changelog according to your
changes and commit them thanks with the svn commit command.

2.2.7 Copyright your Work

Target readers: developers with SVN access.

If you want to redistribute your plug-in, you have to choose a license policy for it (compatible
with Frama-C). Section 5.20 provides details on how to proceed. Here, suppose we want to put
the plug-in hello under the Lesser General Public License (LGPL) and CEA copyright, you
simply have to edit the section �File headers: license policy� of Makefile with the following
line:

File Make�le

CEA_LGPL= src/hello /*.ml* # . . . others f i l e s

Now executing:

$ make headers

This adds a header on �les of plug-in hello in order to indicate that they are under the
desired license.

5Or whatever your favorite text editor is.

24

Chapter 3

Tutorial of the Future

Target readers: beginners.

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.1 What a Plug-in Look Like?

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.2 A Simple Script

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.3 Registering a Script as a Plug-in

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.4 Displaying Messages

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.5 Adding Command Line Options

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

25

http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com

CHAPTER 3. TUTORIAL OF THE FUTURE

3.6 Writing a Make�le

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.7 Writing a Con�gure Script

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.8 Testing your Plug-in

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.9 Getting your Plug-in Usable by Others

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.10 Writing your Plug-in into the Journal

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.11 Visiting the AST

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.12 Getting your plug-in Usable in a Multi Projects Setting

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

3.13 Extending the Frama-C GUI

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

26

http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com
http://bts.frama-c.com

3.14. DOCUMENTING YOUR SOURCE CODE

3.14 Documenting your Source Code

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

27

http://bts.frama-c.com

Chapter 4

Software Architecture

Target readers: beginners.

In this chapter, we present the software architecture of Frama-C. First, Section 4.1 presents
its general overview. Then, we focus on three di�erent parts:

• Section 4.2 introduces the API of Cil [15] seen by Frama-C;

• Section 4.3 shows the organisation of the Frama-C kernel; and

• Section 4.4 explains the plug-in integration.

4.1 General Description

The Frama-C platform provides services to ease:

• analysis and source-to-source transformation of big-size C programs;

• addition of new plug-ins; and

• plug-ins collaboration.

In order to reach these goals, Frama-C is based on a software architecture with a speci�c design
which is presented in this document, and summarized in Figure 4.1. Mainly this architecture
is separated in three di�erent parts:

• Cil (C Intermediate Language) [15] extended with an implementation of the speci�cation
language ACSL (ANSI/ISO C Speci�cation Language) [1]. This is the intermediate
language upon which Frama-C is based. See Section 4.2 for details.

• The Frama-C kernel. It is a toolbox on top of Cil dedicated to static analyses. It
provides data structures and operations which help the developer to deal with the Cil

AST (Abstract Syntax Tree), as well as general services providing an uniform set of
features to Frama-C. See Section 4.3 for details.

• The Frama-C plug-ins. These are analyses or source-to-source transformations that use
the kernel, and possibly others plug-ins through the APIs they register in the Frama-C

kernel. See Section 4.4 for details.

29

CHAPTER 4. SOFTWARE ARCHITECTURE

Plug-ins

Standard Plug-ins

Plug-in 1 . . . Plug-in n

Kernel-integrated Plug-ins

Plug-in 1 . . . Plug-in p

Plug-ins API inside Frama-C

Plug-ins Values

Db Dynamic

Kernel-integrated Plug-ins Types

Plug-in types 1 . . . Plug-in types q

Frama-C Kernel

Speci�c Services

AST Manipulation Memory States

Abstract Interpretation Lattices

Utilities

General Services

Project

Plugin Journal

Cmdline

Type Log

Extended Cil

Extended Cil API

Extended Cil Kernel
Lexing, Parsing, Typing, Linking

Extended Cil AST

Figure 4.1: Architecture Design.

30

4.2. CIL: C INTERMEDIATE LANGUAGE

4.2 Cil: C Intermediate Language

Cil [15] is a high-level representation along with a set of tools that permit easy analysis and
source-to-source transformation of C programs.

Frama-C uses Cil as a library which performs the main steps of the compilation of C programs
(pre-processing, lexing, parsing, typing and linking) and outputs an abstract syntax tree
(AST) ready for analysis. From the Frama-C developer's point of view, Cil is a toolbox usable
through its API and providing:

• the AST description (module Cil_types);

• useful AST operations (module Cil);

• some simple but useful miscellaneous datastructures and operations (mainly in module
Cilutil); and

• some syntactic analysis like a (syntactic) call graph computation (module Callgraph)
or generic forward/backward data�ow analysis (module Dataflow).

Frama-C indeed extends Cil with ACSL (ANSI/ISO C Speci�cation Language) [1], its speci�-
cation language. The extended Cil API consequently provides types and operations in order
to properly deal with annotated C programs.

Cil modules belong to directory (and subdirectories of) cil/src.

4.3 Kernel

On top of the extended Cil API, the Frama-C kernel groups together speci�c services providing
in di�erent modules which are described below.

• In addition to the Cil utilities, Frama-C provides useful operations (mainly in module
Extlib) and datastructures (e.g. specialized version of association tables like Rangemap).
These modules belong to directories src/lib and src/misc and they are not speci�c to
the analysis or transformation of C programs.

• Frama-C provides generic lattices useful for abstract interpretation (module
Abstract_interp) and some pre-instantiated arithmetic lattices (module Ival). The
abstract interpretation toolbox is available in directory src/ai.

• Frama-C also provides di�erent representations of C memory-states (module Locations)
and data structures using them (e.g. association tables indexing by memory-states in
modules Lmap and Lmap_bitwise). The memory-state toolbox is available in directory
src/memory_state.

• Moreover, directory src/kernel provides a bunch of very helpful operations over the
extended Cil AST. For example, module Globals provides operations dealing with global
variables, functions and annotations while module Visitor provides inheritable classes
in order to permit easy visiting, copying or in-place modi�cation of the AST.

Besides, Frama-C also provides some general-purpose services, used by all other modules (even
the Frama-C version of Cil), which are shortly described below.

31

CHAPTER 4. SOFTWARE ARCHITECTURE

• Module Log provides an uniform way to display user messages in Frama-C.

• Module Cmdline parses the Frama-C command line.

• Module Plugin provides a high-level API on top of the two previous modules for the
plug-in developer: a developer usually uses this module and does not directly use mod-
ules Log or Cmdline.

• Directory src/type contains a library called Type. It provides OCaml types as �rst-class
values, as well as several standard operations over types. Such values and operations
are required by several others Frama-C services (journalization, registration of dynamic
values, projects, etc). See section 5.9 for details.

• Module Journal handles how Frama-C journalizes its actions. See section 5.11 for de-
tails.

• Directory src/project contains a library, called Project. It provides analysis of several
ASTs in the same session. See section 5.12 for details.

4.4 Plug-ins

In Frama-C, plug-ins are analysis or source-to-source transformations. Each of them is an
extension point of the Frama-C kernel. Frama-C allows plug-in collaborations: a plug-in p
can use a list of plug-ins p1, . . . , pn and conversely. Mutual dependences between plug-ins
are even possible. If a plug-in is designed to be used by another plug-in, its API has to be
registered, either in module Dynamic or in module Db. This last method is only available to
kernel-integrated plug-ins and is now deprecated.

More generally, the set of functionalities available for a standard plug-in and for a kernel-
integrated plug-in are mostly the same. The di�erences between a standard plug-in and a
kernel-integrated one are listed Figure 4.2.

Functionality Standard plug-in Kernel-integrated plug-in

dynamic linking default possible
static linking possible default

API in Dynamic possible possible
API in Db no possible by modifying the kernel

add new abstract types possible possible
add new concrete types no possible by modifying the kernel

Figure 4.2: Di�erences between standard plug-ins and kernel-integrated ones.

Both kinds of plug-ins may be either dynamically linked or statically linked within the Frama-

C kernel. dynamic linking is the standard way for standard plug-ins while static linking is the
standard way for kernel-integrated plug-ins.

Dynamic linking is only available in native mode if you have both Objective Caml 3.11 or
higher and a supported architecture for this feature. See the Objective Caml manual [12]
for additional details.

Both kinds of plug-ins may register their API through module Dynamic, but the standard way
for kernel-integrated plug-ins is the use of module Db. Kernel-integrated plug-ins may also

32

4.4. PLUG-INS

declare any types inside the Frama-C kernel thanks to the so-called `Kernel-integrated Plug-ins
Types' . Such types are usable by any plug-in, and even by some parts of the Frama-C kernel.
However any plug-in may still register a new abstract type and use it through the function
provided by the plug-in API. See Section 5.10 for details.

33

Chapter 5

Advanced Plug-in Development

This chapter details how to use services provided by Frama-C in order to be fully operational
with the development of plug-ins. Each section describes technical points a developer should
be aware of. Otherwise, one could �nd oneself in one or more of the following situations 1

(from bad to worse):

1. reinventing the (Frama-C) wheel;

2. being unable to do some speci�c things (e.g. saving results of your analysis on disk, see
Section 5.12.2);

3. introducing bugs in your code;

4. introducing bugs in other plug-ins using your code;

5. breaking the kernel consistency and so potentially breaking all the Frama-C plug-ins
(e.g. if you modify the AST without changing project, see Section 5.12.5).

In this chapter, we suppose that the reader is able to write a minimal plug-in like hello

described in chapter 2 and knows about the software architecture of Frama-C (chapter 4).
Moreover plug-in development requires the use of advanced features of OCaml (module system,
classes and objects, etc). Static plug-in development requires some knowledge of autoconf and
make. Each section summarizes its own prerequisites at its beginning (if any).

Note that the following subsections can be read in no particular order: their contents are
indeed quite independent from one another even if there are references from one chapter to
another one. Pointers to reference manuals (Chapter 6) are also provided for readers who
want full details about speci�c parts.

5.1 File Tree Overview

Target readers: beginners.

The Frama-C main directory is split in several sub-directories. The Frama-C source code is
mostly provided in directories cil and src. The �rst one contains the source code of Cil [15]

1It is fortunately quite di�cult (but not impossible) to fall into the worst situation by mistake if you are
not a kernel developer.

35

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

extended with an ACSL [1] implementation. The second one is the core implementation of
Frama-C. This last directory contains directories of the Frama-C kernel and directories of the
provided Frama-C plug-in.

A pretty complete description of the Frama-C �le tree is provided in Section 6.1.

5.2 Frama-C Con�gure.in

Target readers: not for standard plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

In this Section, we detail how to modify the �le configure.in in order to con�gure plug-ins
(Frama-C con�guration has been introduced in Section 2.2.1 and 2.2.4).

First Section 5.2.1 introduces the general principle and organisation of configure.in. Then
Section 5.2.2 explains how to con�gure a new simple plug-in without any dependency. Next we
show how to exhibit dependencies with external libraries and tools (Section 5.2.4) and with
other plug-ins (Section 5.2.5). Finally Section 5.2.3 presents the con�guration of external
libraries and tools needed by a new plug-in but not used anywhere else in Frama-C.

5.2.1 Principle

When you execute autoconf, �le configure.in is used to generate the configure script.
Each Frama-C user executes this script to check his system and determine the most appropriate
con�guration: at the end of this con�guration (if successful), the script summarizes the status
of each plug-in, which can be:

• available (everything is �ne with this plug-in);

• partially available: either an optional dependency of the plug-in is not fully available,
or a mandatory dependency of the plug-in is only partially available; or

• not available: either the plug-in itself is not provided by default, or a mandatory de-
pendency of the plug-in is not available.

The important notion in the above de�nitions is dependency . A dependency of a plug-in
p is either an external library/tool or another Frama-C plug-in. It is either mandatory or
optional. A mandatory dependency must be present in order to build p, whereas an optional
dependency provides features to p that are additional but not highly required (especially p
must be compilable without any optional dependency).

Hence, for the plug-in developer, the main role of configure.in is to de�ne the optional
and mandatory dependencies of each plug-in. Another standard job of configure.in is the
addition of options �-enable-p and �-disable-p to configure for a plug-in p. These options
respectively forces p to be available and disables p (its status is automatically �not available�).

Indeed configure.in is organised in di�erent sections specialized in di�erent con�guration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described in Section 6.2. Now we focus on the
modi�cations to perform in order to integrate a new plug-in in Frama-C.

36

5.2. FRAMA-C CONFIGURE.IN

5.2.2 Addition of a Simple Plug-in

In order to add a new plug-in, you have to add a new subsection for the new plug-in to Section
Plugin wished. This action is usually very easy to perform by copying/pasting from another
existing plug-in (e.g. occurrence) and by replacing the plug-in name (here occurrence) by
the new plug-in name in the pasted part. In these sections, plug-ins are sorted according to
a lexicographic ordering.

For instance, Section Wished Plug-in introduces a new sub-section for the plug-in occurrence

in the following way.

occurrence
############
check_plugin(occurrence ,src/occurrence ,

[support for occurrence analysis],yes ,no)

The �rst argument is the plug-in name, the second one is the name of directory containing
the source �les of the plug-in, the third one is a help message for the �enable-occurrence

option of con�gure, the fourth one indicates if the plug-in is enabled by default and the last
one indicates if the plug-in will be dynamically linked within the Frama-C kernel.

The plugin name must contain only alphanumeric characters and underscores. It must
be the same as the name value given as argument to the functor Plugin.Register of
section 5.7 (with spaces replaced by underscore).

The macro check_plugin sets the following variables: FORCE_OCCURRENCE,
REQUIRE_OCCURRENCE, USE_OCCURRENCE, ENABLE_OCCURRENCE, and DYNAMIC_OCCURRENCE.

The �rst variable indicates if the user explicitly requires the availability of occurrence via
setting the option �-enable-occurrence. The second and third variables are used by oth-
ers plug-ins in order to handle their dependencies (see Section 5.2.5). The fourth variable
ENABLE_OCCURRENCE indicates the plug-in status (available, partially available or not avail-
able). If �-enable-occurrence is set, then ENABLE_OCCURRENCE is yes (plug-in available);
if �-disable-occurrence is set, then its value is no (plug-in not available). If no option is
speci�ed on the command line of configure, its value is set to the default one (according to
the value of the fourth argument of check_plugin). Finally, DYNAMIC_OCCURRENCE indicates
whether the plug-in will be dynamically linked within the Frama-C kernel.

5.2.3 Con�guration of New Libraries or Tools

Some plugins needs additional tools or libraries to be fully functional. The con�gure script
takes care of these in two steps. First, it checks that an appropriate version of the external
dependency exists on the system. Second, it veri�es for each plug-in that its dependencies
are met. Section 5.2.4 explains how to make a plugin depend on a given library (or tool).
The present section deals with the �rst part, that is how to check for a given library or tool
on a system. Con�guration of new libraries and con�guration of new tools are similar. In
this section, we therefore choose to focus on the con�guration of new libraries. This is done
by calling a prede�ned macro called configure_library2. The configure_library macro
takes three arguments. The �rst one is the (uppercase) name of the library, the second one
is a �lename which is used by the script to check the availability of the library. In case there
are multiple locations possible for the library, this argument can be a list of �lenames. In

2For tools, there is a macro configure_tool which works in the same way as configure_library.

37

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

this case, the argument must be properly quoted (i.e. enclosed in a [,] pair). Each name is
checked in turn. The �rst one which corresponds to an existing �le is selected. If no name in
the list corresponds to an existing �le, the library is considered to be unavailable. The last
argument is a warning message to display if a con�guration problem appears (usually because
the library does not exist). Using these arguments, the script checks the availability of the
library.

Results of this macro are available through two variables which are substituted in the �les
generated by configure.

• HAS_library is set to yes or no depending on the availability of the library

• SELECTED_library contains the name of the version selected as described above.

When checking for Objective Caml libraries and object �les, remember that they come in two
�avors: bytecode and native code, which have distinct su�xes. Therefore, you should use the
variables LIB_SUFFIX (for libraries) and OBJ_SUFFIX (for object �les) to check the presence of
a given �le. These variables are initialized at the beginning of the configure script depending
on the availability of a native-code compiler on the current installation.

Example 5.1 The library Lablgtksourceview2 (used to have a better rendering of C sources
in the GUI) is part of Lablgtk2 . This is checked through the following command:

configure_library(

[GTKSOURCEVIEW],

[$OCAMLLIB/lablgtk2/lablgtksourceview2.$LIB_SUFFIX],
[lablgtksourceview not found])

5.2.4 Addition of Library/Tool Dependencies

Dependencies upon external tools and libraries are governed by two macros:

• plugin_require_external(plugin,library) indicates that plugin requires library in
order to be compiled.

• plugin_use_external(plugin,library) indicates that plugin uses library, but can nev-
ertheless be compiled if library is not installed (potentially o�ering reduced functional-
ity).

Recommendation 5.1 The best place to perform such extensions is just after the addition
of p which sets the value of ENABLE_p.

Example 5.2 Plug-in gui requires Lablgtk2 [11] and GnomeCanvas . It also optionally uses
Dot for displaying graphs (graph cannot be displayed withoud this tool). So, just after its
declaration, there are the following lines in configure.in.

plugin_require_external(gui ,lablgtk)

plugin_require_external(gui ,gnomecanvas)

plugin_use_external(gui ,dot)

This line specify that Lablgtk2 must be available on the system if the user wants to compile
gui.

38

5.3. PLUG-IN SPECIFIC CONFIGURE.IN

5.2.5 Addition of Plug-in Dependencies

Adding a dependency with another plug-in is quite the same as adding a dependency with an
external library or tool (see Section 5.2.4). For this purpose, configure.in uses two macros

• plugin_require(plugin1,plugin2) states that plugin1 needs plugin2.

• plugin_use(plugin1,plugin2) states that plugin1 can be used in absence of plugin2,
but requires plugin2 for full functionality.

There can be mutual dependencies between plugins. This is for instance the case for plugins
value and from.

5.3 Plug-in Speci�c Con�gure.in

Target readers: standard plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

External plug-ins can have their own con�guration �le, and can rely on the macros de�ned for
Frama-C. In addition, as mentioned in section 5.5.2, those plug-ins can be compiled directly
from Frama-C's own Make�le. In order for them to integrate well in this setting, they should
follow a particular layout, described below. First, they need to be able to refer to the auxiliary
configure.ac �le de�ning Frama-C-speci�c macros when they are used as stand-alone plugins.
This can be done by the following code

m4_define ([plugin_file],Makefile)

m4_define ([FRAMAC_SHARE_ENV],

[m4_normalize(m4_esyscmd ([echo $FRAMAC_SHARE]))])

m4_define ([FRAMAC_SHARE],

[m4_ifval(FRAMAC_SHARE_ENV ,[FRAMAC_SHARE_ENV],

[m4_esyscmd(frama -c - p r i n t - path)])])

m4_ifndef ([FRAMAC_M4_MACROS],

[m4_include(FRAMAC_SHARE/configure.ac)]

)

plugin_file is the �le which must be present to ensure that autoconf is called in the appro-
priate directory (see documentation for the AC_INIT macro of autoconf). configure.ac can
be found in two ways: either by relying on the FRAMAC_SHARE shell variable (when Frama-C is
not installed, i.e. when con�guring the plugin together with the main Frama-C), or by calling
an installed Frama-C (when installing the plugin separately). The inclusion of configure.ac
needs to be guarded to prevent multiple inclusions, as the con�guration �le of the plugin
might itself be included by configure.in (see section 5.5.2 for more details).

The con�guration of the plugin itself or related libraries and tools can then proceed as de-
scribed in Sections 5.2.2 and 5.2.3. References to speci�c �les in the plugin source directory
should be guarded with the following macro:

PLUGIN_RELATIVE_PATH(file)

If the external plugin has some dependencies as described in sections 5.2.4 and 5.2.5, the
con�gure script configure must check that all dependencies are met. This is done with the
following macro:

39

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

check_plugin_dependencies

An external plugin can have dependencies upon previously installed plugins. However two
separately installed plugins can not be mutually dependent on each other. Nevertheless, they
can be compiled together with the main Frama-C sources using the �-enable-external option
of configure (see section 5.5.2 for more details).

Finally, the con�guration must end with the following command:

write_plugin_config(files)

where files are the �les that must be processed by con�gure (as in AC_CONFIG_FILES macro).
PLUGIN_RELATIVE_PATH is unneeded here.

5.4 Frama-C Make�le

Target readers: not for standard plug-in developers.

Prerequisite: knowledge of make.

In this section, we detail the use of Makefile dedicated to Frama-C compilation. This �le
is split in several sections which are described in Section 6.3.2. By default, executing make

only displays an overview of commands. For example, here is the output of the compilation
of source �le src/kernel/db.cmo.

$ make src/kernel/db.cmo

Ocamlc src/kernel/db.cmo

If you wish the exact command line, you have to set variable VERBOSEMAKE to yes like below.

