
Annotation Generation

Frama-C's annotation generator
plug-in

for Frama-C Fluorine-20130501

Philippe Herrmann and Julien Signoles

CEA LIST, Software Safety Laboratory, Saclay, F-91191

©2010-2013 CEA LIST

CONTENTS

Contents

1 Introduction 7

1.1 RTE plug-in . 7

1.2 Runtime errors . 8

1.3 Other annotations generated . 9

2 Runtime error annotation generation 11

2.1 Integer operations . 11

2.1.1 Addition, subtraction, multiplication 11

2.1.2 Signed downcasting . 12

2.1.3 Unary minus . 13

2.1.4 Division and modulo . 13

2.1.5 Bitwise shift operators . 14

2.2 Left-values access . 14

2.3 Unsigned over�ow annotations . 16

2.4 Unsigned downcast annotations . 17

2.5 Cast from �oating-point to integer types . 17

2.6 Expressions not considered by RTE . 18

2.7 Unde�ned behaviors not covered by RTE . 19

3 Precondition annotation generation 21

4 Plug-In options 23

Bibliography 25

5

Chapter 1

Introduction

1.1 RTE plug-in

This document is a reference manual for the annotation generator plug-in called RTE. The
aim of the RTE plug-in is to automatically generate annotations for:

� common runtime errors, such as division by zero, signed integer over�ow or invalid
memory access;

� unsigned integer over�ows, which are allowed by the C language but may pose problem
to solvers;

� precondition checking (requires and assumes clauses) at function's call sites, as well as
postconditions (ensures clauses) and assigns, for functions having an ACSL speci�cation.

In a modular proof setting, the main purpose of the RTE plug-in is to seed more advanced
plug-ins (such as the weakest-preconditions generation plug-in [2]) with proof obligations.
Annotations can also be generated for their own sake in order to guard against runtime
errors. The reader should be aware that discharging such annotations is much more di�cult
than simply generating them, and that there is no guarantee that a plug-in such as Frama-C's
value analysis [3] will be able to do so automatically in all cases.

RTE performs syntactic constant folding in order not to generate trivially valid annotations.
Constant folding is also used to directly �ag some annotations with an invalid status. RTE

does not perform any kind of advanced value analysis, and does not stop annotation generation
when �agging an annotation as invalid, although it may generate fewer annotations in this
case for a given statement.

Like most Frama-C plug-ins, RTE makes use of the hypothesis that signed integers have
a two's complement representation, which is a common implementation choice. Also note
that annotations are dependent of the machine dependency used on Frama-C command-line,
especially the size of integer types.

The C language ISO standard [4] will be referred to as ISO C99 (of which speci�c paragraphs
are cited, such as 6.2.5.9).

7

CHAPTER 1. INTRODUCTION

1.2 Runtime errors

A runtime error is a usually fatal problem encountered when a program is executed. Typical
fatal problems are segmentation faults (the program tries to access memory that it is not
allowed to access) and �oating point exceptions (for instance when dividing an integer by
zero: despite its name, this exception does not only occur when dealing with �oating point
arithmetic). A C program may contain �dangerous� constructs which under certain conditions
lead to runtime errors when executed. For instance evaluation of the expression u / v will
always produce a �oating point exception when v = 0 holds. Writing to an out-of-bound index
of an array may result in a segmentation fault, and it is dangerous even if it fails to do so
(other variables may be overwritten). The goal of this Frama-C plug-in is to detect a number
of such constructs, and to insert a corresponding logical annotation (a �rst-order property
over the variables of the construct) ensuring that, whenever this annotation is satis�ed before
execution of the statement containing the construct, the potential runtime error associated
with the expression will not happen. Annotation checking can be performed (at least partially)
by Frama-C value analysis plug-in [3], while more complicated properties may involve other
plug-ins and more user interaction.

At this point it is necessary to de�ne what one means by a �dangerous� construct. ISO C99
lists a number of unde�ned behaviors (the program construct can, at least in certain cases,
be erroneous), a number of unspeci�ed behaviors (the program construct can be interpreted
in at least two ways), and a list of implementation-de�ned behaviors (di�erent compilers
and architectures implement di�erent behaviors). Constructs leading to such behaviors are
considered dangerous, even if they do not systematically lead to runtime errors. In fact an
unde�ned behavior must be considered as potentially leading to a runtime error, while un-
speci�ed and implementation-de�ned behaviors will most likely result in portability problems.
error prevention.