$ make VERBOSEMAKE=yes src/kernel/db.cmo

ocamlc.opt -c -w +a-4-6-7-9 -annot -warn -error +a-32-33-34-35 -36-37 -38 -g

-I src/misc -I src/ai -I src/memory_state -I src/toplevel -I src/slicing_types

-I src/pdg_types -I src/kernel -I src/logic -I src/lib -I src/type

-I src/project -I src/buckx -I src/gui -I external -I cil/src -I cil/src/ext

-I cil/src/frontc -I cil/src/logic -I cil/ocamlutil -I lib/plugins -I lib

src/kernel/db.ml

By default, warnings are considered as errors, but some of the new warnings of Objective Caml

4.00 are not. If you wish to make them errors as well, set variable WARN_ERROR_ALL to yes3

In order to integrate a new plug-in, you have to extend section �Plug-ins�. For this purpose,
you have to include share/Makefile.plugin for each new plug-in (hence there are as many
lines include share/Makefile.plugin as plug-ins). Makefile.plugin is a generic make�le
dedicated to plug-in compilation. Before its inclusion, a plug-in developer can set some vari-
ables in order to customize its behavior. These variables are fully described in Section 6.3.3.

These variables must not be used anywhere else in Makefile. Moreover, for setting them,
you must use := and not =4.

In addition, the results of the configure script must be exported in
share/Makefile.config.in (see section 6.3.2). You must in particular add a line of
the form

3this has no e�ect if you use Objective Caml < 4.00
4Using := only sets the variable value from the a�ectation point (as usual in most programming languages)

whereas using = would rede�ne the variable value for each of its occurrences in the make�le (see Section 6.2
�The Two Flavors of Variables� of the GNU Make Manual [10]).

40

5.5. PLUG-IN SPECIFIC MAKEFILE

ENABLE_plugin=@ENABLE_plugin@

so that make will know whether the plugin is supposed to compiled or not. Other variables may
be exported there as well (DYNAMIC_plugin, HAS_library) if the corresponding information is
needed during compilation.

Example 5.3 For compiling the plug-in Rte, the following lines are added into Makefile.

##################
Value analysis
##################
PLUGIN_ENABLE :=$(ENABLE_RTE_ANNOTATION)

PLUGIN_NAME := RteGen

PLUGIN_DIR :=src/rte

PLUGIN_CMO := rte_parameters rte register

PLUGIN_HAS_MLI :=yes

PLUGIN_DISTRIBUTED :=yes

PLUGIN_INTERNAL_TEST :=yes

i n c l u d e share/Makefile.plugin

As said above, you cannot use the parameters of Makefile.plugin anywhere in Makefile.
You can yet use some plugin-in speci�c variables once Makefile.plugin has been included.
These variables are detailed in Section 6.3.3.

One other variable has to be modi�ed by a plug-in developer if he uses �les which do not
belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set). This variable is
UNPACKED_DIRS and corresponds to the list of non plug-in directories containing source �les.

A plug-in developer should not have to modify any other part of any Frama-C Make�le.

5.5 Plug-in Speci�c Make�le

Prerequisite: knowledge of make.

In this section, we detail how to add a Make�le to a plug-in.

5.5.1 Using Makefile.dynamic

In this section, we detail how to write a Make�le for a given plug-in. Even if it is still
possible to write such a Make�le from scratch, Frama-C provides a generic Make�le, called
Makefile.dynamic, which helps the plug-in developer in this task. This �le is installed in the
Frama-C share directory. So for writting your plug-in speci�c Make�le, you have to:

1. set some variables for customizing your plug-in;

2. include Makefile.dynamic.

Example 5.4 A minimal Makefile is shown below. That is the Make�le of the plug-in Hello

World presented in the tutorial (see Section 2.1.2). Each variable set in this example has to
be set by any plug-in.

41

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Example of Makefile for dynamic plugins
###

Frama−c should be properly instal led with "make insta l l "
before any use of this makefile

FRAMAC_SHARE :=$(shell frama -c.byte -print -path)

FRAMAC_LIBDIR :=$(shell frama -c.byte -print -libpath)

PLUGIN_NAME = Hello

PLUGIN_CMO = hello_world

i n c l u d e $(FRAMAC_SHARE)/ Makefile.dynamic

FRAMAC_SHARE must be set to the Frama-C share directory while FRAMAC_LIBDIR must be set
to the Frama-C lib directory. PLUGIN_NAME is the capitalized name of your plug-in while
PLUGIN_CMO is the list of the �les .cmo generated from your OCaml sources.

To run your speci�c Make�le, you must have properly installed Frama-C before.

You may possibly need to do make depend before running make.

Which variable can be set and how they are useful is explained Section 6.3.3. Furthermore,
Section 6.3.4 explains the speci�c features of Makefile.dynamic.

5.5.2 Compiling Frama-C and external plug-ins at the same time

Target readers: plug-in developers using the SVN repository of Frama-C.

It is also possible to have a completely independent plug-in recompile and test together with
Frama-C's kernel. For that, Frama-C must be aware of the existence of the plug-in. This can
be done in two ways:

• All sub-directories of src/ directory in Frama-C sources which are not known to Frama-

C's kernel are assumed to be external plug-ins.

• One can use the --enable-external option of con�gure which takes as argument the
path to the plugin

In the �rst case, the plug-in behaves as any other built-ins plugins: autoconf run in Frama-C's
main directory will take care of it and it can be enabled or disabled in the same way as
the others. If the plug-in has its own configure.in or configure.ac �le, the con�guration
instructions contained in it (in particular additional dependencies) will be read as well.

In the second case, the plugin is added to the list of external plugins at con�gure time. If the
plugin has its own con�gure, it is run as well.

5.6 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-
regression and unit tests.

ptests runs the Frama-C toplevel on each speci�ed test (which are usually C �les). Speci�c
directives can be used for each test. Each result of the execution is compared from the
previously saved result (called the oracle). A test is successful if and only if there is no

42

5.6. TESTING

di�erence. Actually the number of results is twice that the number of tests because standard
and error outputs are compared separately.

First Section 5.6.1 shows how to use ptests. Next Section 5.6.2 introduces how to use prede-
�ned directives to con�gure tests, while Section 5.6.3 explains how to set up various testing
goals for the same test base. Last Section 5.6.4 details ptests' options, while Section 5.6.5
describes ptests' directive.

5.6.1 Using ptests

If you're using a Makefile written following the principles given in section 5.5, the simplest
way of using ptests is through make tests which is roughly equivalent to

$ t ime ./bin/ptests.byte

or

$ t ime ptests.byte

depending on whether you're inside Frama-C's sources or compiling a plugin against an already
installed Frama-C distribution.

In addition, make tests ensures that the ptests options speci�c to the plug-in under test are
correctly set. This can be done manually by issuing the following command:

$ make ptests_local_config.cmo

File ptests_local_config.cmo is then loaded by ptests and contains all the necessary infor-
mation for handling the test suite of the current plug-in.

ptests.byte runs tests belonging to a sub-directory of directory tests that is mentioned in
ptests_local_config. ptests also accepts speci�c test suites in arguments. A test suite is
either the name of a sub-directory in directory tests or a �lename (with its path relative to
the current directory).

Example 5.5 If you want to test plug-in sparecode and speci�c test tests/pdg/variadic.c,
just run

$./ b in /ptests.byte sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)

% Dispatch finished , waiting for workers to complete

% Comparisons finished , waiting for diffs to complete

% Diffs finished. Summary:

Run = 8

Ok = 16 of 16

ptests accepts di�erent options which are used to customize test sequences. These options are
detailed in Section 5.6.4.

Example 5.6 If the code of plug-in plug-in has changed, a typical sequence of tests is the
following one.

$./ b in /ptests.byte plug -in

$./ b in /ptests.byte -update plug -in

$ make tests

43

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

So we �rst run the tests suite corresponding to plug-in in order to display what tests have
been modi�ed by the changes. After checking the displayed di�erences, we validate the changes
by updating the oracles. Finally we run all the test suites in order to ensure that the changes
do not break anything else in Frama-C.

Example 5.7 For adding a new test, the typical sequence of command is the following.

$./ b in /ptests.byte -show tests/plug -in/new_test.c

$./ b in /ptests.byte -update tests/plug -in/new_test.c

$ make tests

We �rst ask ptests to print the output of the test on the command line, check that it corresponds
to what we expect, and then take it as the initial oracle. If some changes have been made to
the code in order to let new_test.c pass, we must of course launch the whole test suite and
check that all existing tests are alright.

If you're creating a whole new test suite suite, don't forget to create the sub-directories
suite/result and suite/oracle where ptests will store the current results and the oracles
for all the tests in suite

5.6.2 Con�guration

In order to exactly perform the test that you wish, some directives can be set in three di�erent
places. We indicate �rst these places and next the possible directives.

The places are:

• inside �le tests/test_config;

• inside �le tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test �le, in a special comment of the form

/* run.config

... directives ...

*/

In each of the above case, the con�guration is done by a list of directives. Each directive has
to be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The di�erent directives (i.e. possibilities for
CONFIG_OPTION) are detailed in Section 5.6.5.

Note that some speci�c con�gurations require dynamic linking, which is not available on
all platforms for native code. ptests takes care of reverting to bytecode when it detects
that the OPT or EXECNOW options of a test require dynamic linking. This occurs currently
in the following cases:

• OPT contains the option -load-script

• OPT contains the option -load-module

• EXECNOW use make to create a .cmxs

44

5.6. TESTING

Example 5.8 Test tests/sparecode/calls.c declares the following directives.

/* run.config

OPT: -sparecode -analysis

OPT: -slicing -level 2 -slice -return main -slice -print

*/

These directives state that we want to test sparecode and slicing analyses on this �le. Thus
running the following instruction executes two test cases.

$./ b in /ptests.byte tests/sparecode/calls.c

% Dispatch finished , waiting for workers to complete

% Comparisons finished , waiting for diffs to complete

% Diffs finished. Summary:

Run = 2

Ok = 4 of 4

5.6.3 Alternative Testing

You may want to set up di�erent testing goals for the same test base. Common cases include:

• checking the result of an analysis with or without an option;

• checking a preliminary result of an analysis, in particular if the complete analysis is
costly;

• checking separately di�erent results of an analysis.

This is possible with option -config of ptests, which takes as argument the name of a special
test con�guration, as in

$./ b in /ptests.byte -config <special_name > plug -in

Then, the directives for this test can be found:

• inside �le tests/test_config_<special_name>;

• inside �le tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test �le, in a special comment of the form

/* run.config_<special_name>
... directives ...

*/

All operations for this test con�guration should take option -config in argument, as in

$./ b in /ptests.byte -update -config <special_name > plug -in

In addition, option -config <special_name> requires subdirectories
result_<special_name> and oracle_<special_name> to store results and oracle
of the speci�c con�guration.

45

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

kind Name Speci�cation Default

Toplevel
-add-options Additional options passed to the

toplevel
-byte Use bytecode toplevel no
-opt Use native toplevel yes

Behavior

-run Delete current results; run tests and
examine results

yes

-examine Only examine current results; do not
run tests

no

-show Run tests and show results, but do
not examine them; implies -byte

no

-update Take current results as new oracles;
do not run tests

no

Misc.

-exclude suite Do not consider the given suite

-diff cmd Use cmd to show di�erences between
results and oracles when examining
results

diff -u

-cmp cmd Use cmd to compare results against
oracles when examining results

cmp -s

-use-diff-as-cmp Use the same command for di� and
cmp

no

-j n Set level of parallelism to n 4
-v Increase verbosity (up to twice) 0

-help Display helps no

Figure 5.1: ptests options.

5.6.4 Detailed options

Figure 5.1 details the options of ptests.

The commands provided through the -diff and -cmp options play two related but distinct
roles. cmp is always used for each test (in fact it is used twice: one for the standard output
and one for the error output). Only its exit code is taken into account by ptests and the
output of cmp is discarded. An exit code of 1 means that the two �les have di�erences. The
two �les will then be analyzed by diff, whose role is to show the di�erences between the �les.
An exit code of 0 means that the two �les are identical. Thus, they won't be processed by
diff. An exit code of 2 indicates an error during the comparison (for instance because the
corresponding oracle does not exist). Any other exit code results in a fatal error. It is possible
to use the same command for both cmp and diff with the -use-diff-as-cmp option, which
will take as cmp command the command used for diff.

The -exclude option can take as argument a whole suite or an individual test. It can be used
with any behavior.

5.6.5 Detailed directives

Figure 5.2 shows all the directives that can be used in the con�guration header of a test (or
a test suite). Any directive can identify a �le using a relative path. The default directory
considered for . is always the parent directory of directory tests. The DONTRUN directive

46

5.6. TESTING

Kind Name Speci�cation default

Command

CMD Program to run ./bin/toplevel.opt

OPT Options given to the program -val -out -input -deps

STDOPT Add and remove options from
the default set

None

EXECNOW Run a command before the
following commands

None

FILTER Command used to �lter re-
sults

None

Test suite
DONTRUN Do not execute this test None
FILEREG selects the �les to test .*\.\(c|i\)

Miscellaneous
COMMENT Comment in the con�guration None
GCC Unused (compatibility only) None

Figure 5.2: Directives in con�guration headers of test �les.

does not need to have any content, but it is useful to provide an explanation of why the test
should not be run (e.g test of a feature that is currently developed and not fully operational
yet). If a test �le is explicitly given on the command line of ptests, it is always executed,
regardless of the presence of a DONTRUN directive.

As said in Section 5.6.2, these directives can be found in di�erent places:

1. default value of the directive (as speci�ed in Fig. 5.2);

2. inside �le tests/test_config;

3. inside �le tests/subdir/test_config (for each sub-directory subdir of tests); or

4. inside each test �le

As presented in Section 5.6.3, alternative directives for test con�guration <special_name>
can be found in slightly di�erent places:

• default value of the directive (as speci�ed in Fig. 5.2);

• inside �le tests/test_config_<special_name>;

• inside �le tests/subdir/test_config_<special_name> (for each sub-directory subdir
of tests); or

• inside each test �le.

For a given test tests/suite/test.c, each existing �le in the sequence above is read in order
and de�nes a con�guration level (the default con�guration level always exists).

• CMD allows to change the command that is used for the following OPT directives (until a
new CMD directive is found). No test case is generated if there is no further OPT directive.
At a given con�guration level, the default value for directive CMD is the last CMD directive
of the preceding con�guration level.

47

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

• If there are several directives OPT in the same con�guration level, they correspond to
di�erent test cases. The OPT directive(s) of a given con�guration level replace(s) the
ones of the preceding level.

• The STDOPT directive takes as default set of options the last OPT directive(s) of the
preceding con�guration level. If the preceding con�guration level contains several OPT
directives, hence several test cases, STDOPT is applied to each of them, leading to the
same number of test cases. The syntax for this directive is the following.

STDOPT: [[+#-]"opt" ...]

options are always given between quotes. An option following a + (resp. # is added to
the end (resp. start) of current set of options while an option following a - is removed
from it. The directive can be empty (meaning that the corresponding test will use the
standard set of options). As with OPT, each STDOPT corresponds to a di�erent (set of)
test case(s).

• The syntax for directive EXECNOW is the following.

EXECNOW: [[LOG file | BIN file] ...] cmd

Files after LOG are log �les generated by command cmd and compared from oracles,
whereas �les after BIN are binary �les also generated by cmd but not compared from
oracles. Full access path to these �les have to be speci�ed only in cmd. All the commands
described by directives EXECNOW are executed in order and before running any of the other
directives. If the execution of one EXECNOW directive fails (i.e. has a non-zero return
code), the remaining actions are not executed. EXECNOW directives from a given level are
added to the directives of the following levels.

• The FILEREG directive contains a regular expression indicating which �les in the direc-
tory containing the current test suite are actually part of the suite. This directive is
only usable in a test_config con�guration �le.

5.7 Plug-in General Services

Module Plugin provides an access to some general services available for all plug-ins. The
goal of this module is twofold. First, it helps developpers to use general Frama-C services.
Second, it provides to the end-user a set of features common to all plug-ins. To access to
these services, you have to apply the functor Plugin.Register.

Each plug-in must apply this functor exactly once.

Example 5.9 Here is how the plug-in From applies the functor Plugin.Register for its own
use.

48

5.8. LOGGING SERVICES

i n c l u d e Plugin .Reg i s t e r
(s t r u c t

l e t name = "from analysis"

l e t shortname = "from"

l e t help = "functional dependencies"

end)

Applying this functor mainly provides two di�erent services. First it gives access to functions
for printing messages in a Frama-C-compliant way (see Section 5.8). Second it allows to de�ne
plug-in speci�c parameters available as options on the Frama-C command line to the end-user
(see Section 5.13).

5.8 Logging Services

Displaying results of plug-in computations to users, warning them of the hypothesis taken by
the static analyzers, reporting incorrect inputs, all these tasks are easy to think about, but
turn to be di�cult to handle in a readable way. As soon as your plug-in is registered (see
Section 5.7 above), though, you automatically bene�t from many logging facilities provided
by the kernel. What is more, when logging through these services, messages from your plug-in
combine with other messages from other plug-ins, in a consistent and user-friendly way.

As a general rule, you should never write to standard output and error channels through
Objective Caml standard libraries. For instance, you should never use Pervasives.stdout

and Pervasives.stderr channels, nor Format.printf-like routines.

Instead, you should use Format.fprintf to implement pretty-printers for your own complex
data, and only the printf-like routines of Log.Messages to display messages to the user. All
these routines are immediately available from your plug-in general services.

Example 5.10 A minimal example of a plug-in using the logging services:

module S e l f = Plugin .Reg i s t e r
(s t r u c t

l e t name = "foo plugin"

l e t shortname = "foo"

l e t help = "illustration of logging services"

end)

l e t pp_dg out n =

Format. f p r i n t f out
"you have at least debug %d" n

l e t run () =

S e l f . r e s u l t "Hello , this is Foo Logs !";

S e l f .debug ∼ l e v e l :0 "Try higher debug levels (%a)" pp_dg 0;

S e l f .debug ∼ l e v e l :1 "If you read this , %a." pp_dg 1;

S e l f .debug ∼ l e v e l :3 "If you read this , %a." pp_dg 3;

l e t () = Db.Main. extend run ()

Running this example, you should see:

$ frama -c -foo -debug 2

[foo] Hello , this is Foo Logs !

[foo] Try high debug levels (you have at least debug 0).

[foo] If you read this , you have at least debug 1.

Notice that your plug-in automatically bene�ts from its own debug command line parameter,
and that messages are automatically pre�xed with the name of the plug-in. We now get into
more details for an advanced usage of logging services.

49

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

5.8.1 From printf to Log

Below is a simple example of how to make a printf-based code towards being Log-compliant.
The original code, extracted from the Occurrence plugin in Frama-C-Lithium version is as
follows:

l e t print_one v l =

Format. p r i n t f "variable %s (%d):@\n" v.vname v. vid ;
L i s t . i t e r

(fun (ki , l v) →
Format. p r i n t f " sid %a: %a@\n" d_ki k i d_lval l v)

l

l e t pr i n t_a l l () =

compute ();

Occurrences . i t e r print_one

The transformation is straightforward. First you add to all your pretty-printing functions an
additional Format.formatter parameter, and you call fprintf instead of printf:

l e t print_one fmt v l =

Format. f p r i n t f fmt "variable %s (%d):@\n" v.vname v. vid ;
L i s t . i t e r

(fun (ki , l v) →
Format. f p r i n t f fmt " sid %a: %a@\n" d_ki k i d_lval l v)

l

Then, you delegate toplevel calls to printf towards an appropriate logging routine, with a
formatting string containing the necessary "%t" and "%a" formatters:

l e t pr i n t_a l l () =

compute ();

r e s u l t "%t" (fun fmt → Occurrences . i t e r (print_one fmt))

5.8.2 Log Quick Reference

The logging routines for your plugins consist in an implementation of the Log.Messages inter-
face, which is included in the Plugin.S interface returned by the registration of your plugin.
The main routines of interest are:

result <options> "..."

Outputs most of your messages with this routine. You may specify ∼ level:n option to
discard too detailed messages in conjunction with the verbose command line option.
The default level is 1.

feedback <options> "..."

Reserved for short messages that gives feedback about the progression of long compu-
tations. Typically, entering a function body or iterating during �xpoint computation.
The level option can be used as for result .

debug <options> "..."

To be used for plug-in development messages and internal error diagnosis. You may
specify ∼ level:n option to discard too detailed messages in conjunction with the debug
command line option. The default message level is 1, and the default debugging level
is 0. Hence, without any option, debug discards all its messages.

warning <options> "..."

For reporting to the user an important information about the validity of the analysis

50

5.8. LOGGING SERVICES

performed by your plug-in. For instance, if you locally assume non arithmetic over�ow
on a given statement, etc. Typical options include ∼current:true to localize the message
on the current source location.

error <options> "..."

abort <options> "..."

Use these routines for reporting to the user an error in its inputs. It can be used for
non valid parameters, for instance. It should not be used for some not-yet implemented
feature, however.

The abort routine is a variant that raises an exception and thus aborts the computation.

failure <options> "..."

fatal <options> "..."

Use these routines for reporting to the user that your plug-in is now in inconsistent state
or can not continue its computation. Typically, you have just discovered a bug in your
plug-in!

The fatal routine is a variant that raises an exception.

verify (condition) <options> "..."

First the routine evaluates the condition and the formatting arguments, then, discards
the message if the condition holds and displays a message otherwise. Finally, it returns
the condition value.

A typical usage is for example:

a s s e r t (v e r i f y (x>0) "Expected a positive value (%d)" x)

5.8.3 Logging Routine Options

Logging routines have optional parameters to modify their general behavior. Hence their
involved type in Log.mli.

Level Option. A minimal level of verbosity or debugging can be speci�ed for the message
to be emitted. For the result and feedback channels, the verbosity level is used ; for the debug
channel, the debugging level is used.

∼ level:n minimal level required is n.

Category Option Debug output can be associated to a debugging key with the optional
argument ∼dkey which takes a string as argument. This can be used in addition to the level of
debugging. User can then choose to output debugging messages belonging to a given category
with the -plugin-debug-category <category> option. A message will be output if either the
appropriate level is set or its category is selected. Note that this part of the API is still quite
experimental and may evolve at some point.

Source Options. By default, a message is not localized. You may specify a source location,
either speci�cally or by using the current location of an AST visitor.

∼source:s use the source location s (see Log.mli)

∼current:true use the current source location managed by Cil.CurrentLoc.

51

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Emission Options. By default, a message is echoed to the user after its construction, and
it is sent to registered callbacks when emitted. See Section 5.8.4 below for more details on
how to globally modify such a behavior. During the message construction, you can locally
modify the emission process with the following options:

∼emitwith:f suppresses the echo and sends the emitted event only to the callback func-
tion f . Listeners are not �red at all.

∼once:true �nally discards the message if the same one was already emitted before with
the ∼once option.

Append Option. All logging routines have the ∼append:f optional parameter, where f is
function taking a Format.formatter as parameter and returning unit. This function f is invoked
to append some text to the logging routine. Such continuation-passing style is sometime
necessary for de�ning new polymorphic formatting functions. It has been introduced for the
same purpose than standard Format.kfprintf-like functions.

5.8.4 Advanced Logging Services

Message Emission

During message construction, the message content is echoed in the terminal. This echo may
be delayed until message completion when ∼once has been used. Upon message completion,
the message is emitted and sent to all globally registered hook functions, unless the ∼emitwith

option has been used.

To interact with this general procedure, the plug-in developer can use the following functions
de�ned in module Log:

v a l set_echo: ? p lug in : s t r i n g → ? kinds :kind l i s t → bool → uni t
v a l add_l i s t ener : ? p lug in : s t r i n g → ? kinds :kind l i s t → (event → uni t) → uni t

Continuations

The logging routines take as argument a (polymorphic) formatting string, followed by the
formatting parameters, and �nally return unit. It is also possible to catch the generated
message, and to pass it to a continuation that �nally returns a value di�erent than unit.

For this purpose, you must use the with_<log> routines variants. These routines take a
continuation f for additional parameter. After emitting the corresponding message in the
normal way, the message is passed to the continuation f . Hence, f has type event → α, and
the log routine returns α.

For instance, you typically use the following code fragment to return a degenerated value
while emitting a warning:

l e t r e c f a c t n =

i f (n>12) then
with_warning (fun _ → 0) "Overflow for %d, return 0 instead" x

e l s e i f n≤1 then 1 e l s e n * f a c t (n-1)

52

5.8. LOGGING SERVICES

Generic Routines

The Log.Messages interface provides two generic routines that can be used instead of the basic
ones:

log ?kind ?verbose ?debug <options> "..."

Emits a message with the given kind, when the verbosity and/or debugging level are
su�cient.

with_log f ?kind <options> "..."

Emits a message like log, and �nally pass the generated message to the continuation f ,
and returns its result.

The default kind is Result, but all the other kind of message can be speci�ed. For verbosity
and debugging levels, the message is emitted when:

log "..." verbosity is at least 1
log ∼verbose:n verbosity is at least n
log ∼debug:n debugging is at least n
log ∼verbose:v ∼debug:d either verbosity is at least v

or debugging is at least d.

Channel Management

The logging services are build upon channels, which are basically bu�ered formatters to
standard output extended with locking, delayed echo, and noti�cation services.

The very safe feature of logging services is that recursive calls are protected. A message is
only echoed upon termination, and a channel bu�er is stacked only if necessary to preserve
memory.

Services provided at plugin registration are convenient shortcuts to low-level logging service
onto channels. The Log interface allows you to create such channels for your own purposes.

Basically, channels ensure that no message emission interfere with each others during echo
on standard output. Hence the forbidden direct access to Pervasives.stdout. However, Log
interface allows you to create such channels on your own, in addition to the one automatically
created for your plug-in.

new_channel name

This creates a new channel. There is only one channel per name, and the function
returns the existing one if any. Plug-in channels are registered under their short-name,
and the kernel channel is registered under Log.kernel_channel_name.

log_channel channel ?kind ?prefix

This routine is similar to the log one.

with_log_channel channel f ?kind ?prefix

This routine is similar to the with_log one.

With both logging routines, you may specify a pre�x to be used during echo. The available
switches are:

Label t: use the string t as a pre�x for the �rst echoed line of text, then use an inden-
tation of same length for the next lines.

53

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Pre�x t: use the string t as a pre�x for all lines of text.

Indent n: use an indentation of n spaces for all lines of text.

When left unspeci�ed, the pre�x is computed from the message kind and the channel name,
like for plug-ins.

Output Management

It is possible to ask Log to redirect its output to another channel:

set_output out flush

The parameters are the same than those of Format.make_formatter: out outputs a (sub)-
string and �ush actually writes the bu�ered text to the underlying device.

It is also possible to have a momentary direct access to Pervasives.stdout, or whatever its
redirection is:

print_on_output "..."

The routine immediately locks the output of Log and prints the provided message. All
message echoes are delayed until the routine actually returns. Noti�cation to listeners
is not delayed, however.

print_delayed "..."

This variant locks the output only when the �rst character would be written to output.
This gives a chance to a message to be echoed before your text is actually written.

Remark that these two routines can not be recursively invoked, since they have a lock to a non-
delayed output channel. This constraint is veri�ed at runtime to avoid incorrect interleaving,
and you would get a fatal error if the situation occurs.

Warning: these routine are dedicated to expensive output only. You get the advantage of
not bu�ering your text before printing. But on the other hand, if you have messages to be
echoed during printing, they must be stacked until the end of your printing.

You get a similar functionality with Kernel_function.CodeOutput.output. This routine prints
your text by calling Log.print_delayed, unless the command line option -ocode has been set.
It this case, your text is written to the speci�ed �le.

5.9 The Type library: Type Values and Datatypes

Type values and datatypes are key notions of Frama-C. They are both provided by the Type

library. An overview as well as technical details may also be found in a related article in
French [17]. A short summary focusing on (un)marshaling is described in another article [7].
First, Section 5.9.1 introduces type values. Then Section 5.9.2 introduces datatypes built on
top of type values.

54

5.9. THE TYPE LIBRARY: TYPE VALUES AND DATATYPES

5.9.1 Type Value

A type value is an OCaml value which dynamically represents a static monomorphic OCaml

type τ . It gets the type τ Type.t. There is at most one type value which represents the type
τ . Type values are used by Frama-C to ensure safety when dynamic typing is required (for
instance to access to a dynamic plug-in API, see Section 5.10.2).

Type values for standard OCaml monomorphic types are provided in module Datatype.

Example 5.11 The type value for type int is Datatype.int while the one for type string is
Datatype.string. The former has type int Type.t while the latter has type string Type.t.

Type values are created when building datatypes (see Section 5.9.2). There is no type value
for polymorphic types. Instead, they have to be created for each instance of a polymorphic
type. Functions for accessing such type values for standard OCaml polymorphic types are
provided in moduleDatatype.

Example 5.12 The type value for type int list is Datatype.list Datatype.int

while the one for type string →char →bool is Datatype.func2 Datatype.stringring

Datatype.char Datatype.bool. The former has type int list Type.t while the latter has
type (string →char →bool) Type.t.

5.9.2 Datatype

A datatype provides in a single module a monomorphic type and usual values over it. Its
signature is Datatype.S. It contains the type itself, the type value corresponding to this type,
its name, functions equal, compare, hash and pretty which may respectively be used to check
equality, to compare, to hash and to pretty print values of this type. It also contains some other
values (for instance required when marshaling or journalizing). Whenever possible, a datatype
implements an extensible version of Datatype.S, namely Datatype.S_with_collections.
For a type τ , this extended signature additionally provides modules Set, Map and Hashtbl

respectively implementing sets over τ , maps and hashtables indexed by elements of τ .

Datatypes for OCaml types from the standard library are provided in module Datatype, while
those for AST's types are provided in module Cil_datatype. Furthermore, when a kernel
module implements a datastructure, it usually implements Datatype.S.

Example 5.13 The following line of code pretty prints whether two statements are equal.

(∗ assumed the type of [stmt1] and [stmt2] i s Cil_types . stmt ∗)
Format. f p r i n t f

fmt (∗ a formatter previously defined somewhere ∗)
"statements %a and %a are %sequal"

Cil_datatype.Stmt. pre t ty stmt1
Cil_datatype.Stmt. pre t ty stmt2
(i f Cil_datatype.Stmt. equal stmt1 stmt2 then "" e l s e "not ")

Example 5.14 Module Datatype.String implements Datatype.S_with_collections.
Thus you can initialize a set of strings in the following way.

l e t s t r i ng_se t =

L i s t . f o l d_ l e f t
(fun acc s → Datatype. St r ing .Set .add s acc)
Datatype. St r ing .Set .empty
["foo"; "bar"; "baz"]

55

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Building Datatypes

For each monomorphic type, the corresponding datatype may be created by applying the
functor Datatype.Make. In addition to the type t corresponding to the datatype, several
values must be provided in the argument of the functor. These values are properly document
in the Frama-C API. The following example introduces them in a practical way.

Example 5.15 Here is how to de�ne in the more precise way the datatype corresponding to
a simple sum type.

t ype ab = A | B o f i n t
module AB =

Datatype.Make
(s t r u c t

(∗ the type corresponding to the datatype ∗)
t ype t = ab
(∗ the unique name of the built datatype ; usually the name of the

type ∗)
l e t name = "ab"

(∗ representents of the type : a non−empty l i s t of values of this type . It
i s only used for safety check : the best the l i s t represents the
different possible physical representation of the type , the best the
check i s . ∗)

l e t r ep r s = [A; B 0]

(∗ structural descriptor describing the physical representation of the
type . It i s used when marshaling . ∗)

l e t s t ruc tu ra l_de s c r =

Structura l_desc r . Structure
(Structura l_desr .Sum [| [| Structura l_desc r .p_int |] |])

(∗ equality , compare and hash are the standard OCaml ones ∗)
l e t equal (x: t) y = x = y
l e t compare (x: t) y = Pervas ive s .compare x y
l e t hash (x: t) = Hashtbl.hash x
(∗ the type ab i s a standard functional type , thus copying and rehashing

are simply identity . Rehashing i s used when marshaling . ∗)
l e t copy = Datatype. i d e n t i t y
l e t rehash = Datatype. i d e n t i t y
(∗ the type ab does never contain any value of type Project . t ∗)
l e t mem_project = Datatype.never_any_project
(∗ pretty printer ∗)
l e t pre t ty fmt x =

Format.pp_print_string fmt
(match x with A → "a" | B n → "b" ^ s t r ing_of_int n)

(∗ printer which must produce a valid OCaml value in a given
context . It i s used when journalising . ∗)

l e t internal_pretty_code p r e c_ca l l e r fmt = f u n c t i o n
| A →

Type.par
p r e c_ca l l e r
Type.Basic
fmt
(fun fmt → Format.pp_print_string fmt "A")

| B n →
Type.par

p r e c_ca l l e r
Type.Cal l
fmt
(fun fmt → Format. f p r i n t f fmt "B %d" n)

end)

Only providing an e�ective implementation for the values name and reprs is mandatory. For
instance, if you know that you never journalize a value of a type t, you can de�ne the function
internal_pretty_code equal to the prede�ned function Datatype.pp_fail. Similarly, if you
never use values of type t as keys of hashtable, you can de�ne the function hash equal to the
function Datatype.undefined , and so on. To ease this process, you can also use the prede�nes
structure Datatype.Undefined.

56

5.9. THE TYPE LIBRARY: TYPE VALUES AND DATATYPES

Example 5.16 Here is a datatype where only the function equal is provided.

(∗ the same type than the one of the previous example ∗)
t ype ab = A | B o f i n t
module AB =

Datatype.Make
(s t r u c t

t ype t = ab
l e t name = "ab"

l e t r ep r s = [A; B 0]

i n c l u d e Datatype.Undefined
l e t equal (x: t) y = x = y

end)

Datatypes of Polymorphic Types

As for type values, it is not possible to create a datatype correspondign to polymorphic types,
but it is possible to create them for each of their monomorphic instances.

For building such instances, you must not apply the functor Datatype.Make since it will
create two type values for the same type (and with the same name): that is forbidden.

Instead, you must use the functor Datatype.Polymorphic for types with one type variable
and the functor Datatype.Polymorphic2 for types with two type variables. These functors
takes as argument how to build the datatype corresponding each monomorphic instance.

Example 5.17 Here is how to apply Datatype.Polymorphic corresponding to the type 'a t

below.

t ype α ab = A o f α | B o f i n t
module Poly_ab =

Datatype.Polymorphic
(s t r u c t

t ype α t = α ab
l e t name ty = Type.name ty ^ " ab"

l e t module_name = "Ab"

l e t r ep r s ty = [A ty]

l e t s t ruc tu ra l_de s c r d =

Structura l_desc r . Struc ture
(Structura l_desc r .Sum

[| [| Structura l_desc r .pack d |]; [| Structura l_desc r .p_int |] |]

l e t mk_equal f x y = match x, y with
| A x, A y → f x y
| B x, B y → x = y
| A _, B _ | B _, A _ → f a l s e

l e t mk_compare f x y = match x, y with
| A x, A y → f x y
| B x, B y → Pervas ive s .compare x y
| A _, B _ → 1

| B _, A _ → -1

l e t mk_hash f = f u n c t i o n A x → f x | B x → 257 * x
l e t map f = f u n c t i o n A x → A (f x) | B x → B x
l e t mk_internal_pretty_code f p r e c_ca l l e r fmt = f u n c t i o n

| A x →
Type.par

p r e c_ca l l e r
Type.Basic
fmt
(fun fmt → Format. f p r i n t f fmt "A %a" (f Type.Cal l) x)

| B n →
Type.par

p r e c_ca l l e r
Type.Cal l
fmt
(fun fmt → Format. f p r i n t f fmt "B %d" n)

l e t mk_pretty f fmt x =

57

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

mk_internal_pretty_code (fun _ → f) Type.Basic fmt x
l e t mk_varname _ = "ab"

l e t mk_mem_project mem f = f u n c t i o n
| A x → mem f x
| B _ → f a l s e

end)
module Ab = Poly_AB.Make

(∗ datatype corresponding to the type [int ab] ∗)
module Ab_int = Ab(Datatype. Int)

(∗ datatype corresponding to the type [int l i s t ab] ∗)
module Ab_Ab_string = Ab(Datatype. L i s t (Datatype. Int))

(∗ datatype corresponding to the type [(string , int) Hashtbl . t ab] ∗)
module HAb = Ab(Datatype. St r ing .Hashtbl.Make(Datatype. Int))

Clearly it is a bit painful. However you probably will never apply this functor yourself. It
is already applied for the standard Objective Caml polymorphic types like list and function
(respectively Datatype.List and Datatype.Function).

5.10 Plug-in Registration and Access

In this section, we present how to register plug-ins and how to access them. Actually there
are two di�erent ways to register plug-ins depending on whether they are kernel-integrated
or not (cf Section 4.4).

Section 5.10.1 indicates how to register and access a kernel-integrated plug-in while Sec-
tion 5.10.2 details how to register and access a standard plug-in.

5.10.1 Kernel-integrated Registration and Access

Target readers: kernel-integrated plug-in developers.

Prerequisite: Accepting to modify the Frama-C kernel. Otherwise, you can still register
your plug-in as any standard plug-in (see Section 5.10.2 for details).

A database, called Db (in directory src/kernel), groups together the API of all kernel-
integrated plug-ins. So it permits easy plug-in collaborations. Each kernel-integrated plug-in
is only visible through Db. For example, if a plug-in A wants to know the results of another
plug-in B, it uses the part of Db corresponding to B. A consequence of this design is that each
plug-in has to register in Db by setting a function pointer to the right value in order to be
usable from others plug-ins.

Example 5.18 Plug-in Impact registers function compute_pragmas in the following way.

File src/impact/register.ml

l e t compute_pragmas () = ...

l e t () = Db. Impact.compute_pragmas ← compute_pragmas

So each developer who wants to use this function calls it by pointer dereferencing like this.

l e t () = !Db. Impact.compute_pragmas ()

58

5.10. PLUG-IN REGISTRATION AND ACCESS

If a kernel-integrated plug-in has to export some datatypes usable by other plug-ins, such
datatypes have to be visible from module Db. Thus they cannot be declared in the plug-in
implementation itself like any other plug-in declaration because postponed type declarations
are not possible in Objective Caml.

Such datatypes are called plug-in types. The solution is to put these plug-ins types in some
�les linked before Db; hence you have to put them in another directory than the plug-in
directory. The best way is to create a directory dedicated to types.

Recommendation 5.2 The suggested name for this directory is p_types for a plug-in p.

If you add such a directory, you also have to modify Makefile by extending variable
UNPACKED_DIRS (see Section 6.3.3).

Example 5.19 Suppose you are writing a plug-in plug-in which exports a speci�c type t

corresponding to the result of the plug-in analysis. The standard way to proceed is the following.

File src/plugin_types/plugin_types.mli

t ype t = ...

File src/kernel/db.mli

module Plugin : s i g
v a l run_and_get: (uni t → Plugin_types. t) r e f

(∗∗ Run plugin analysis (i f i t was never launched before) .
@return result of the analysis . ∗)

end

File Make�le

UNPACKED_DIRS= ... plugin_types

Extend this variable with the new directory

This design choice has a side e�ect : it reveals exported types. You can always hide them
using a module to encapsulate the types (and provide corresponding getters and setters to
access them).

At this point, part of the plug-in code is outside the plug-in implementation. This code should
be linked before Db 5.

To this e�ect, the �les containing the exterior plug-in code must be added to the Makefile

variable PLUGIN_TYPES_CMO (see Section 6.3.3).

5.10.2 Dynamic Registration and Access

Target readers: standard plug-ins developers.

Registration of kernel-integrated plug-ins requires to modify module Db which belongs to
the Frama-C kernel. Such a modi�cation is not possible for standard plug-ins which are
fully independent of Frama-C. Consequently, the Frama-C kernel provides another way for
registering a plug-in through the module Dynamic.

In short, you have to use the function Dynamic.register in order to register a value from
a dynamic plug-in and you have to use function Dynamic.get in order to apply a function
previously registered with Dynamic.register.

5A direct consequence is that you cannot use the whole Frama-C functionalities, such as module Db, inside
this code.

59

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Registering a value

The signature of Dynamic.register is as follows.

v a l r e g i s t e r : p lug in : s t r i n g → s t r i n g → α Type. t → j o u r n a l i z e :bool → α →
uni t

The �rst argument is the name of the plug-in registering the value and the second one is a
binding name of the registered OCaml value. The pair (plugin name, binding name) must not
be used for value registration anywhere else in Frama-C. It is required for another plug-in in
order to access to this value (see next paragraph). The third argument is the type value of
the registered value (see Section 5.9.1). It is required for safety reasons when accessing to the
registered value (see the next paragraph). The labeled fourth argument journalize indicates
whether a total call to this function must be written in the journal (see also Section 5.11).
The usual value for this argument is true. The �fth argument is the value to register.

Example 5.20 Here is how the function run of the plug-in hello of the tutorial is registered.
The type of this function is unit → unit.

l e t run () : uni t = ...

l e t () =

Dynamic. r e g i s t e r
∼p lug in :"Hello"
"run"

(Datatype. func Datatype. uni t Datatype. uni t)
∼ j o u r n a l i z e : t r u e
run

If the string "Hello.run" is already used to register a dynamic value, then the exception
Type.AlreadyExists is raised during plug-in initialization (see Section 5.14).

The function call Datatype.func Datatype.unit Datatype.unit returns the type value rep-
resenting unit → unit. Note that, because of the type of Dynamic.register and the types
of its arguments, the OCaml type checker complains if the third argument (here the value run)
has not the type unit → unit.

Accessing to a registered value

The signature of function Dynamic.get is as follows.

v a l get : p lug in : s t r i n g → s t r i n g → α Type. t → α

The arguments must be the same than the ones used at value registration time (with
Dynamic.register). Otherwise, depending on the case, you will get a compile-time or a
runtime error.