An example of an unde�ned behavior (for the C language) is signed integer over�ow, which
occurs when the (exact) result of a signed integer arithmetic expression can not be represented
in the domain of the type of the expressions. For instance, supposing that an int is 32-bits
wide, and thus has domain [-2147483648,2147483647], and that x is an int , the expression
x+1 performs a signed integer over�ow, and therefore has an unde�ned behavior, if and only if
x equals 2147483647. This is independent of the fact that for most (if not all) C compilers and
32-bits architectures, one will get x+1 = -2147483648 and no runtime error will happen. But
by strictly conforming to the C standard, one cannot assert that the C compiler will not in
fact generate code provoking a runtime error in this case, since it is allowed to do so. Also note
that from a security analysis point of view, an unde�ned behavior leading to a runtime error
classi�es as a denial of service (since the program terminates), while a signed integer over�ow
may very well lead to bu�er over�ows and execution of arbitrary code by an attacker. Thus
not getting a runtime error on an unde�ned behavior is not necessarily a desirable behavior.

On the other hand, note that a number of behaviors classi�ed as implementation-de�ned by
the ISO standard are quite painful to deal with in full generality. In particular, ISO C99
allows either sign and magnitude, two's complement or one's complement for representing
signed integer values. Since most if not all �modern� architectures are based on a two's

complement representation (and that compilers tend to use the hardware at their disposal),
it would be a waste of time not to build veri�cation tools by making such wide-ranging and
easily checkable assumptions. Therefore RTE uses the hypothesis that signed integers

have a two's complement representation.

8

1.3. OTHER ANNOTATIONS GENERATED

1.3 Other annotations generated

RTE may also generate annotations that are not related to runtime errors:

� absence of unsigned over�ows checking. Although unsigned over�ows are well-de�ned,
some plug-ins may wish to avoid them.

� generating call sites statement contracts, based on the called function's contract. This
is useful for modular veri�cation.

� accesses to arrays that are embedded in a struct occur withing valid bounds. This is
stricter than verifying that the accesses occurs within the struct.

9

Chapter 2

Runtime error annotation generation

2.1 Integer operations

According to 6.2.5.9, operations on unsigned integers �can never over�ow� (as long as the
result is de�ned, which excludes division by zero): they are reduced modulo a value which
is one greater than the largest value of their unsigned integer type (typically 2n for n-bit
integers). So in fact, arithmetic operations on unsigned integers should really be understood
as modular arithmetic operations (the modulus being the largest value plus one).

On the other hand, an operation on signed integers might over�ow and this would pro-
duce an unde�ned behavior. Hence, a signed integer operation is only de�ned if its result
(as a mathematical integer) falls into the interval of values corresponding to its type (e.g.
[INT_MIN,INT_MAX] for int type, where the bounds INT_MIN and INT_MAX are de�ned in the
standard header limits.h). Therefore, signed arithmetic is true integer arithmetic as long as
intermediate results are within certain bounds, and becomes unde�ned as soon as a compu-
tation falls outside the scope of representable values of its type.

The full list of arithmetic and logic operations which might over�ow is presented hereafter.
Most of these over�ows produce unde�ned behaviors, but some of them are implementation
de�ned and indicated as such.

2.1.1 Addition, subtraction, multiplication

These arithmetic operations may not over�ow when performed on signed operands, in the
sense that the result must fall in an interval which is given by the type of the corresponding
expression and the macro-values de�ned in the standard header limits.h. A de�nition of this
�le can be found in the share directory of Frama-C.

type representable interval

signed char [SCHAR_MIN, SCHAR_MAX]

signed short [SHRT_MIN,SHRT_MAX]

signed int [INT_MIN,INT_MAX]

signed long int [LONG_MIN,LONG_MAX]

signed long long int [LLONG_MIN,LLONG_MAX]

Since RTE makes the assumption that signed integers are represented in 2's complement, the
interval of representable values also corresponds to [−2n−1, 2n−1 − 1] where n is the number

11

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

of bits used for the type (sign bit included, but not the padding bits if there are any). The
size in bits of a type is obtained through Cil.bitsSizeOf: typ -> int, which bases itself on
the machine dependency option of Frama-C. For instance by using -machdep x86_32, we have
the following:

type size in bits representable interval

signed char 8 [-128,127]

signed short 16 [-32768,32767]

signed int 32 [-2147483648,2147483647]

signed long int 32 [-2147483648,2147483647]

signed long long int 64 [-9223372036854775808,9223372036854775807]

Frama-C annotations added by plug-ins such as RTE may not contain macros since pre-
processing is supposed to take place beforehand (user annotations at the source level can
be taken into account by using the -pp-annot option). As a consequence, annotations are
displayed with big constants such as those appearing in this table.