Example 5.21 Here is how the previously registered function run of Hello may be applied.

l e t () =

Dynamic. get
∼p lug in :"Hello"
"run"

(Datatype. func Datatype. uni t Datatype. uni t)
()

The given strings and the given type value must be the same than the ones used when registering
the function. Otherwise, an error occurs at runtime. Furthermore, the OCaml type checker
will complain either if the third argument (here ()) is not of type unit or if the returned value
(here () also) is not of type unit.

60

5.10. PLUG-IN REGISTRATION AND ACCESS

The above-mentionned mechanism requires to access to the type value corresponding to the
type of the registered value. Thus it is not possible to access to a value of a plug-in-de�ned
type. For solving this issue, Frama-C provides a way to access to type values of plug-in-de�ned
types in an abstract way through the functor Type.Abstract.

Example 5.22 There is no current example in the Frama-C open-source part, but consider a
plug-in which provides a dynamic API for callstacks as follows.

module P =

Plugin .Reg i s t e r
(s t r u c t

l e t name = "Callstack"

l e t shortname = "Callstack"

l e t help = "callstack library"

end)

(∗ A callstack i s a l i s t of a pair (kf ∗ stmt) where [kf] i s the kernel
function called at statement [stmt] . Building the datatype also creates the
corresponding type value [ty] . ∗)

t ype c a l l s t a c k = (Kernel_funct ion . t * Cil_datatype.Stmt. t) l i s t

(∗ Implementation ∗)
l e t empty = []

l e t push kf stmt stack = (kf , stmt) :: s tack
l e t pop = f u n c t i o n [] → [] | _ :: s tack → s tack
l e t r e c pr in t = f u n c t i o n

| [] → P. f eedback ""

| (kf , stmt) :: s tack →
P. f eedback "function %a called at stmt %a"

Kernel_funct ion . pre t ty k f
Cil_datatype.Stmt. pre t ty stmt;

pr in t s tack

(∗ Type values ∗)
l e t kf_ty = Kernel_funct ion . ty
l e t stmt_ty = Cil_datatype.Stmt. ty

module D =

Datatype.Make
(s t r u c t

t ype t = c a l l s t a c k
l e t name = "Callstack.t"

l e t r ep r s = [empty; [Kernel_funct ion .dummy (), Ci l .dummyStmt]]

i n c l u d e Datatype. Se r i a l i z ab l e_unde f i n ed
end)

(∗ Dynamic API registration ∗)
l e t r e g i s t e r name ty =

Dynamic. r e g i s t e r ∼p lug in :"Callstack" ∼ j o u r n a l i z e : f a l s e name ty

l e t empty = r e g i s t e r "empty" D. ty empty
l e t push = r e g i s t e r "push" (Datatype. func3 kf_ty stmt_ty D. ty D. ty) push
l e t pop = r e g i s t e r "pop" (Datatype. func D. ty D. ty) pop
l e t pr in t = r e g i s t e r "print" (Datatype. func D. ty Datatype. uni t) pr in t

You have to use the functor Type.Abstract to access to the type value corresponding to the
type of callstacks (and thus to access to the above dynamically registered functions).

(∗ Type values ∗)
l e t kf_ty = Kernel_funct ion . ty
l e t stmt_ty = Cil_datatype.Stmt. ty

(∗ Access to the type value for abstract cal lstacks ∗)
module C = Type.Abstract (s t r u c t l e t name = "Callstack.t" end)

l e t get name ty = Dynamic. get ∼p lug in :"Callstack" name ty

(∗ mutable callstack ∗)

61

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

l e t c a l l s t a c k_r e f = r e f (get "empty" C. ty)

(∗ operations over this mutable callstack ∗)

l e t push_ca l l s tack =

(∗ getting the function outside the closure i s more e f f i c i ent ∗)
l e t push = get "push" (Datatype. func3 kf_ty stmt_ty C. ty C. ty) i n
fun kf stmt → c a l l s t a c k_r e f ← push kf stmt ! c a l l s t a c k_r e f

l e t pop_cal l s tack =

(∗ getting the function outside the closure i s more e f f i c i ent ∗)
l e t pop = get "pop" (Datatype. func C. ty C. ty) i n
fun () → c a l l s t a c k_r e f ← pop ! c a l l s t a c k_r e f

l e t p r i n t_ca l l s t a ck =

(∗ getting the function outside the closure i s more e f f i c i ent ∗)
l e t pr in t = get "print" (Datatype. func C. ty Datatype. uni t) i n
fun () → pr in t ! c a l l s t a c k_r e f

(∗ . . . algorithm using the callstack . . . ∗)

5.11 Journalization

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

5.12 Project Management System

Prerequisite: knowledge of OCaml module system and labels.

In Frama-C, a key notion detailed in this section is the one of project. An overview as well
as technical details may also be found in a related article in French [16]. Section 5.12.1 �rst
introduces the general principle of project. Section 5.12.2 introduces the notion of states.
State registration is detailed in Sections 5.12.3 and 5.12.4. The former is dedicated to stan-
dard (high-level) registration, while the latter is dedicated to low-level registration. Then
Section 5.12.5 explains how to use project. Finally Section 5.12.6 details state selections.

5.12.1 Overview and Key Notions

A project group together an AST with the set of global values attached to it. Such values
are called states. Examples of states are parameters (see Section 5.13), results of analyses
(Frama-C extensively uses memoization [13, 14] in order to prevent running analysis twice).

In a Frama-C session, several project (and thus several ASTs) can exist at the same time. The
project library ensures project non-interference: modifying the value of a state in a project
does not impact any value of any project in any other project. For ensuring this property,
each state must be registered in the project library as explained in Sections 5.12.3 and 5.12.4.
Such relation between states and projects are summarized in Figure 5.3.

To ease development, Frama-C maintains a current project (Project.current ()): all oper-
ations are automatically performed on. For instance, calling Ast.get () returns the Frama-C

AST of the current project. It is also possible to access to values in others projects as explained
in Section 5.12.5.

62

http://bts.frama-c.com

5.12. PROJECT MANAGEMENT SYSTEM

XXXXXXXXXXXStates
Projects

Project p1 . . . Project pn

AST a value of a in p1 . . . value of a in pn
data d1 value of d1 in p1 . . . value of d1 in pn
.

data dm value of dm in p1 . . . value of dm in pn

Figure 5.3: Representation of the Frama-C State.

5.12.2 State: Principle

If a data should be part of the state of Frama-C, you must register it in the project library
(see Sections 5.12.3 and 5.12.4).

Here we �rst explain what are the functionalities of each state and then we present the general
principle of registration.

State Functionalities

Whenever you want to attach a data (e.g. a table containing results of an analysis) to an
AST, you have to register it as an internal state. The main functionalities provide to each
internal state are the following.

• It is automatically updated whenever the current project changes: so your data is always
consistent with the current project. More precisely, you still work with your global data
(for instance, a hashtable or a reference) as usual in Objective Caml. The project library
silently changes this data when required (usually when the current project is changing).
The extra cost due to the project system is usually an extra indirection. Figure 5.4
summarizes these interactions between the project library and your state.

• It is part of the information saved on disk for restoration in a later session.

• It may be part of a selection which is consistent set of states. Which such a selection,
you can control on which states project operations are consistently applied (see Sec-
tion 5.12.6). For example, it is possible to clear all the states which depend on the value
analysis' results.

• It is possible to ensure inter-analysis consistency by setting state dependencies.
For example, if the entry point of the analysed program is changed (using
Globals.set_entry_point), all the results of analyses depending on it (like value anal-
ysis' results) are automatically reset. If such a reset was not performed, the results of
the value analysis would not be consistent anymore with the current entry point, leading
to incorrect results.

Example 5.23 Suppose that the value analysis has previously been computed.

Format. p r i n t f "%B@." (Db.Value. is_computed ()); (∗ true ∗)
Globals . set_entry_points "f" t r u e ;
Format. p r i n t f "%B@." (Db.Value. is_computed ()); (∗ fa l se ∗)

As the value analysis has been automatically reset when setting the entry point, the above
code outputs

63

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

...

...

...

...

Project 1

Project p

Client 1 =

Client n =

project

current

State 1

State n

State 1

State n

local version of state 1

local version of state n

answer n

answer 1

request

broadcasting

Server = Project Library

Figure 5.4: Interaction between the project library and your registered global data.

true

false

State Registration: Overview

For registering a new state, functor State_builder.Register is provided. Its use is described
in Section 5.12.4 but it is a low-level functor which is usually di�cult to apply in a correct
way. Higher-level functors are provided to the developer in modules State_builder and
Cil_state_builder that allow the developer to register states in a simpler way. They inter-
nally apply the low-level functor in the proper way. Module State_builder provides state
builders for standard OCaml datastructures like hashtables whereas Cil_state_builder does
the same for standard Cil datastructures (like hashtables indexed by AST statements)6. They
are described in Section 5.12.3.

Registering a new state must be performed at module initialization step. Thus, using
OCaml let module construct is forbidden here (except if you really know what you are
doing).

5.12.3 Registering a New State

Here we explain how to register and use a state. Registration through the use of the low-level
functor State_builder.Register is postponed in Section 5.12.4 because it is more tricky and
rarely useful.

In most non-Frama-C applications, a state is a global mutable value. One can use it in to
store results of analyses. For example, using this mecanism inside Frama-C to create a state

6These datastructures are only mutable datastructures (like hashtables, arrays and references) because
global states are always mutable.

64

5.12. PROJECT MANAGEMENT SYSTEM

which would memoize some information attached to statements would result in the following
piece of codew.

open Cil_datatype
t ype i n f o = Kernel_funct ion . t * Cil_types . va r i n f o
l e t s t a t e : i n f o Stmt.Hashtbl. t = Stmt.Hashtbl. c r e a t e 97

l e t compute_info = ...

l e t memoize s =

t r y Stmt.Hashtbl. f i nd s t a t e s
with Not_found → Stmt.Hashtbl.add s t a t e s (compute_info s)

l e t run () = ... !Db.Value.compute (); ... memoize some_stmt ...

However, if one puts this code inside Frama-C, it does not work because this state is not
registered as a Frama-C state. For instance, it is never saved on the disk and its value is
never changed when setting the current project to a new one. For this purpose, one has to
transform the above code into the following one.

module State =

Cil_datatype.Stmt_hashtbl
(Datatype.Pair (Kernel_funct ion)(Cil_datatype.Varinfo))
(s t r u c t

l e t s i z e = 97

l e t name = "state"

l e t dependenc ies = [Db.Value. s e l f]

l e t kind = `Correc tnes s
end)

l e t compute_info = ...

l e t memoize = State .memo compute_info
l e t run () = ... !Db.Value.compute (); ... memoize some_stmt ...

A quick look on this code shows that the declaration of the state itself is more complicated
(it uses a functor application) but its use is simpler. Actually what has changed?

1. To declare a new internal state, apply one of the prede�ned functors in modules
State_builder or Cil_state_builder (see interfaces of these modules for the list of
available modules). Here we use Cil_state_builder.Stmt_hashtbl which provides an
hashtable indexed by statements. The type of values associated to statements is a pair
of Kernel_function.t and Cil_types.varinfo. The �rst argument of the functor is
then the datatype corresponding to this type (see Section 5.9.2). The second argument
provides some additional information: the initial size of the hashtable (an integer sim-
ilar to the argument of Hashtbl.create), an unique name for the resulting state and
its dependencies. This list of dependencies is built upon values self which are called
state kind (or simply kind) and are part of any state's module (part of the signature
of the low-level functor State_builder.Register). This value represents the state it-
self as �rst-class value (like type values for OCaml types, see Section 5.9.1). The �eld
kind is not explained here since it will disappear in the next Frama-C version: put it to
`Correctness cannot be incorrect anyway.

2. From outside, a state actually hides its internal representation in order to ensure some
invariants: operations on states implementing hashtable does not take an hashtable in
argument because they implicitly use the hidden hashtable. In our example, a prede-
�ned memo function is used in order to memoize the computation of compute_info.
This memoization function implicitly operates on the hashtable hidden in the internal
representation of State.

Postponed dependencies Sometimes, you want to access to a state kind before de�ning it.
That is usually the case when you have two mutually-dependent states: the dependencies of

65

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

the �rst one providing when registering it must contain the state kind of the second one which
is created by registering it. But this second registration also requires a list of dependencies
containing the �rst state kind.

For solving this issue, it is possible to postpone the addition of a state kind to dependencies
until all modules have been initialized. However, dependencies must be correct before any-
thing serious is computed by Frama-C. So the right way to do this is the use of the function
Cmdline.run_after_extended_stage (see Section 5.14 for advanced explanation about the
way Frama-C is initialized).

Example 5.24 Plug-in from puts a reference to its state kind in the following way. This
reference is initialized at module initialization time.

File src/kernel/db.mli

module From = s t r u c t
...

v a l s e l f : State . t r e f
end

File src/kernel/db.ml

module From = s t r u c t
...

v a l s e l f = r e f State .dummy (∗ postponed ∗)
end

File src/from/functionwise.ml

module Tbl =

Kernel_funct ion .Make_Table
(Function_Froms)
(s t r u c t

l e t name = "functionwise_from"

l e t s i z e = 97

l e t dependenc ies = [Db.Value. s e l f]

l e t kind = `Correc tnes s
end)

l e t () =

(∗ performed at module in i t ia l i zat ion runtime . ∗)
Db.From. s e l f ← Tbl. s e l f

Plug-in pdg uses from for computing its own internal state. So it declares this dependency as
follow.

File src/pdg/register.ml

module Tbl =

Kernel_funct ion .Make_Table
(PdgTypes.Pdg)
(s t r u c t

l e t name = "Pdg.State"

l e t dependenc ies = [] (∗ postponed ∗)
l e t s i z e = 97

l e t kind = `Correc tnes s
end)

l e t () =

Cmdline. run_after_extended_stage
(fun () →

State_dependency_graph.add_codependencies
∼onto:Tbl. s e l f
[!Db.From. s e l f])

66

5.12. PROJECT MANAGEMENT SYSTEM

Dependencies over the AST Most internal states depend directly or indirectly on the
AST of the current project. However, the AST plays a special role as a state. Namely, it
can be changed in place bypassing the project mechanism. In particular, it is possible to
add globals. Plugins that perform such changes should inform the kernel when they are done
using Ast.mark_as_changed or Ast.mark_as_grown. The latter must be used when the only
changes are additions, leaving existing nodes untouched, while the former must be used for
more intrusive changes. In addition, it is possible to tell the kernel that a state is �monotonic�
with respect to AST changes, in the sense that it does not need to be cleared when nodes
are added (the information that should be associated to the new nodes will be computed as
needed). This is done with the function Ast.add_monotonic_state. Ast.mark_as_grown

will not touch such state, while Ast.mark_as_changed will clear it.

5.12.4 Direct Use of Low-level Functor State_builder.Register

Functor State_builder.Register is the only functor which really registers a state. All the
others internally use it. In some cases (e.g. if you de�ne your own mutable record used as a
state), you have to use it. Actually, in the Frama-C kernel, there is only three direct uses of
this functor over thousands state registrations: so you will certainly never use it.

This functor takes three arguments. The �rst and the third ones respectively correspond to
the datatype and to information (name and dependencies) of the states: they are similar to
the corresponding arguments of the high-level functors (see Section 5.12.3).

The second argument explains how to handle the local version of the state under registration.
Indeed here is the key point: from the outside, only this local version is used for e�ciency
purpose (remember Figure 5.4). It would work even if projects do not exist. Each project
knows a global version. The project management system automatically switches the local
version when the current project changes in order to conserve a physical equality between
local version and current global version. So, for this purpose, the second argument provides a
type t (type of values of the state) and �ve functions create (creation of a new fresh state),
clear (cleaning a state), get (getting a state), set (setting a state) and clear_some_projects
(how to clear each value of type project in the state if any).

The following invariants must hold:7

create () returns a fresh value (5.1)

∀p of type t, create () = (clear p; set p; get ()) (5.2)

∀p of type t, copy p returns a fresh value (5.3)

∀p1, p2 of type t such that p1 != p2, (set p1; get ()) != p2 (5.4)

Invariant 5.1 ensures that there is no sharing with any value of a same state: so each new
project has got its own fresh state. Invariant 5.2 ensures that cleaning a state resets it to its
initial value. Invariant 5.3 ensures that there is no sharing with any copy. Invariant 5.4 is a
local independence criteria which ensures that modifying a local version does not a�ect any
other version (di�erent of the global current one) by side-e�ect.

Example 5.25 To illustrate this, we show how functor State_builder.Ref (registering a
state corresponding to a reference) is implemented.

7As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

67

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

module Ref
(Data: Datatype.S)
(In f o : s i g i n c l u d e In f o v a l de f au l t : uni t → Data. t end) =

s t r u c t
t ype data = Data. t
l e t c r e a t e () = r e f In f o . de f au l t
l e t s t a t e = r e f (c r e a t e ())

Here we use an additional reference: our local version is a reference on the right value. We
can use it in order to safely and easily implement get and set required by the registration.

i n c l u d e Reg i s t e r
(Datatype.Ref(Data))
(s t r u c t

t ype t = data r e f (∗ we register a reference on the given type ∗)
l e t c r e a t e = c r e a t e
l e t c l e a r tb l = t b l ← In f o . de f au l t
l e t get () = ! s t a t e
l e t s e t x = s t a t e ← x
l e t c lear_some_projects f x =

i f Data.mem_project f !x then begin c l e a r x; t r u e end e l s e f a l s e
end)

(In f o)

For users of this module, we export �standard� operations which hide the local indirection
required by the project management system.

l e t s e t v = ! s t a t e ← v
l e t get () = !(! s t a t e)
l e t c l e a r () = ! s t a t e ← In f o . de f au l t

end

As you can see, the above implementation is error prone; in particular it uses a double indirec-
tion (reference of reference). So be happy that higher-level functors like State_builder.Ref

are provided which hide you such implementations.

5.12.5 Using Projects

As said before, all operations are done by default on the current project. But sometimes plug-
in developers have to explicitly use another project, for example when the AST is modi�ed
(usually through the use of a copy visitor, see Section 5.15) or replaced (e.g. if a new one is
loaded from disk).

An AST must never be modi�ed inside a project. If such an operation is re-
quired, you must either create a new project with a new AST, usually by using
File.init_project_from_cil_file or File.init_project_from_visitor; or write the
following line of code (see Section 5.12.6):

let selection = State_selection.only_dependencies Ast.self in

Project.clear ~selection ()

Operations over projects are grouped together in module Project. A project has type
Project.t. Function Project.set_current sets the current project on which all operations
are implicitly performed on the new current project.

Example 5.26 Suppose that you saved the current project into �le foo.sav in a previous
Frama-C session8 thanks to the following instruction.

8A session is one execution of Frama-C (through frama-c or frama-c-gui).

68

5.12. PROJECT MANAGEMENT SYSTEM

Pro j ec t . save "foo.sav"

In a new Frama-C session, executing the following lines of code (assuming the value analysis
has never been computed previously)

l e t print_computed () = Format. p r i n t f "%b@." (Db.Value. is_computed ()) i n
print_computed (); (∗ fa l se ∗)
l e t o ld = Pro j ec t . cur rent () i n
t r y

l e t f oo = Pro j ec t . load ∼name:"foo" "foo.sav" i n
Pro j ec t . set_current foo ;
!Db.Value.compute ();

print_computed (); (∗ true ∗)
Pro j ec t . set_current o ld ;
print_computed () (∗ fa l se ∗)

with Pro j ec t . IOError _ →
Kernel . abort "error while loading"

displays

false

true

false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An important invariant of Frama-C is: if p is the current project before running an analysis,
then p will be the current project after running it. It is the responsability of any plug-in
developer to enforce this invariant for its own analysis.

To be sure to enforce the above-mentioned invariant, the project library provides an alternative
to the use of Project.set_current: Project.on applies an operation on a given project
without changing the current project (i.e. locally switch the current project in order to apply
the given operation and, after, restore the initial context).

Example 5.27 The following code is equivalent to the one given in Example 5.26.

l e t print_computed () = Format. p r i n t f "%b@." (Db.Value. is_computed ()) i n
print_computed (); (∗ fa l se ∗)
t r y

l e t f oo = Pro j ec t . load ∼name:"foo" "foo.sav" i n
Pro j ec t .on foo

(fun () → !Db.Value.compute (); print_computed () (∗ true ∗)) ();

print_computed () (∗ fa l se ∗)
with Pro j ec t . IOError _ →

e x i t 1

It displays

false

true

false

5.12.6 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have an
optional parameter selection of type State_selection.t. This parameter allows the de-
veloper to specify on which states the operation applies. A selection is a set of states which
allows the developer to consistently handle state dependencies.

69

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Example 5.28 The following statement clears all the results of the value analysis and all its
dependencies in the current project.

l e t s e l e c t i o n = State _se l e c t i on .with_dependencies Db.Value. s e l f i n
Pro j ec t . c l e a r ∼ s e l e c t i o n ()

The selection explicitly indicates that we also want to clear all the states which depend on the
value analysis' results.

Use selections carefully: if you apply a function f on a selection s and f handles a state
which does not belong to s, then the computed result by Frama-C is potentially incorrect.

Example 5.29 The following statement applies a function f in the project p (which is not
the current one). For e�ciency purpose, we restrict the considered states to the command
line options (see Section 5.13).

Pro j ec t .on ∼ s e l e c t i o n :(Plugin . ge t_se l e c t i on ()) p f ()

This statement only works if f only handles values of the command line options. If it tries to
get the value of another state, the result is unspeci�ed and all actions using any state of the
current project and of project p also become unspeci�ed.

5.13 Command Line Options

Prerequisite: knowledge of the OCaml module system.

Values associated with command line options are called parameters. The parameters of the
Frama-C kernel are stored in module Kernel while the plug-in speci�c ones have to be de�ned
in the plug-in source code.

5.13.1 De�nition

In Frama-C, a parameter is represented by a value of type Parameter.t and by a module imple-
menting the signature Plugin.Parameter. The �rst representation is a low-level one required
by emitters (see Section 5.16). The second one provides a high-level API: each parameter
is indeed a state (see Section 5.12.2). Several signatures extending Plugin.Parameter are
provided in order to deal with the usual parameter types. For example, there are signatures
Plugin.Int and Plugin.Bool for integer and boolean parameters. Mostly, these signatures
provide getters and setters for modifying parameter values.

Implementing such an interface is very easy thanks to a set of functors provided by the output
module of Plugin.Register. Indeed, you have just to choose the right functor according to
your option type and eventually the wished default value. Below are some examples of such
functors (see the signature Plugin.General_services for an exhaustive list).

1. False (resp. True) builds a boolean option initialized to false (resp. true).

2. Int (resp. Zero) builds an integer option initialized to a speci�ed value (resp. to 0).

3. String (resp. EmptyString EmptyString) builds a string option initialized to a speci�ed
value (resp. to the empty string "").

70

5.13. COMMAND LINE OPTIONS

4. StringSet builds an option taking a set of strings in argument (initialized to the empty
set).

Each functor takes as argument (at least) the name of the command line option corresponding
to the parameter and a short description for this option.

Example 5.30 The parameter corresponding to the option -occurrence of the plug-in
occurrence is the module Print (de�ned in the �le src/occurrence/options.ml). It is
implemented as follow.

module Print =

False
(s t r u c t

l e t option_name = "-occurrence"

l e t help = "print results of occurrence analysis"

end)

So it is a boolean parameter initialized by default to false. The declared interface for this
module is simply

module Print : Plugin . Int

Another example is the parameter corresponding to the option -impact-pragma of the
plug-in impact. This parameter is de�ned by the module Pragma (de�ned in the �le
src/impact/options.ml). It is implemented as follow.

module Pragma =

St r ingSe t
(s t r u c t

l e t option_name = "-impact -pragma"

l e t arg_name = "f1, ..., fn"

l e t help = "use the impact pragmas in the code of functions f1 ,...,fn"

end)

So it is a set of strings initialized by default to the empty set. Frama-C uses the �eld arg_name

in order to print the name of the argument when displaying help. The �eld help is the help
message itself. The Interface for this module is simple:

module Pragma: Plugin . Str ing_set

Recommendation 5.3 Parameters of a same plug-in plugin should belong to a module
called Options, Plugin_options, Parameters or Plugin_parameters inside the plug-in di-
rectory.

Using a kernel parameters or a parameter of your own plug-in is very simple: you have simply
to call the function get corresponding to your parameter.

Example 5.31 To know whether Frama-C uses unicode, just write

Kernel .Unicode. get ()

Inside the plug-in From, just write

From_parameters.ForceCallDeps . get ()

in order to know whether callsite-wise dependencies have been required.

71

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Using a parameter of a plug-in p in another plug-in p′ requires the use of module
Dynamic.Parameter: since the module de�ning the parameter is not visible from the out-
side of its plug-in, you have to use the dynamic API of plug-in p in which p's parameters
are automatically registered (see Section 5.10.2). The module Dynamic.Parameter de�nes
sub-modules which provide easy access to parameters according to their OCaml types.

Example 5.32 Outside the plug-in From, just write

Dynamic.Parameter.Bool. get "-calldeps" ()

in order to know whether callsite-wise dependencies have been required.

5.13.2 Tuning

It is possible to modify the default behavior of command line options in several ways by
applying functions just before or just after applying the functor de�ning the corresponding
parameter.

Functions which can be applied afterwards are de�ned in the output signature of the applied
functor.

Example 5.33 Here is how the option "-slicing-level" restricts the range of its argument to
the interval [0; 3].

module Ca l l s =

Int
(s t r u c t

l e t option_name = "-slicing -level"

l e t de f au l t = 2

l e t arg_name = ""

l e t help = "..." (∗ skipped here ∗)
end)

l e t () = Ca l l s . set_range ∼min:0 ∼max:3

Functions which can be applied before applying the functor are de�ned at top of module
Plugin.

Example 5.34 Here is how the opposite of option "-safe-arrays" is renamed into "-unsafe-
arrays" (otherwise, by default, it would be "-no-safe-arrays").

l e t () = Plugin . set_negative_option_name "-unsafe -arrays"

module SafeArrays =

True
(s t r u c t

l e t module_name = "SafeArrays"

l e t option_name = "-safe -arrays"

l e t help = "for arrays that are fields inside structs , assume that \

a c c e s s e s are in bounds"

end)

5.14 Initialization Steps

Prerequisite: knowledge of linking of OCaml �les.

72

5.14. INITIALIZATION STEPS

In a standard way, Frama-C modules are initialized in the link order which remains mostly
unspeci�ed, so you have to use side-e�ects at module initialization time carefully.

This section details the di�erent stages of the Frama-C boot process to help advanced plug-in
developers interact more deeply with the kernel process. It can be also useful for debugging
initialization problems.

As a general rule, plug-in routines must never be executed at link time. Any useful code, be
it for registration, con�guration or C-code analysis, should be registered as function hooks to
be executed at a proper time during the Frama-C boot process. In general, registering and
executing a hook is tightly coupled with handling the command line parameters.

The parsing of the command line parameters is performed in several phases and stages , each
one dedicated to speci�c operations. For instance, journal replays should be performed after
loading dynamic plugins, and so on. Following the general rule stated at the beginning of this
section, even the kernel services of Frama-C are internally registered as hooks routines to be
executed at a speci�c stage of the initialization process, among plug-ins ones.

From the plug-in developer point of view, the hooks are registered by calling the
run_after_xxx_stage routines in Cmdline module and extend routine in the Db.Main mod-
ule.

The initialization phases and stages of Frama-C are described below, in their execution order.

A � The Initialization Stage: this stage initializes Frama-C compilation units, following
some partially speci�ed order. More precisely:

1. the architecture dependencies depicted on Figure 4.1 (cf. p. 29) are respected. In
particular, the kernel services are linked �rst, then the kernel integrated types for
plug-ins, and �nally the plug-ins are linked in unspeci�ed order;

2. when the GUI is present, for any plug-in p, the non-gui modules of p are always linked
before the gui modules of p;

3. �nally, the module Boot is linked at the very end of this stage.

Plug-in developers can not customize this stage. In particular, the module Cmdline (one
of the �rst linked modules, see Figure 4.1) performs a very early con�guration stage,
such as checking if journalization has to be activated (cf. Section 5.11), or setting the
global verbosity and debugging levels.

B � The Early Stage: this stage initializes the kernel services. More precisely:

(a) �rst, the journal name is set to its right value (according to the option
-journal-name) and the default project is created;

(b) then, the parsing of command line options registered for the Cmdline.Early stage;

(c) �nally, all functions registered through Cmdline.run_after_early_stage are exe-
cuted in an unspeci�ed order.

C � The Extending Stage: the searching and loading of dynamically linked plug-ins, of
journal, scripts and modules is performed at this stage. More precisely:

(a) the command line options registered for the Cmdline.Extending stage are treated,
such as -load-script and -add-path;

73

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

(b) the hooks registered through Cmdline.run_during_extending_stage are executed.
Such hooks include kernel function calls for searching, loading and linking the various
plug-ins, journal and scripts compilation units, with respect to the command line
options parsed during stages B and C.

D � The Running Phase: the command line is split into several groups of command line
arguments, each of them separated by an option -then or an option -then-on p (thus
if there is n occurrences of -then or -then-on p, then there are n+1 groups). For each
group, the following stages are executed in sequence: all the stages are executed on the
�rst group provided on the command line, then they are executed on the second group,
and so on.

1. The Extended Stage: this step is reserved for commands which require that all
plug-ins are loaded but which must be executed very early. More precisely:

(a) the command line options registered for the Cmdline.Extended stage are treated,
such as -verbose-* and -debug-*;

(b) the hooks registered through Cmdline.run_after_extended_stage. Most of
these registered hooks come from postponed internal-state dependencies (see Sec-
tion 5.12.3).

Remark that both statically and dynamically linked plug-ins have been loaded at this
stage. Verbosity and debug level for each plug-in are determined during this stage.

2. The Exiting Stage: this step is reserved for commands that makes Frama-C exit
before starting any analysis at all, such as printing help informations:

(a) the command line options registered for the Cmdline.Exiting stage are treated;

(b) the hooks registered through Cmdline.run_after_exiting_stage are executed in
an unspeci�ed order. All these functions should do nothing (using Cmdline.nop)
or raise Cmdline.Exit for stopping Frama-C quickly.

3. The Loading Stage: this is where the initial state of Frama-C can be replaced by
another one. Typically, it would be loaded from disk through the -load option or
computed by running a journal (see Section 5.11). As like as for the other stages:

(a) �rst, the command line options registered for the Cmdline.Loading stage are
treated;

(b) then, the hooks registered through Cmdline.run_after_loading_stage are ex-
ecuted in an unspeci�ed order. These functions actually change the initial state
of Frama-C with the speci�ed one. The Frama-C kernel veri�es as far as possible
that only one new-initial state has been speci�ed.

Normally, plug-ins should never register hooks for this stage unless they actually set
a di�erent initial states than the default one. In such a case:

They must call the function Cmdline.is_going_to_load while initializing.

4. The Con�guring Stage: this is the usual place for plug-ins to perform special
initialization routines if necessary, before having their main entry points executed. As
for previous stages:

(a) �rst, the command line options registered for the Cmdline.Configuring stage are
treated. Command line parameters that do not begin by an hyphen (character
'-') are not options and are treated as C �les. Thus they are added to the list of
�les to be preprocessed or parsed for building the AST (on demand);

74

5.15. VISITORS

(b) then, the hooks registered through Cmdline.run_after_configuring_stage are
executed in an unspeci�ed order.

5. The Setting Files Stage: this stage sets the C �les to analyze according to those
indicated on the command line. More precisely:

(a) �rst, each argument of the command line which does not begin by an hyphen
(character '-') is registered for later analysis;

(b) then, the hooks registered through Cmdline.run_after_setting_files are exe-
cuted in an unspeci�ed order.

6. The Main Stage: this is the step where plug-ins actually run their main entry points
registered through Db.Main.extend. For all intents and purposes, you should consider
that this stage is the one where these hooks are executed.

5.15 Visitors

Prerequisite: knowledge of OCaml object programming.

Cil o�ers a visitor, Cil.cilVisitor that allows to traverse (parts of) an AST. It is a class
with one method per type of the AST, whose default behavior is simply to call the method
corresponding to its children. This is a convenient way to perform local transformations
over a whole Cil_types.file by inheriting from it and rede�ning a few methods. However,
the original Cil visitor is of course not aware of the internal state of Frama-C itself. Hence,
there exists another visitor, Visitor.generic_frama_c_visitor, which handles projects in
a transparent way for the user. There are very few cases where the plain Cil visitor should be
used.

Basically, as soon as the initial project has been built from the C source �les (i.e. one of
the functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few di�erences between the two (the Frama-C visitor inherits from the Cil one).
These di�erences are summarized in Section 5.15.6, which the reader already familiar with Cil

is invited to read carefully.

5.15.1 Entry Points

Cil o�ers various entry points for the visitor. They are functions called Cil.visitCilAstType
where astType is a node type in the Cil's AST. Such a function takes as argument an in-
stance of a cilVisitor and an astType and gives back an astType transformed according to
the visitor. The entry points for visiting a whole Cil_types.file (Cil.visitCilFileCopy,
Cil.visitCilFile and visitCilFileSameGlobals) are slightly di�erent and do not support
all kinds of visitors. See the documentation attached to them in cil.mli for more details.

5.15.2 Methods

As said above, there is a method for each type in the Cil AST (including for
logic annotation). For a given type astType, the method is called vastType9, and

9This naming convention is not strictly enforced. For instance the method corresponding to offset is
voffs.

75

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

has type astType→astType' visitAction, where astType' is either astType or ast-
Type list (for instance, one can transform a global into several ones). visitAction

describes what should be done for the children of the resulting AST node, and
is presented in the next section. In addition, some types have two modes of
visit: one for the declaration and one for use. This is the case for varinfo

(vvdec and vvrbl), logic_var (vlogic_var_decl and vlogic_var_use) logic_info

(vlogic_info_decl and vlogic_info_use), logic_type_info (vlogic_type_info_decl
and vlogic_type_info_use), and logic_ctor_info (vlogic_ctor_info_decl and
vlogic_ctor_info_use). More detailed information can be found in cil.mli.

For the Frama-C visitor, two methods, vstmt and vglob take care of maintaining the
coherence between the transformed AST and the internal state of Frama-C . Thus they
must not be rede�ned. One should rede�ne vstmt_aux and vglob_aux instead.

5.15.3 Action Performed

The return value of visiting methods indicates what should be done next. There are six
possibilities:

• SkipChildren the visitor does not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• JustCopy is only meaningful for the copy visitor. Indicates that the visit should go on
with the children, but only perform a fresh copy of the nodes

• ChangeToPost(v,f) the old node is replaced by v, and f is applied to the result. This
is however not exactly the same thing as returning ChangeTo(f(v)). Namely, in the
case of vglob_aux, f will be applied to v only after the operations needed to maintain
the consistency of Frama-C's internal state with respect to the AST have been per-
formed. Thus, ChangeToPost should be used with extreme caution, as f could break
some invariants of the kernel.

• DoChildrenPost f visit the children and apply the given function to the result.

• JustCopyPost(f) is only meaningful for the copy visitor. Performs a fresh copy of the
nodes and all its children and applies f to the copy.

• ChangeDoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the
children of v, and when it is �nished, f is applied to the result. In the case of vstmt_aux,
f is called after the annotations in the annotations table have been visited, but before
they are attached to the new statement, that is, they will be added to the result of
f. Similarly, vglob_aux will consider the result of f when �lling the table of globals.
Note that ChangeDoChildrenPost(x,f) where x is the current node is not equivalent
to DoChildrenPost f, as in the latter case, the visitor mechanism knows that it still
deals with the original node.

76

5.15. VISITORS

5.15.4 Visitors and Projects

Visitors take an additional argument, which is the project in which the transformed AST
should be put in. Note that an in-place visitor (see next section) should operate on the
current project (otherwise, two projects would share the same AST). If this is not the case,
it is up to the developer to ensure that the copy is done by other means, so that there is no
sharing.

Note that the tables of the new project are not �lled immediately. Instead, actions are queued,
and performed when a whole Cil_types.file has been visited. One can access the queue with
the get_filling_actions method, and perform the associated actions on the new project
with the fill_global_tables method.

5.15.5 In-place and Copy Visitors

The visitors take as argument a visitor_behavior, which comes in two �avors:
inplace_visit and copy_visit. In the in-place mode, nodes are visited in place, while
in the copy mode, nodes are copied and the visit is done on the copy. For the nodes shared
across the AST (varinfo, compinfo, enuminfo, typeinfo, stmt, logic_var, logic_info and
fieldinfo), sharing is of course preserved, and the mapping between the old nodes and their
copy can be manipulated explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as
the identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known,
it behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the
old value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original
AST nodes. Its result must not be modi�ed in place (this would defeat the purpose of
operating on a copy to leave the original AST untouched). Moreover, note that whenever
the index used for name is modi�ed in the copy, the internal state of the visitor behavior
must be updated accordingly (via the set_name function) for get_original_name to
give correct results.

The list of such indices is given Figure 5.5.

Last, when using a copy visitor, the actions (see previous section) SkipChildren and
ChangeTo must be used with care, i.e. one has to ensure that the children are fresh.
Otherwise, the new AST will share some nodes with the old one. Even worse, in such
a situation the new AST might very well be left in an inconsistent state, with uses of
shared node (e.g. a varinfo for a function f in a function call) which do not match the
corresponding declaration (e.g the GFun de�nition of f).
When in doubt, a safe solution is to use JustCopy instead of SkipChildren and
ChangeDoChildrenPost(x,fun x -> x) instead of ChangeTo(x).

77

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

Type Index

varinfo vid

compinfo ckey

enuminfo ename

typeinfo tname

stmt sid

logic_info l_var_info.lv_id

logic_var lv_id

fieldinfo fname and fcomp.ckey

Figure 5.5: Indices of AST nodes.

5.15.6 Di�erences Between the Cil and Frama-C Visitors

As said in Section 5.15.2, vstmt and vglob should not be rede�ned. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in
Frama-C tables are considered more or less as children of the node. In particular, if the
method returns ChangeTo action (see Section 5.15.3), it is assumed that it has taken care
of updating the tables accordingly, which can be a little tricky when copying a file from a
project to another one. Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren

action implies that the visit will stop, but the information associated to the old value will be
associated to the new one. If the children are to be visited, it is unde�ned whether the table
entries are visited before or after the children in the AST.

5.15.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating
that the divisor is not zero:

open Cil_types
open Ci l

module M = Plugin .Reg i s t e r

(∗ Each annotation in Frama−C has an emitter , for traceabil ity .
We create thus our own, and says that i t wi l l only be used to emit code
annotations , and that these annotations do not depend on Frama−C' s command
line parameters .

∗)
l e t syntax_alarm =

Emitter. c r e a t e
"Syntactic check" [Emitter.Code_annot] ∼ c o r r e c t n e s s :[] ∼tuning :[]

c l a s s non_zero_divisor p r j = o b j e c t (s e l f)
i n h e r i t Vi s i t o r . gener ic_frama_c_vis i tor p r j (Ci l . copy_vis i t ())

(∗ A division i s an expression : we override the vexpr method ∗)
method vexpr e = match e.enode with
| BinOp((Div|Mod), _, denom, _) →

l e t logic_denom = Log i c_ut i l s .expr_to_term ∼ca s t : t r u e denom i n
l e t a s s e r t i o n = Logic_const. p r e l (Rneq, logic_denom , Ci l . l z e r o ()) i n
(∗ At this point , we have built the assertion we want to insert . It remains

to attach i t to the correct statement . The c i l v is i tor maintains the
information of which statement and function are currently visited in
the [current_stmt] and [current_kf] methods , which return None when
outside of a statement or a function , e . g . when vis it ing a global
declaration . Here , i t necessarily returns [Some] . ∗)

l e t stmt = match s e l f # cur rent_k ins t r with

78

5.16. LOGICAL ANNOTATIONS

| Kglobal → a s s e r t f a l s e
| Kstmt s → s

i n
l e t kf = Ext l ib . the s e l f # current_kf i n
(∗ The above statement and function are related to the original project . We

need to attach the new assertion to the corresponding statement and
function of the new project . Cil provides functions to convert a
statement (function) of the original project to the corresponding
one of the new project . ∗)

l e t new_stmt = get_stmt s e l f #behavior stmt i n
l e t new_kf = get_kerne l_funct ion s e l f #behavior k f i n
(∗ Since we are copying the f i l e in a new project , we cannot insert

the annotation into the current table , but in the table of the new
project . To avoid the cost of switching projects back and forth ,
a l l operations on the new project are queued until the end of the
vis it , as mentioned above . This i s done in the following statement . ∗)

Queue.add
(fun () →

Annotations .add_assert syntax_alarm ∼kf :new_kf new_stmt a s s e r t i o n)
s e l f # g e t_ f i l l i n g_ac t i o n s ;

DoChildren
| _ → DoChildren

end

(∗ This function creates a new project in i t ia l i zed with the current f i l e plus
the annotations related to division . ∗)

l e t create_syntact ic_check_project () =

i gno r e
(F i l e . create_pro jec t_from_vis i tor "syntactic check" (new non_zero_divisor))

l e t () = Db.Main. extend create_syntact i c_check_project

5.16 Logical Annotations

Prerequisite: Nothing special (apart of core OCaml programming).

Logical annotations set by the users in the analyzed C program are part of the AST. However
others annotations (those generated by plug-ins) are not directly in the AST because it would
contradict the rule �an AST must never be modi�ed inside a project� (see Section 5.12.5).

So all the logical annotations (including those set by the users) are put in global projecti�ed
tables maintained up-to-date by the Frama-C kernel. Anytime a plug-in wants either to access
to or to add/delete an annotation, it must use the corresponding modules or functions and not
the annotations directly stored in the AST. These modules and functions are the following.

• Module Annotations which contains the database of annotations related to the AST
(global annotations, function constracts and code annotations). Adding or deleting an
annotation requires to de�ne an emitter by Emitter.create �rst.

• Module Property_status should be used to get or to modify the validity status of anno-
tations. Modifying a property statuses requires to de�ne an emitter by Emitter.create

�rst. Key concepts and theoretical foundation of this module are described in an asso-
ciated research paper [6].

• Modules Logic_const, Logic_utils and Db.Properties contain several operations
over annotations.

79

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

5.17 Locations

Prerequisite: Nothing special (apart of core OCaml programming).

In Frama-C, di�erent representations of C locations exist. Section 5.17.1 presents them. More-
over, maps indexed by locations are also provided. Section 5.17.2 introduces them.

5.17.1 Representations

There are four di�erent representations of C locations. Actually only three are really relevant.
All of them are de�ned in module Locations. They are introduced below. See the documen-
tation of src/memory_state/locations.mli for details about the provided operations on
these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int)
&a) + 13. With this representation, there is no way to know the size of a value while
it is still possible to join two values. Roughly speaking it is represented by a mapping
between C variables and o�sets in bytes.

• Type location, equivalently Location.t is used to represent the right part of a C

a�ectation (including bit�elds). It is represented by a Location_Bits.t (see below)
attached to a size. It is possible to join two locations if and only if they have the same
sizes.

• Type Location_Bits.t is similar to location_Byte.t with o�sets in bits instead of
bytes. Actually it should only be used inside a location.

• Type Zone.t is a set of bits (without any speci�c order). It is possible to join two zones
even if they have di�erent sizes.

Recommendation 5.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of di�erent sizes. If you
require to convert locations to zones, use the function Locations.valid_enumerate_bits.

As join operators are provided for these types, they can be easily used in abstract interpre-
tation analyses (which can themselves be implemented thanks to one of functors of module
Dataflow, see Section 6.1.1).

5.17.2 Map Indexed by Locations

Modules Lmap and Lmap_bitwise provide functors implementing maps indexed by locations
and zones (respectively). The argument of these functors have to implement values attached
to indices (locations or zones).

These implementations are quite more complex than simple maps because they automati-
cally handle overlaps of locations (or zones). So such implementations actually require that
structures implementing values attached to indices are lattices (i.e. implement signature
Abstract_interp.Lattice). For this purpose, functors of the abstract interpretation tool-
box can help (see in particular module Abstract_interp).

80

5.18. GUI EXTENSION

5.18 GUI Extension

Prerequisite: knowledge of Lablgtk2.

Each plug-in can extend the Frama-C graphical user interface (aka GUI) in order to
support its own functionalities in the Frama-C viewer. For this purpose, a plug-in
developer has to register a function of type Design.main_window_extension_points

→ unit thanks to Design.register_extension. The input value of type
Design.main_window_extension_points is an object corresponding to the main win-
dow of the Frama-C GUI. It provides accesses to the main widgets of the Frama-C

GUI and to several plug-in extension points. The documentation of the class type
Design.main_window_extension_points is accessible through the source documentation
(see Section 5.19).

The GUI plug-in code has to be put in separate �les into the plug-in directory. Furthermore,
in the Makefile, the variable PLUGIN_GUI_CMO has to be set in order to compile the GUI
plug-in code (see Section 6.3.3).

Besides time-consuming computations have to call the function !Db.progress from time to
time in order to keep the GUI reactive.

The GUI implementation uses Lablgtk2 [11]: you can use any Lablgtk2-compatible code in
your gui extension. A complete example of a GUI extension may be found in the plug-in
Occurrence (see �le src/occurrence/register_gui.ml).

Potential issues All the GUI plug-in extensions share the same window and same wid-
gets. So con�icts can occur, especially if you specify some attributes on a prede�ned
object. For example, if a plug-in wants to highlight a statement s in yellow and another
one wants to highlight s in red at the same time, the behavior is not speci�ed but it could
be quite di�cult to understand for an user.

5.19 Documentation

Prerequisite: knowledge of ocamldoc.

Here we present some hints on the way to document your plug-in. First Section 5.19.1 in-
troduces a quick general overview about the documentation process. Next Section 5.19.2
focuses on the plug-in source documentation. Finally Section 5.19.3 explains how to modify
the Frama-C website.

5.19.1 General Overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index �le is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).

The previous command takes times. So command make doc-kernel only generates the ker-
nel documentation (i.e. Frama-C without any plug-in) while make $(PLUGIN_NAME)_DOC (by
substituting the right value for $(PLUGIN_NAME)) generates the documentation for a single
plug-in.

81

CHAPTER 5. ADVANCED PLUG-IN DEVELOPMENT

5.19.2 Source Documentation

Each plug-in should be properly documented. Frama-C uses ocamldoc and so you can write
any valid ocamldoc comments.

ocamldoc tags for Frama-C The tag @since version should document any element intro-
duced after the very �rst release, in order to easily know the required version of the Frama-C

kernel or speci�c plug-ins. In the same way, the Frama-C documentation generator provides a
custom tag @modify version description which should be used to document any element
which semantics have changed since its introduction.

Furthemore, the special tag @plugin developer guide must be attached to each function
used in this document.

Plug-in API A plug-in should export no function itself: the only visible plug-in interface
should be in Db or registered through module Dynamic as explained in Section 5.10.2.

Recommendation 5.5 To ensure this invariant, the best way is to provide an empty inter-
face for the plug-in.

The interface name of a plug-in plugin must be Plugin.mli. Be careful to capitalization
of the �lename which is unusual in OCaml but required here for compilation purposes. If
you declare such an interface, you also have to set the variable PLUGIN_HAS_MLI in your
Makefile (see Section 6.3.3).

Internal Documentation for Kernel Integrated Plug-ins The Frama-C documen-
tation generator also produces an internal plug-in documentation which may be use-
ful for the plug-in developer itself. This internal documentation is available via �le
doc/code/plugin/index.html for each plug-in plugin. You can add an introduction to this
documentation into a �le. This �le has to be assigned into variable PLUGIN_INTRO of the
Makefile (see Section 6.3.3).

In order to ease access to this internal documentation, you have to manually edit the �le
doc/index.html in order to add an entry for your plug-in in the plug-in list.

Internal Documentation for External Plug-ins External plug-ins can be documented
in the same way as plug-ins that are compiled together with Frama-C. However, in order
to be able to compile the documentation with make doc, you must have generated the
documentation of Frama-C's kernel (make doc, see above) and installed it with the make

install-doc-code command.

5.19.3 Website

Target readers: CEA developers with a SVN access.

Read private �les README and metadoc.NE_PAS_LIVRER in the SVN directory doc/www/src.

82

5.20. LICENSE POLICY

5.20 License Policy

Target readers: developers with a SVN access.

Prerequisite: knowledge of make.

If you want to redistribute a plug-in inside Frama-C, you have to de�ne a proper license
policy. For this purpose, some help is provide in the Makefile. Mainly we distinguish two
cases described below.

• If the wished license is already used inside Frama-C , just extend the variable
corresponding to the wished license in order to include �les of your plug-in. Next run
make headers.

Example 5.35 Plug-in slicing is released under LGPL and is proprietary of both
CEA and INRIA. So, in the make�le, there is the following line.

CEA_INRIA_LGPL= ... \
src/slicing_types/*.ml* src/slicing/*.ml*

• If the wished license is unknown inside Frama-C , you have to:

1. Add a new variable v corresponding to it and assign �les of your plug-in;

2. Extend variable LICENSES with this variable;

3. Add a text �le in directory licenses containing your licenses

4. Add a text �le in directory headers containing the headers to add into �les of your
plug-in (those assigned by v).

The �lename must be the same than the variable name v. Moreover this �le
should contain a reference to the �le containing the whole license text.

5. Run make headers.

83

Chapter 6

Reference Manual

Target readers: Developers which need to understand some Frama-C internal details.

This chapter is a reference manual for Frama-C developers. It provides details completing
Chapter 5.

6.1 File Tree

This Section introduces the main parts of Frama-C in order to quickly �nd useful information
inside sources. Our goal is not to introduce the Frama-C software architecture (that is the
purpose of Chapter 4) nor to detail each module (that is the purpose of the source documen-
tation generated by make doc). The directory containing the Cil implementation is detailed
in Section 6.1.1 while the directory containing the Frama-C implementation itself is presented
in Section 6.1.2.

Figure 6.1 shows all directories useful to plug-in developers. More details are provided below.

Kind Name Speci�cation Reference

. Frama-C root directory

Sources

src Frama-C implementation Section 6.1.2
cil Cil source �les Section 6.1.1

ocamlgraph OcamlGraph source �les
external Source of external free libraries

Tests
tests Frama-C test suites Section 5.6
ptests ptests implementation

Generated Files
bin Binaries
lib Some compiled �les

Documentations

doc Documentation directory
headers Headers of source �les Section 5.20
licenses Licenses used by plug-ins and kernel Section 5.20

man Man pages

Shared libraries share Shared �les

Figure 6.1: Frama-C directories.

85

CHAPTER 6. REFERENCE MANUAL

• The Frama-C root directory contains the con�guration �les, the main Makefile and
some information �les (in uppercase).

• Frama-C sources are split in four directories: src (described in Section 6.1.2) contains
the core of the implementation while cil (described in Section 6.1.1), ocamlgraph and
external respectively contains the implementation of Cil (extended with ACSL), a
version of the OcamlGraph library [3] compatible within Frama-C, and external libraries
included in the Frama-C distribution.

• The directory tests contains the Frama-C test suite which is used by the ptests tool
(see Section 5.6).

• Directories bin and lib contain binary �les mainly produced by Frama-C compila-
tion. Frama-C executables belong to the directory bin, the directories lib/plugins and
lib/gui receive the compiled plug-ins, and the directory lib/fc receives the compiled
kernel interface. You should never add yourself any �le in these directories.

• Documentation (including plug-in speci�c, source code and ACSL documentations) is
provided in directory doc. Directories headers and licenses contains �les useful for
copyright noti�cation (see Section 5.20).

• Directory share contains useful libraries for Frama-C users such as the Frama-C C library
(e.g. ad-hoc libraries such as libc and malloc for Frama-C), as well as user-oriented
Make�les.

6.1.1 The cil directory

The source �les of Cil belong to the �ve directories shown in Figure 6.2. More details are
provided below.

Name Speci�cation

ocamlutil OCaml useful utilities
src Main Cil �les

src/ext Syntactic analysis provided by Cil

src/frontc C frontend
src/logic ACSL frontend

Figure 6.2: Cil directories.

• ocamlutil contains some OCaml utilities useful for a plug-in developer. The most
important module is Cilutil, which contains some useful functions (e.g. out_some

which extracts a value from an option type).

• src contains the main �les of Cil. The most important modules are Cil_types and Cil.
The �rst one contains type declarations of the Cil AST while the second one contains
useful operations over this AST.

• src/ext contains syntactic analysis provided by Cil . For example, module Cfg pro-
vides control �ow graph, module Callgraph provides a syntactic callgraph and module
Dataflow provides parameterized forward/backward data �ow analysis.

86

6.1. FILE TREE

• src/frontc is the C frontend which converts C code to the corresponding Cil AST. It
should not be used by a Frama-C plug-in developer.

• src/logic is the ACSL frontend which converts logic code to the corresponding Cil

AST. The only useful modules for a Frama-C plug-in developer are Logic_const which
provides some prede�ned logic constructs (terms, predicates, . . .) and Logic_typing

which allows to dynamically extend the logic type system.

6.1.2 The src directory

The source �les of Frama-C are split into di�erent sub-directories inside src. Each sub-
directory contains either a plug-in implementation or some speci�c parts of the Frama-C

kernel.

Each plug-in implementation can be split into two di�erent sub-directories, one for ex-
ported type declarations and related implementations visible from Db (see Chapter 4 and
Section 5.10.1) and another for the implementation provided in Db.

Kernel directories are shown Figure 6.3. More details are provided below.

Kind Name Speci�cation Reference

Toolboxes

kernel Kernel toolbox
logic Logic toolbox
ai Abstract interpretation toolbox Section 5.17

memory_states Memory-state toolbox Section 5.17

Libraries

type Type library Section 5.9
project Project library Section 5.12

lib Miscellaneous libraries
misc Additional useful operations

Entry points gui Graphical User Interface Section 5.18

Figure 6.3: Kernel directories.

• Directory kernel contains the kernel toolbox over Cil. Main kernel modules are shown
in Figure 6.4.

• Directory logic is the logic toolbox. It contains modules helping to handle logical
annotations and their status.

• Directories ai and memory_states are the abstract interpretation and memory-state
toolboxes (see section 5.17). In particular, in ai, module Abstract_interp de�nes
useful generic lattices and module Ival de�nes some pre-instantiated arithmetic lat-
tices while, in memory_states, module Locations provides several representations of C
locations and modules Lmap and Lmap_bitwise provide maps indexed by such locations.

• Directories type and project contain the type library and the project library respec-
tively described in details in Sections 5.9 and 5.12.

• Directories lib and misc contain datastructures and operations used in Frama-C. In
particular, module Extlib is the Frama-C extension of the OCaml standard library
whereas module Type is the interface for type values (the OCaml values representing

87

CHAPTER 6. REFERENCE MANUAL

Kind Name Speci�cation Reference

AST
Ast The Cil AST for Frama-C

Ast_info Operations over the Cil AST

Global
tables

File AST creation and access to C �les
Globals Operations on globals

Kernel_function Operations on functions
Annotations Operations on code annotations Section 5.16

Emitter Emitter of property statuses Section 5.16
Loop Operations on loops

Plug-in
APIs

Db Static plug-in database Section 5.10.1
Dynamic Interface for dynamic plug-ins Section 5.10.2

Base
Modules

Config Information about Frama-C version
Plugin General services for plug-ins Section 5.7

Parameter Parameter as command line options
Cmdline Command line parsing Section 5.13
Log Printing messages Section 5.8

Kernel Kernel as a plug-in Section 5.13
Journal Journalization Section 5.11
CilE Useful Cil extensions

Alarms Alarm management
Stmts_graph Accessibility checks using CFG

Floating_point Floating-point operations

Visitor Visitor Frama-C visitors (subsume Cil ones) Section 5.15

Pretty
printers

Ast_printer Pretty-printers for AST node
Printer Main class for pretty-printing

System
Command System operations
Task Higher-level API than Command

Initializer
Boot Last linked module Section 5.14

Gui_init Very early initialization of the GUI Section 5.14
Special_hooks Registration of some kernel hooks

Figure 6.4: Main kernel modules.

88

6.2. CONFIGURE.IN

OCaml types) required by dynamic plug-in registrations and uses and journalization
(see Section 5.9).

• Directory gui1 contains the gui implementation part common to all plug-ins. See
Section 5.18 for more details.

6.2 Con�gure.in

Figure 6.5 presents the di�erent parts of configure.in in the order that they are introduced
in the �le. The second column of the tabular says whether the given part has to be modi�ed
eventually by a kernel-integrated plug-in developer. More details are provided below.

Id Name Mod. Reference

1 Con�guration of make no
2 Con�guration of OCaml no
3 Con�guration of mandatory tools/libraries no
4 Con�guration of non-mandatory tools/libraries no
5 Platform con�guration no
6 Wished Frama-C plug-in yes Sections 5.2.2 and 5.2.4
7 Con�guration of plug-in tools/libraries yes Section 5.2.3
8 Checking plug-in dependencies yes Section 5.2.5
9 Make�le creation yes Section 5.2.2
10 Summary yes Section 5.2.2

Figure 6.5: Sections of configure.in.

1. Con�guration of make checks whether the version of make is correct. Some useful
option is �enable-verbosemake (resp. �disable-verbosemake) which set (resp. unset)
the verbose mode for make. In verbose mode, full make commands are displayed on
the user console: it is useful for debugging the make�le. In non-verbose mode, only
command shortcuts are displayed for user readability.

2. Con�guration of OCaml checks whether the version of OCaml is correct.

3. Con�guration of other mandatory tools/libraries checks whether all the external
mandatory tools and libraries required by the Frama-C kernel are present.

4. Con�guration of other non-mandatory tools/libraries checks which external non-
mandatory tools and libraries used by the Frama-C kernel are present.

5. Platform Con�guration sets the necessary platform characteristics (operating sys-
tem, speci�c features of gcc, etc) for compiling Frama-C.

6. Wished Frama-C Plug-ins sets which Frama-C plug-ins the user wants to compile.

7. Con�guration of plug-in tools/libraries checks the availability of external tools
and libraries required by plug-ins for compilation and execution.

1From the outside, the GUI may be seen as a plug-in with some exceptions.

89

CHAPTER 6. REFERENCE MANUAL

8. Checking Plug-in Dependencies sets which plug-ins have to be disabled (at least
partially) because they depend on others plug-ins which are not available (at least
partially).

9. Make�le Creation creates Makefile from Makefile including information provided
by this con�guration.

10. Summary displays summary of each plug-in availability.

6.3 Make�les

In this section, we detail the organization of the di�erent Make�les existing in Frama-C. First
Section 6.3.1 presents a general overview. Next Section 6.3.2 details the di�erent sections
of Makefile.config.in, Makefile.common and Makefile. Next Section 6.3.3 introduces the
variables customizing Makefile.plugin and Makefile.dynamic. Finally Section 6.3.4 shows
speci�c details of Makefile.dynamic.

6.3.1 Overview

Frama-C uses di�erent Make�les (plus the plug-in speci�c ones). They are:

• Makefile: the general Make�le of Frama-C;

• Makefile.config.in: the Make�le con�guring some general variables (especially the
ones coming from configure);

• Makefile.common: the Make�le providing some other general variables and general
rules;

• Makefile.plugin: the Make�le introducing speci�c stu� for plug-in compilation;

• Makefile.dynamic: the Make�le usable by plug-in speci�c Make�les.

• Makefile.dynamic_config: this Make�le is automatically generated either from
Makefile.dynamic_config.internal or Makefile.dynamic_config.external. It sets
variables which automatically con�gure Makefile.dynamic.

• Makefile.kernel is automatically generated from Makefile. It contains several vari-
ables useful for linking a plug-in against the Frama-C kernel.

The �rst one is part of the root directory of the Frama-C distribution while the other ones are
are part of directory share. Each Make�le either includes or is included into at least another
one. Figure 6.6 shows these relationship. Makefile and Makefile.dynamic are independent:
the �rst one is used to compile the Frama-C kernel while the second one is used to compile
the Frama-C plug-ins. Their common variables and rules are de�ned in Makefile.common

(which includes Makefile.config.in). Makefile.plugin de�nes generic rules and variables
for compiling plug-ins. It is used both by Makefile for kernel-speci�c plug-ins integrated
compiled from the Frama-C Make�le and by Makefile.dynamic for plug-ins with their own
Make�les.

90

6.3. MAKEFILES

Make�le.con�g.in Make�le.dynamic_con�g.internal Make�le.dynamic_con�g.external

Make�le.common

Make�le.kernel

Make�le.dynamic_con�g

Make�le . . . Make�le.plugin Make�le.dynamic

speci�c Make�le for plug-in 1 . . . speci�c Make�le for plug-in n

Caption:
m1 m2 Make�le m1 is included into Make�le m2
m1 m2 Make�le m2 is generated from Make�le m1

orange boxes Plug-in Make�les

red boxes Generated Make�les
green boxes Other kernel Make�les

Figure 6.6: Relationship between the Make�les

91

CHAPTER 6. REFERENCE MANUAL

6.3.2 Sections of Makefile, Makefile.config.in and Makefile.common

Figure 6.7 presents the di�erent parts of Makefile.config.in, Makefile.common and
Makefile in the order that they are introduced in these �les. The third row of the tabu-
lar says whether the given part may be modi�ed by a kernel-integrated plug-in developer.
More details are provided below.

Id Name File Mod. Reference

1 Working directories Make�le.con�g.in no
2 Installation paths Make�le.con�g.in no
3 Ocaml stu� Make�le.con�g.in no
4 Libraries Make�le.con�g.in no
5 Miscellaneous commands Make�le.con�g.in no
6 Miscellaneous variables Make�le.con�g.in no
7 Variables for plug-ins Make�le.con�g.in no

1 (bis) Working directories Make�le.common no r
8 Flags Make�le.common no
9 Verbosing Make�le.common no
10 Shell commands Make�le.common no
11 Command pretty printing Make�le.common no
12 Tests Make�le.common no
13 Generic rules Make�le.common no

14 Global plug-in variables Make�le no
15 Additional global variables Make�le no
16 Main targets Make�le no
17 Coverage Make�le no
18 Ocamlgraph Make�le no
19 Frama-C Kernel Make�le no
20 Plug-in sections Make�le yes Section 5.4
21 Generic variables Make�le no
22 Toplevel Make�le no
23 GUI Make�le no
24 Standalone obfuscator Make�le no
25 Tests Make�le no
26 Emacs tags Make�le no
27 Documentation Make�le no
28 Installation Make�le yes Not written yet.

29 File headers: license policy Make�le yes Section 5.20
30 Make�le rebuilding Make�le no
31 Cleaning Make�le no
32 Depend Make�le no
33 ptests Make�le no
34 Source distribution Make�le no

Figure 6.7: Sections of Makefile.config.in, Makefile.common and Makefile.

1. Working directories (splitted between Makefile.config.in and Makefile.common

de�nes the main directories of Frama-C. In particular, it declares the variable
UNPACKED_DIRS which should be extended by a plug-in developer if he uses �les which

92

6.3. MAKEFILES

do not belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set, see
Section 6.3.3).

2. Installation paths de�nes where Frama-C has to be installed.

3. Ocaml stu� de�nes the Objective Caml compilers and speci�c related �ags.

4. Libraries de�nes variables for libraries required by Frama-C.

5. Miscellaneous commands de�nes some additional commands.

6. Miscellaneous variables de�nes some additional variables.

7. Variables for plug-ins de�nes some variables used by plug-ins distributed within
Frama-C (and using the configure of Frama-C).

8. Flags de�nes some variables setting compilation �ags.

9. Verbosing sets how make prints the command. In particular, it de�nes the variable
VERBOSEMAKE which must be set yes in order to see the full make commands in the user
console. The typical use is

$ make VERBOSEMAKE=yes

10. Shell commands sets all the shell commands eventually executed while calling make.

11. Command pretty printing sets all the commands to be used for pretty printing.

Example 6.1 Consider the following target foo in a plug-in speci�c Make�le.

foo: bar

$(PRINT_CP) $@
$(CP) $< $@

Executing

$ make foo

prints

Copying to foo

while executing

$ make foo VERBOSEMAKE=yes

prints

cp -f bar foo

If one of the two commands is missing for the target foo, either make foo or make foo

VERBOSEMAKE=yes will not work as expected.

12. Tests de�nes a generic template for testing plug-ins.

13. Generic rules contains rules in order to automatically produces di�erent kinds of �les
(e.g. .cm[iox] from .ml or .mli for Objective Caml �les)

14. Global plug-in variables declares some plug-in speci�c variables used throughout the
make�le.

93

CHAPTER 6. REFERENCE MANUAL

15. Additional global variables declares some other variables used throughout the make-
�le.

16. Main targets provides the main rules of the make�le. The most important ones are
top, byte and opt which respectively build the Frama-C interactive, bytecode and native
toplevels.

17. Coverage de�nes how compile the eponymous library.

18. Ocamlgraph de�nes how compile the eponymous library.

19. Frama-C Kernel provides variables and rules for the Frama-C kernel. Each part is
described in speci�c sub-sections.

20. After Section �Kernel�, there are several sections corresponding to plug-ins (see
Section 6.3.3). This is the part that a plug-in developer has to modify in order to
add compilation directives for its plug-in.

21. Generic variables provides variables containing �les to be linked in di�erent contexts.

22. Toplevel provides rules for building the �les of the form bin/toplevel.*.

23. GUI provides rules for building the �les of the form bin/viewer.*

24. Standalone obfuscator provides rules for building the Frama-C obfuscator.

25. Tests provides rules to execute tests. make tests takes care of generating the appropri-
ate environment and launching ptests (see Section 5.6) for all test suites of the kernel
and enabled plugins. It is possible to pass options to ptests through the PTESTS_OPTS
environment variable.

26. Emacs tags provides rules which generate emacs tags (useful for a quick search of
OCaml de�nitions).

27. Documentation provides rules generating Frama-C source documentation (see Sec-
tion 5.19).

28. Installation provides rules for installing di�erent parts of Frama-C.

29. File headers: license policy provides variables and rules to manage the Frama-C

license policy (see Section 5.20).

30. Make�le rebuilding provides rules in order to automatically rebuild Makefile and
configure when required.

31. Cleaning provides rules in order to remove �les generated by make�le rules.

32. Depend provides rules which compute Frama-C source dependencies.

33. Ptests provides rules in order to build ptests (see Section 5.6).

34. Source distribution provides rules usable for distributing Frama-C.

94

6.3. MAKEFILES

Kind Name Speci�cation

Usual
information

PLUGIN_NAME Module name of the plug-in
PLUGIN_DIR Directory containing plug-in source

�les
no

PLUGIN_ENABLE Whether the plug-in has to be com-
piled

no

PLUGIN_DYNAMIC Whether the plug-in is dynamically
linked with Frama-C

no

PLUGIN_HAS_MLI Whether the plug-in gets an interface

Source �les

PLUGIN_CMO .cmo plug-in �les
PLUGIN_CMI .cmi plug-in �les without correspond-

ing .cmo

PLUGIN_TYPES_CMO .cmo plug-in �les not belonging to
$(PLUGIN_DIR)

PLUGIN_GUI_CMO .cmo plug-in �les not belonging to
$(PLUGIN_DIR)

Compilation
�ags

PLUGIN_BFLAGS Plug-in speci�c �ags for ocamlc
PLUGIN_OFLAGS Plug-in speci�c �ags for ocamlopt

PLUGIN_EXTRA_BYTE Additional bytecode �les to link
against

PLUGIN_EXTRA_OPT Additional native �les to link against
PLUGIN_LINK_BFLAGS Plug-in speci�c �ags for linking with

ocamlc

PLUGIN_LINK_OFLAGS Plug-in speci�c �ags for linking with
ocamlopt

PLUGIN_LINK_GUI_BFLAGS Plug-in speci�c �ags for linking a GUI
with ocamlc

PLUGIN_LINK_GUI_OFLAGS Plug-in speci�c �ags for linking a GUI
with ocamlopt

Figure 6.8: Standard parameters of Makefile.dynamic and Makefile.plugin.

95

CHAPTER 6. REFERENCE MANUAL

6.3.3 Variables of Makefile.dynamic and Makefile.plugin

Figures 6.8 and 6.9 presents all the variables that can be set before including Makefile.plugin
or Makefile.dynamic (see Sections 5.4 and 5.5). The last column is set to no if and only if
the line is not relevant for a standard plug-in developer. Details are provided below.

• Variable PLUGIN_NAME is the module name of the plug-in.

This name must be capitalized (as is each OCaml module name).

• Variable PLUGIN_DIR is the directory containing plug-in source �les. It is usually set to
src/plugin where plugin is the plug-in name.

• Variable PLUGIN_ENABLE must be set to yes if the plug-in has to be compiled. It is
usually set to @plugin_ENABLE@ provided by configure.in where plugin is the plug-in
name.

• Variable PLUGIN_DYNAMIC must be set to yes if the plug-in has to be dynamically linked
with Frama-C.

• Variable PLUGIN_HAS_MLI must be set to yes if plug-in plugin gets a �le .mli (which
must be capitalized: Plugin.mli, see Section 5.19) describing its API. Note that this
API should be empty in order to enforce the architecture invariant which is that each
plug-in is used through Db (see Chapter 4).

• Variables PLUGIN_CMO and PLUGIN_CMI are respectively .cmo plug-in �les and .cmi �les
without corresponding .cmo plug-in �les. For each of them, do not write their �le path
nor their �le extension: they are automatically added ($(PLUGIN_DIR)/f.cm[io] for a
�le f).

• Variable PLUGIN_TYPES_CMO is the .cmo plug-in �les which do not belong to
$(PLUGIN_DIR). They usually belong to src/plugin_types where plugin is the plug-in
name (see Section 5.10.1). Do not write �le extension (which is .cmo): it is automatically
added.

• Variable PLUGIN_GUI_CMO is the .cmo plug-in �les which have to be linked with the GUI
(see Section 5.18). As for variable PLUGIN_CMO, do not write their �le path nor their �le
extension.

• Variables of the form PLUGIN_*_FLAGS are plug-in speci�c �ags for ocamlc, ocamlopt,
ocamldep or ocamldoc.

• Variable PLUGIN_GENERATED is �les which must be generated before computing plug-
in dependencies. In particular, this is where .ml �les generated by ocamlyacc and
ocamllex must be placed if needed.

• Variable PLUGIN_DEPENDS is the other plug-ins which must be compiled before the con-
sidered plug-in. Note that, in a normal context, it should not be used because a plug-in
interface should be empty (see Chapter 4).

• Variable PLUGIN_UNDOC is the source �les for which no documentation is provided. Do
not write their �le path which is automatically set to $(PLUGIN_DIR).

96

6.3. MAKEFILES

Kind Name Speci�cation

Dependencies
PLUGIN_DEPFLAGS Plug-in speci�c �ags for ocamldep
PLUGIN_GENERATED Plug-in �les to compiled before

running ocamldep

PLUGIN_DEPENDS Other plug-ins to compiled before
the considered one

no

Documentation

PLUGIN_DOCFLAGS Plug-in speci�c �ags for ocamldoc
PLUGIN_UNDOC Source �les with no provided doc-

umentation
PLUGIN_TYPES_TODOC Additional source �les to docu-

ment
PLUGIN_INTRO Text �le to append to the plug-in

introduction
PLUGIN_HAS_EXT_DOC Whether the plug-in has an exter-

nal pdf manual

Testing

PLUGIN_NO_TESTS Whether there is no plug-in spe-
ci�c test directory

PLUGIN_TESTS_DIRS tests to be included in the default
test suite

PLUGIN_TESTS_DIRS_DEFAULT Directories containing tests
PLUGIN_TESTS_LIBS Speci�c .cmo �les used by plug-in

tests
PLUGIN_NO_DEFAULT_TEST Whether to include tests in default

test suite.
PLUGIN_INTERNAL_TEST Whether the test suite of the plug-

in is located in Frama-C's own
tests directory

PLUGIN_PTESTS_OPTS Plug-in speci�c options to ptests

Distribution
PLUGIN_DISTRIBUTED_BIN Whether to include the plug-in in

binary distribution
no

PLUGIN_DISTRIBUTED Whether to include the plug-in in
source distribution

no

PLUGIN_DISTRIB_EXTERNAL Additional �les to be included in
the distribution

no

Figure 6.9: Special parameters of Makefile.dynamic and Makefile.plugin.

97

CHAPTER 6. REFERENCE MANUAL

• Variable PLUGIN_TYPES_TODOC is the additional source �les to document with the plug-
in. They usually belong to src/plugin_types where plugin is the plug-in name (see
Section 5.10.1).

• Variable PLUGIN_INTRO is the text �le to append to the plug-in documentation intro-
duction. Usually this �le is doc/code/intro_plugin.txt for a plug-in plugin. It can
contain any text understood by ocamldoc.

• Variable PLUGIN_HAS_EXT_DOC is set to yes if the plug-in has its own reference manual.
It is supposed to be a pdf �le generated by make in directory doc/$(PLUGIN_NAME)

• Variable PLUGIN_NO_TEST must be set to yes if there is no speci�c test directory for the
plug-in.

• Variable PLUGIN_TESTS_DIRS is the directories containing plug-in tests. Its default value
is tests/$(notdir $(PLUGIN_DIR))).

• Variable PLUGIN_TESTS_LIB is the .cmo plug-in speci�c �les used by plug-in tests. Do
not write its �le path (which is $(PLUGIN_TESTS_DIRS)) nor its �le extension (which is
.cmo).

• Variable PLUGIN_NO_DEFAULT_TEST indicates whether the test directory of the plug-in
should be considered when running Frama-C default test suite. When set to a non-empty
value, the plug-in tests are run only through make $(PLUGIN_NAME)_tests.

• Variable PLUGIN_INTERNAL_TEST indicates whether the tests of the plug-in are included
in Frama-C's own tests directory. When set to a non-empty value, the tests are searched
there. When unset, tests are assumed to be in the tests directory of the plugin main
directory itself. Having the tests of a plugin inside Frama-C's own tests suite is dep-
recated. Plugins should be self-contained.

• Variable PLUGIN_PTESTS_OPTS allows to give speci�c options to ptests when run-
ning the tests. It comes in addition to PTESTS_OPTS (see 6.3.2�25). For instance,
PLUGIN_PTESTS_OPTS:=-j 1 will deactivate parallelization of tests in case the plugin
does not support concurrent runs. It is only used by Makefile.dynamic.

• Variable PLUGIN_DISTRIB_BIN indicates whether the plug-in should be included in a
binary distribution.

• Variable PLUGIN_DISTRIBUTED indicates whether the plug-in should be included in a
source distribution.

• Variable PLUGIN_DISTRIB_EXTERNAL is the list of �les that should be included within
the source distribution for this plug-in. They will be put at their proper place for a
release.

As previously said, the above variables are set before including Makefile.plugin in order to
customize its behavior. They must not be use anywhere else in the Make�le. In order to deal
with this issue, for each plug-in p, Makefile.plugin provides some variables which may be
used after its inclusion de�ning p. These variables are listed in Figure 6.10. For each variable
of the form p_VAR, its behavior is exactly equivalent to the value of the parameter PLUGIN_VAR
for the plug-in p2.

2Variables of the form p_*CMX have no PLUGIN_*CMX counterpart but their meanings should be easy to
understand.

3plugin is the module name of the considered plug-in (i.e. as set by $(PLUGIN_NAME)).

98

6.3. MAKEFILES

Kind Name3

Usual information plugin_DIR

Source �les

plugin_CMO
plugin_CMI
plugin_CMX

plugin_TYPES_CMO
plugin_TYPES_CMX

Compilation �ags

plugin_BFLAGS
plugin_OFLAGS

plugin_LINK_BFLAGS
plugin_LINK_OFLAGS

plugin_LINK_GUI_BFLAGS
plugin_LINK_GUI_OFLAGS

Dependencies
plugin_DEPFLAGS
plugin_GENERATED

Documentation
plugin_DOCFLAGS

plugin_TYPES_TODOC

Testing
plugin_TESTS_DIRS
plugin_TESTS_LIB

Figure 6.10: Variables de�ned by Makefile.plugin.

6.3.4 Makefile.dynamic

Not written yet: please report as �feature request� on http: // bts. frama-c. com if you
really need this section.

99

http://bts.frama-c.com

AppendixA

Changes

This chapter summarizes the major changes in this documentation between each Frama-C

release. First we list changes of the last release.

• Make�le WARN_ERROR_ALL variable

• Log: Debug category (�dkey argument)

• Visitor: DoChildrenPost action

• Testing:; document the need for directories to store result and oracles.

• Project Management System: Fine tuning of AST dependencies

• Testing: added PTESTS_OPTS and PLUGIN_PTESTS_OPTS Make�le's variables

• Tutorial: update kernel-integrated plug-in.

• Type: document the type library.

• Logical Annotations: fully updated.

• Reference Manual: update kernel �les.

• Testing: merge parts in Advanced Plug-in Development and in Reference Manual.

• Website: refer to CEA internal documentation.

• Command Line Options: explain how to modify the default behavior of an option.

• Command Line Options: fully updated.

• Project Management System: fully updated.

• Plug-in Registration and Access: Type replaced by Datatype and document labeled
argument journalize.

• Con�gure.in: updated.

• Plug-in General Services: updated.

• Software Architecture: Type is now a library, not only a single module.

• Tutorial: update example of standard plug-in.

101

APPENDIX A. CHANGES

Nitrogen-20111001

• Tutorial of the Future: new chapter for preparing a future tutorial.

• Types as �rst class values: links to articles.

• Tutorial: kernel-integrated plug-ins are now deprecated.

• Visitors: example is now out-of-date.

Carbon-20110201

Unchanged.

Carbon-20101201-beta1

• Visitors: update example to new kernel API.

• Documentation: external plugin API documentation.

• Visitors: �x bug (replace DoChildrenPost by ChangeDoChildrenPost), change seman-
tics wrt vstmt_aux.

Carbon-20101201-beta1

• Very Important Preliminary Warning: adding this very important chapter.

• Tutorial: �x bug in the `Hello World' example.

• Testing: updated semantics of CMD and STDOPT directives.

• Initialization Steps: updated according to new options -then and -then-on and to
the new `Files Setting' stage.

• Visitors: example updated

We list changes of previous releases below.

Boron-20100401

• Con�gure.in: updated

• Tutorial: the section about kernel-integrated plug-in is out-of-date

• Project: no more rehash in datatypes

• Initialisation Steps: �xed according to the current implementation

• Plug-in Registration and Access: updateed according to API changes

102

• Documentation: updated and improved

• Introduction: is aware of the Frama-C user manual

• Logical Annotations: fully new section

• Tutorial: �x an e�ciency issue with the Make�le of the Hello plug-in

Beryllium-20090902

• Make�les: update according to the new Makefile.kernel

Beryllium-20090901

• Make�les: update according to the new make�les hierarchy

• Writing messages: fully documented

• Initialization Steps: the di�erent stages are more precisely de�ned. The implemen-
tation has been modi�ed to take into account speci�ties of dynamically linked plug-ins

• Project Management System: mention value descr in Datatype

• Make�le.plugin: add documentation for additional parameters

Beryllium-20090601-beta1

• Initialization Steps: update according to the new implementation

• Command Line Options: update according to the new implementation

• Plug-in General Services: fully new section introducing the new module Plugin

• File Tree: update according to changes in the kernel

• Make�les: update according to the new �le Makefile.dynamic and the new �le
Makefile.config.in

• Architecture: update according to the recent implementation changes

• Tutorial: update according to API changes and the new way of writting plug-ins

• con�gure.in: update according to changes in the way of adding a simple plug-in

• Plug-in Registration and Access: update according to the new API of module Type

103

APPENDIX A. CHANGES

Lithium-20081201

• Changes: fully new appendix

• Command Line Options: new sub-section Storing New Dynamic Option Values

• Con�gure.in: compliant with new implementations of configure_library and
configure_tool

• Exporting Datatypes: now embeded in new section Plug-in Registration and Access

• GUI: update, in particular the full example has been removed

• Introduction: improved

• Plug-in Registration and Access: fully new section

• Project: compliant with the new interface

• Reference Manual: integration of dynamic plug-ins

• Software architecture: integration of dynamic plug-ins

• Tutorial: improve part about dynamic plug-ins

• Tutorial: use Db.Main.extend to register an entry point of a plug-in.

• Website: better highlighting of the directory containing the html pages

Lithium-20081002+beta1

• GUI: fully updated

• Testing: new sub-section Alternative testing

• Testing: new directive STDOPT

• Tutorial: new section Dynamic plug-ins

• Visitor: ChangeToPost in sub-section Action Performed

Helium-20080701

• GUI: fully updated

• Make�le: additional variables of Makefile.plugin

• Project: new important note about registration of internal states in Sub-section Inter-
nal State: Principle

• Testing: more precise documentation in the reference manual

104

Hydrogen-20080502

• Documentation: new sub-section Website

• Documentation: new ocamldoc tag @plugin developer guide

• Index: fully new

• Project: new sub-section Internal State: Principle

• Reference manual: largely extended

• Software architecture: fully new chapter

Hydrogen-20080501

• First public release

105

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Speci�cation Language.
Version 1.6, September 2012.

[2] Patrick Baudin and Anne Pacalet. Slicing plug-in. http://frama-c.com/slicing.html.

[3] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a generic
graph library using ML functors. In Marco T. Morazán, editor, Trends in Functional
Programming, volume 8 of Trends in Functional Programming, pages 124�140. Intellect,
UK/The University of Chicago Press, USA, 2008. http://ocamlgraph.lri.fr.

[4] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Armand Puccetti, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual, September 2012. http:
//frama-c.cea.fr/download/user-manual.pdf.

[5] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C's WP plug-in, October
2011. http://frama-c.com/download/frama-c-wp-manual.pdf.

[6] Loïc Correnson and Julien Signoles. Combining Analysis for C Program Veri�cation. In
Formal Methods for Industrial Critical Systems (FMICS), 2012.

[7] Pascal Cuoq, Damien Doligez, and Julien Signoles. Lightweight Typed Customizable
Unmarshaling. ML Workshop'11, September 2011.

[8] Pascal Cuoq and Virgile Prevosto. Frama-C's value analysis plug-in, November 2011.
http://frama-c.cea.fr/download/value-analysis.pdf.

[9] Pascal Cuoq and Julien Signoles. Experience Report: OCaml for an industrial-strength
static analysis framework. In Proceedings of International Conference of Functional Pro-
gramming (ICFP'09), pages 281�286, New York, NY, USA, September 2009. ACM Press.

[10] Free Software Foundation. GNU 'make', April 2006. http://www.gnu.org/software/

make/manual/make.html#Flavors.

[11] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2.
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[12] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. The
Objective Caml system. http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

[13] Donald Michie. Memo functions: a language feature with "rote-learning" properties.
Research Memorandum MIP-R-29, Department of Machine Intelligence & Perception,
Edinburgh, 1967.

107

http://frama-c.com/slicing.html
http://ocamlgraph.lri.fr
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.cea.fr/download/value-analysis.pdf
http://www.gnu.org/software/make/manual/make.html#Flavors
http://www.gnu.org/software/make/manual/make.html#Flavors
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

BIBLIOGRAPHY

[14] Donald Michie. Memo functions and machine learning. Nature, 218:19�22, 1968.

[15] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs. In
CC '02: Proceedings of the 11th International Conference on Compiler Construction,
pages 213�228, London, UK, 2002. Springer-Verlag.

[16] Julien Signoles. Foncteurs impératifs et composés: la notion de projet dans Frama-C. In
Hermann, editor, JFLA 09, Actes des vingtièmes Journées Francophones des Langages
Applicatifs, volume 7.2 of Studia Informatica Universalis, pages 245�280, 2009. In French.

[17] Julien Signoles. Une bibliothèque de typage dynamique en OCaml. In Hermann, editor,
JFLA 11, Actes des vingt-deuxièmes Journées Francophones des Langages Applicatifs,
Studia Informatica Universalis, pages 209�242, January 2011. In French.

108

LIST OF FIGURES

List of Figures

2.1 Plug-in Integration Overview. 14

2.2 Kernel-integrated Plug-in Integration Overview. 18

4.1 Architecture Design. 30

4.2 Di�erences between standard plug-ins and kernel-integrated ones. 32

5.1 ptests options. 46

5.2 Directives in con�guration headers of test �les. 47

5.3 Representation of the Frama-C State. 63

5.4 Interaction between the project library and your registered global data. 64

5.5 Indices of AST nodes. 78

6.1 Frama-C directories. 85

6.2 Cil directories. 86

6.3 Kernel directories. 87

6.4 Main kernel modules. 88

6.5 Sections of configure.in. 89

6.6 Relationship between the Make�les . 91

6.7 Sections of Makefile.config.in, Makefile.common and Makefile. 92

6.8 Standard parameters of Makefile.dynamic and Makefile.plugin. 95

6.9 Special parameters of Makefile.dynamic and Makefile.plugin. 97

6.10 Variables de�ned by Makefile.plugin. 99

109

INDEX

Index

Abstract Interpretation, 80

Lattice, see Lattice

Toolbox, 31, 80, 87

Abstract Syntax Tree, see AST

Abstract_interp, 31, 80, 87

Lattice, 80

ACSL, 29, 31, 36, 86

Frontend, 87

ai, 87

Alarms, 88

Annotation, 31, 75, 79, 88

Annotations, 79, 88

add_assert, 78

ANSI C Speci�cation language, see ACSL

Architecture, 13, 16, 29

Plug-in, 25

AST, 29, 31, 63, 75, 79, 86, 88

Copying, 77, 78

Initializer, 88

Modi�cation, 31, 35, 68, 76, 77

Sharing, see Sharing

Ast, 88

add_monotonic_state, 67

get, 62

mark_as_changed, 67

mark_as_grown, 67

self, 68, 78

Ast_info, 88

Ast_printer, 88

bin, 86

Binary, 86

Boot, 73, 88

C Intermediate Language, see Cil

Call graph computation, 31

Callgraph, 31, 86

CEA_INRIA_LGPL, 83

CEA_LGPL, 24

CFG, 88

Cfg, 86

check_plugin, 19, 37
CIL, 86

Syntactic Analysis, 86
Visitor, 88

Cil, 29, 30, 31, 35, 75
API, 30, 31
AST, see AST
Visitor, 75
Entry Point, 75

Cil, 31, 86
cilVisitor, 75, 75
behavior, 78
current_kinstr, 78
fill_global_tables, 77
get_filling_actions, 77, 78
vexpr, 78
vglob, 76
vlogic_ctor_info_decl, 76
vlogic_ctor_info_use, 76
vlogic_info_decl, 76
vlogic_info_use, 76
vlogic_type_info_decl, 76
vlogic_type_info_use, 76
vlogic_var_decl, 76
vlogic_var_use, 76
voffs, 75
vstmt, 76
vvdec, 76
vvrbl, 76

copy_visit, 77, 78
dummyStmt, 61
get_name, 77
get_kernel_function, 78
get_original_name, 77
get_stmt, 78
inplace_visit, 77
lzero, 78
reset_behavior_name, 77
set_name, 77
visitAction, 76
ChangeDoChildrenPost, 76�78

111

INDEX

ChangeTo, 76�78

ChangeToPost, 76

DoChildren, 76, 78

DoChildrenPost, 76

JustCopy, 76, 77

JustCopyPost, 76

SkipChildren, 76�78

visitCilAstType, 75

visitCilFile, 75

visitCilFileCopy, 75

visitCilFileSameGlobals, 75

visitor_behavior, 77

cil, 35, 86, 86

ocamlutil, 86

src, 31, 86

ext, 86

frontc, 87

logic, 87

Cil_datatype, 55

Stmt

equal, 55

Hashtbl, 65

pretty, 55, 61

t, 61

ty, 61

Varinfo, 65

Cil_state_builder, 64, 65

Stmt_hashtbl, 65

Cil_types, 31, 86

binop

Div, 78

Mod, 78

compinfo, 77, 78

enuminfo, 77, 78

exp_node

BinOp, 78

fieldinfo, 77, 78

file, 75, 77, 78

global, 76

logic_ctor_info, 76

logic_info, 76�78

logic_type_info, 76

logic_var, 76�78

offset, 75

relation

Rneq, 78

stmt, 77, 78

typeinfo, 77, 78

varinfo, 65, 76�78

CilE, 88

Cilutil, 31, 86

out_some, 86

Cmdline, 32, 73, 88

Exit, 74

is_going_to_load, 74

nop, 74

run_after_configuring_stage, 75

run_after_early_stage, 73

run_after_exiting_stage, 74

run_after_extended_stage, 66, 74

run_after_loading_stage, 74

run_after_setting_files, 75

run_during_extending_stage, 74

stage

Configuring, 74

Early, 73

Exiting, 74

Extended, 74

Extending, 73

Loading, 74

Command, 88

Command Line, 25

-ocode, 54

Option, 49, 70, 70

Parsing, 73

Compilation, see Makefile

Config, 88

Con�guration, see configure.in

configure.in, 18, 19, 36, 39, 89

check_plugin, 19, 37

check_plugin_dependencies, 39

configure_library, 37

configure_tools, 37

DYNAMIC_plugin, 37

ENABLE_plugin, 37

FORCE_plugin, 37

HAS_library, 38

LIB_SUFFIX, 38

OBJ_SUFFIX, 38

plugin_require, 39

plugin_require_external, 38

plugin_use, 39

plugin_use_external, 38

REQUIRE_plugin, 37

SELECTED_library, 38

USE_plugin, 37

Consistency, 35, 63, 70, 76, 77

Context Switch, 67, 69

112

INDEX

Control Flow Graph, see CFG
Copyright, 24, 83
CP, 93

Dataflow, 31, 80, 86
Data�ow analysis, 31, 86
Datatype, 54, 55, 65, 67
Datatype, 55

bool, 55
char, 55
func, 15, 60, 61
func2, 55
func3, 61
Function, 58
identity, 56
Int, 57
int, 55
List, 57, 58
list, 55
Make, 56, 57
never_any_project, 56
Pair, 65
Polymorphic, 57
Polymorphic2, 57
pp_fail, 56
Ref, 68
S, 55, 67
S_with_collections, 55
Serializable_undefined, 61
String, 55
Hashtbl, 57
Set, 55

string, 55
Undefined, 56, 57
undefined, 56
unit, 15, 60, 61

Db, 17, 18, 21, 30, 32, 58, 59, 82, 87, 88
From.self, 66
Impact.compute_pragmas, 58
Main, 14, 18
extend, 14, 15, 49, 73, 75, 78

progress, 81
Value

compute, 65, 69
is_computed, 63, 69
self, 65, 66, 70

Db.Properties, 79
Design, 14, 18

main_window_extension_points, 81
register_extension, 81

doc, 86
Documentation, 17, 21, 81, 86, 94

Kernel, 81
Plug-in, see Plug-in Documentation
Source, 81
Tags, 82

Dot, 38
Dynamic, 14, 18, 32, 59, 82, 88

get, 59, 60, 61
Parameter, 72
Bool, 72

register, 15, 59, 60

Emacs tags, see Tags
Emitter, 70
Emitter, 88

create, 79
Entry Point, 63
Entry point, 14
Equality

Physical, 67
Structural, 67

external, 86
Extlib, 31, 87

mk_fun, 21
the, 78
Unregistered_function, 21

File, 88
create_project_from_visitor, 78
init_from_c_files, 75
init_from_cmdline, 75
init_project_from_cil_file, 68, 75
init_project_from_visitor, 68, 75

Floating_point, 88
FRAMAC_LIBDIR, 15, 41
FRAMAC_SHARE, 15, 41
From, 66
From_parameters

ForceCallDeps, 71
Function, 31

Globals, 31, 88
set_entry_point, 63

GnomeCanvas, 38
GUI, 14, 18, 81, 89
gui, 89
Gui_init, 88

Hashtable, 64, 65
Header, 24, 83, 94

113

INDEX

headers, 83, 86
Hello, 17, 35
Highlighting, 81
Hook, 14, 17

index.html, 81, 82
Initialization, 21, 60, 72, 73
install-doc-code, 82
Ival, 31, 87

Journal, 14, 18, 32, 88
Journalisation, 56
Journalization, 26, 60, 73, 74

Kernel, 29, 30, 31, 36, 67, 87, 90, 94
Toolbox, 87

Kernel, 70, 88
CodeOutput, 54
SafeArrays, 72
Unicode, 71

kernel, 87
Kernel_function, 65, 88

dummy, 61
Make_Table, 66
pretty, 61
t, 61, 65
ty, 61

Kind, 65

Lablgtk, 38, 81
Lablgtksourceview2, 38
Lattice, 30, 31, 80, 87
Lesser General Public License, see LGPL
Lexing, 30, 31
LGPL, 24, 83
lib, 86, 87

fc, 86
gui, 86
plugins, 86

Library, 36, 86
Con�guration, 37, 89
Dependency, 38

licences, 83
License, 24, 83, 94
LICENSES, 83
licenses, 86
Linking, 30�32, 73
Lmap, 31, 80, 87
Lmap_bitwise, 31, 80, 87
Loading, 63, 68, 74
Location, 80, 87

Locations, 31, 80, 87
Location, 80
location, 80
Location_Bits, 80
Location_Bytes, 80
valid_enumerate_bits, 80
Zone, 80

Log, 32, 88
add_listener, 52
log_channel, 53
Messages, 49, 50
abort, 51
debug, 50
error, 51
failure, 51
fatal, 51
feedback, 50
log, 53
result, 50
verify, 51
warning, 50
with_log, 53

new_channel, 53
print_delayed, 54
print_on_output, 54
set_echo, 52
set_output, 54
with_log_channel, 53

Logging, see Messages
logic, 87
Logic Type System, 87
Logic_const, 79, 87

prel, 78
Logic_typing, 87
Logic_utils, 79

expr_to_term, 78
Loop, 88

Makefile, 18, 19, 22, 40, 81�83, 86, 90, 90,
91, 92

Makefile.common, 90, 92
Makefile.config.in, 40, 90, 91, 92
Makefile.dynamic, 14, 15, 18, 41, 41, 90, 91,

96

Makefile.dynamic_config, 90
Makefile.dynamic_config.external, 90
Makefile.dynamic_config.internal, 90
Makefile.kernel, 90
Makefile.plugin, 20, 40, 41, 90, 91, 96
Marshaling, 56

114

INDEX

memo, 65
Memoization, 62, 65
Memory State, 30, 31
Memory States

Toolbox, 87
memory_states, 87
Messages, 49
misc, 87
Module Initialization, see Initialization

ocamlgraph, 86
Occurrence, 37, 81
Oracle, 42, 44, 46
oracles, 23

Parameter, 62
Parameter, 88
Parameter.t, 70
Parameters, 70
Parsing, 30, 31
Pdg, 66
PdgTypes

Pdg.Datatype, 66
Platform, 89
Plug-in, 13, 29, 32

Access, 59
API, 26, 59
Architecture, 25
Command Line Options, 25
Compilation, 94
Compiled, 86
Database, see Db

Dependency, 36, 36, 39, 90, 96
Directory, 17, 81, 96
Distribution, 98
Documentation, 27, 81, 82, 96, 98
GUI, 14, 18, 26, 38, 73, 81, 96
Hello, see Hello
Implementation, 87
Initialization, see Initialization
Interface, 17, 18, 21, 82, 96
Kernel-integrated, 13, 16, 32
Access, 58
Registration, 58

License, 83
Make�le, 26
Messages, 25
Name, 96
Occurrence, see Occurrence
Pdg, see Pdg

Registration, 25, 59

Script, 25

Slicing, see Slicing

Sparecode, see Sparecode

Status, 36

Test, 98

Testing, 26

Tests Suite, 18

Types, 18, 30, 33, 59, 87, 96, 98

Wished, 89

plugin_types, 59

Plugin

Kernel-integrated, 89, 92

Plugin, 14, 18, 32, 48, 72, 88

Bool, 70

General_services, 70, 70

False, 15, 70, 71

Int, 70

String, 70

StringSet, 71, 71

True, 70

Zero, 70

get_selection, 70

Int, 70, 71

Parameter, 70

Register, 15, 48, 49, 61, 70

set_negative_option_name, 72

String_set, 71

PLUGIN_BFLAGS, 96

plugin_BFLAGS, 99

PLUGIN_CMI, 96

plugin_CMI, 99

PLUGIN_CMO, 15, 20, 41, 96

plugin_CMO, 99

PLUGIN_DEPENDS, 96

PLUGIN_DEPFLAGS, 96

plugin_DEPFLAGS, 99

PLUGIN_DIR, 20, 41, 96

plugin_DIR, 99

PLUGIN_DISTRIB_BIN, 98

PLUGIN_DISTRIB_EXTERNAL, 98

PLUGIN_DISTRIBUTED, 41, 98

PLUGIN_DOCFLAGS, 96

plugin_DOCFLAGS, 99

PLUGIN_DYNAMIC, 96

PLUGIN_ENABLE, 20, 41, 96

PLUGIN_EXTRA_BYTE, 96

PLUGIN_EXTRA_OPT, 96

PLUGIN_GENERATED, 96

115

INDEX

plugin_GENERATED, 99

PLUGIN_GUI_CMO, 81, 96

plugin_GUI_OFLAGS, 99

PLUGIN_HAS_EXT_DOC, 98

PLUGIN_HAS_MLI, 22, 41, 96

PLUGIN_INTERNAL_TEST, 41, 98

PLUGIN_INTRO, 82, 98

plugin_LINK_BFLAGS, 99

PLUGIN_LINK_GUI_BFLAGS, 96

plugin_LINK_GUI_BFLAGS, 99

PLUGIN_LINK_GUI_OFLAGS, 96

PLUGIN_LINK_OFLAGS, 96

plugin_LINK_OFLAGS, 99

PLUGIN_NAME, 15, 20, 21, 41, 81, 96, 98

PLUGIN_NO_DEFAULT_TEST, 98

PLUGIN_NO_TEST, 20, 22, 98

PLUGIN_OFLAGS, 96

plugin_OFLAGS, 99

PLUGIN_PTESTS_OPTS, 98

PLUGIN_TESTS_DIRS, 98

plugin_TESTS_DIRS, 99

PLUGIN_TESTS_LIB, 98

plugin_TESTS_LIB, 99

PLUGIN_TYPES_CMO, 41, 59, 93, 96

plugin_TYPES_CMO, 99

plugin_TYPES_CMX, 99

PLUGIN_Types_TODOC, 98

PLUGIN_UNDOC, 96

Preprocessing, 31

PRINT_CP, 93

Printer, 88

Project, 26, 35, 56, 62, 75, 77, 87

Current, 62, 63, 67, 68, 70, 77

Initial, 75

Use, 68

Project, 14, 18, 30, 32, 68

clear, 68�70

current, 62, 69

IOError, 69

load, 69

on, 69, 69, 70

save, 68

set_current, 68, 69

project, 87

Project_skeleton

t, 68

Property_status, 79

Ptests, 22, 42, 94

ptests_local_config.cmo, 43

PTESTS_OPTS, 94

Rangemap, 31
Rte, 41

Saving, 35, 63, 65, 68
Selection, 63, 69
self, 65
Session, 68
share, 86
share/Makefile.config.in, 19
Sharing, 77

Widget, 81
Side-E�ect, 67, 73
Slicing, 83
Sparecode, 43
Special_hooks, 88
src, 35, 86, 87

ai, 31
kernel, 31
lib, 31
memory_state, 31
misc, 31
project, 32
type, 32

State, 62, 63, 69, 70, 75, 76
Cleaning, 67, 70
Dependency, 63, 65, 67, 69, 70
Postponed, 65, 74

Functionalities, 63
Global Version, 67
Kind, see Kind
Local Version, 67, 68
Name, 65, 67
Registration, 63, 64
Selection, see Selection
Sharing, 67

State, 66
dummy, 66

State_builder, 64, 65
Ref, 67
Register, 64, 65, 67, 68

State_dependency_graph

S

add_codependencies, 66
State_selection, 69

S

only_dependencies, 68
with_dependencies, 70

Stmts_graph, 88

116

INDEX

Structural_descr

p_int, 56, 57
pack, 57
structure

Sum, 56, 57
t

Structure, 56, 57
SVN, 23

Tags, 17, 94
Task, 88
Test, 17, 22, 26, 42, 94

Con�guration, 44
Directive, 44
Header, 44, 45
Suite, 17, 43, 44, 86

Test

Directive

CMD, 47
COMMENT, 47
DONTRUN, 47
EXECNOW, 47, 48
FILEREG, 47, 48
FILTER, 47
GCC, 47
OPT, 22, 45, 47
STDOPT, 47, 48

test_config, 44, 47, 48
tests, 43, 46, 86
Tool, 36

Con�guration, 37, 89
Dependency, 38

Type, 87
Dynamic, 54
Library, 54
Value, 55, 60, 61

Type, 14, 18, 32, 87
Abstract, 61
AlreadyExists, 60
name, 57
par, 56, 57
precedence

Basic, 56
Call, 56

t, 55, 60
type, 87
Type value, 89
Typing, 30, 31

UNPACKED_DIRS, 41, 59, 92

Variable
Global, 31

VERBOSEMAKE, 40, 93
Visitor, 26, 75

Behavior, 77, 77
Cil, see Cil Visitor
Copy, 68, 77, 77
In-Place, 77, 77

Visitor, 31, 88
frama_c_visitor

current_kf, 78
vglob_aux, 76
vstmt_aux, 76

generic_frama_c_visitor, 75, 78

WARN_ERROR_ALL, 40
Website, 82

117

	Foreword
	Introduction
	About this document
	Outline

	Tutorial
	Standard Plug-in
	Plug-in Integration Overview
	Hello Frama-C World

	Kernel-integrated Plug-in
	Setup
	Plug-in Integration Overview
	Hello Frama-C World
	Configuration and Compilation
	Connection with the Frama-C World
	Testing
	Copyright your Work

	Tutorial of the Future
	What a Plug-in Look Like?
	A Simple Script
	Registering a Script as a Plug-in
	Displaying Messages
	Adding Command Line Options
	Writing a Makefile
	Writing a Configure Script
	Testing your Plug-in
	Getting your Plug-in Usable by Others
	Writing your Plug-in into the Journal
	Visiting the AST
	Getting your plug-in Usable in a Multi Projects Setting
	Extending the Frama-C GUI
	Documenting your Source Code

	Software Architecture
	General Description
	Cil: C Intermediate Language
	Kernel
	Plug-ins

	Advanced Plug-in Development
	File Tree Overview
	Frama-C Configure.in
	Principle
	Addition of a Simple Plug-in
	Configuration of New Libraries or Tools
	Addition of Library/Tool Dependencies
	Addition of Plug-in Dependencies

	Plug-in Specific Configure.in
	Frama-C Makefile
	Plug-in Specific Makefile
	Using Makefile.dynamic
	Compiling Frama-C and external plug-ins at the same time

	Testing
	Using ptests
	Configuration
	Alternative Testing
	Detailed options
	Detailed directives

	Plug-in General Services
	Logging Services
	From printf to Log
	Log Quick Reference
	Logging Routine Options
	Advanced Logging Services

	The Type library: Type Values and Datatypes
	Type Value
	Datatype

	Plug-in Registration and Access
	Kernel-integrated Registration and Access
	Dynamic Registration and Access

	Journalization
	Project Management System
	Overview and Key Notions
	State: Principle
	Registering a New State
	Direct Use of Low-level Functor State_builder.Register
	Using Projects
	Selections

	Command Line Options
	Definition
	Tuning

	Initialization Steps
	Visitors
	Entry Points
	Methods
	Action Performed
	Visitors and Projects
	In-place and Copy Visitors
	Differences Between the Cil and Frama-C Visitors
	Example

	Logical Annotations
	Locations
	Representations
	Map Indexed by Locations

	GUI Extension
	Documentation
	General Overview
	Source Documentation
	Website

	License Policy

	Reference Manual
	File Tree
	The cil directory
	The src directory

	Configure.in
	Makefiles
	Overview
	Sections of Makefile, Makefile.config.in and Makefile.common
	Variables of Makefile.dynamic and Makefile.plugin
	Makefile.dynamic

	Changes
	Bibliography
	List of Figures
	Index