Example 2.1 Here is a RTE-like output in a program involving signed long int with an

x86_32 machine dependency:

i n t main(vo i d) {

s i g n ed long i n t lx, ly, lz;

/*@ a s s e r t rte: signed_overflow: -2147483648 <= lx*ly; */

/*@ a s s e r t rte: signed_overflow: lx*ly <= 2147483647; */

lz = lx * ly;

r e t u r n 0;

}

The same program, but now annotated with an x86_64 machine dependency (option -machdep

x86_64):

i n t main(vo i d) {

s i g n ed long i n t lx, ly, lz;

/*@ a s s e r t rte: signed_overflow: -9223372036854775808 <= lx*ly; */

/*@ a s s e r t rte: signed_overflow: lx*ly <= 9223372036854775807; */

lz = lx * ly;

r e t u r n 1;

}

The di�erence comes from the fact that signed long int is 32-bit wide for x86_32, and 64-bit

wide for x86_64.

2.1.2 Signed downcasting

Note that arithmetic operations usually involve arithmetic conversions. For instance, integer
expressions with rank lower than int are promoted, thus the following program:

i n t main(vo i d) {

s i g n ed char cx, cy, cz;

cz = cx + cy;

r e t u r n 0;

}

12

2.1. INTEGER OPERATIONS

is in fact equivalent to:

i n t main(vo i d) {

s i g n ed char cx, cy, cz;

cz = (s i g n ed char)((i n t)cx + (i n t)cy);
r e t u r n 0;

}

Since a signed over�ow can occur on expression (int)cx + (int)cy, the following annotations
are generated by the RTE plug-in:

/*@ a s s e r t rte: signed_overflow: -2147483648 <= (i n t)cx+(i n t)cy; */

/*@ a s s e r t rte: signed_overflow: (i n t)cx+(i n t)cy <= 2147483647; */

This is much less constraining than what one would want to infer, namely:

/*@ a s s e r t (i n t)cx+(i n t)cy <= 127; */

/*@ a s s e r t -128 <= (i n t)cx+(i n t)cy; */

Actually, by setting the option -warn-signed-downcast (which is unset by default), the RTE
plug-in infers these second (stronger) assertions when treating the cast of the expression to a
signed char. Since the value represented by the expression cannot in general be represented
as a signed char, and following ISO C99 paragraph 6.3.1.3.3 (on downcasting to a signed
type), an implementation-de�ned behavior happens whenever the result falls outside the range
[-128,127]. Thus, with a single annotation, the RTE plug-in prevents both an unde�ned
behavior (signed over�ow) and an implementation de�ned behavior (signed downcasting).
Note that the annotation for signed downcasting always entails the annotation for signed
over�ow.

2.1.3 Unary minus

The only case when a (signed) unary minus integer expression -expr over�ows is when expr

is equal to the minimum value of the integer type. Thus the generated assertion is as follows:

i n t ix;

// some code

/*@ a s s e r t rte: signed_overflow: -2147483648 <= ix; */

ix = - ix;

2.1.4 Division and modulo

As of ISO C99 paragraph 6.5.5, an unde�ned behavior occurs whenever the value of the second
operand of operators / and % is zero. The corresponding runtime error is usually referred to
as �division by zero�. This may happen for both signed and unsigned operations.

uns i gned i n t ux;

// some code

/*@ a s s e r t rte: division_by_zero: ux != 0; */

ux = 1 / ux;

In 2's complement representation and for signed division, dividing the minimum value of an
integer type by −1 over�ows , since it would give the maximum value plus one. There is no
such rule for signed modulo, since the result would be zero, which does not over�ow.

i n t x,y,z;

// some code

/*@ a s s e r t rte: division_by_zero: x != 0; */

/*@ a s s e r t rte: signed_overflow: y/x <= 2147483647; */

z = y / x;

13

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

2.1.5 Bitwise shift operators

ISO C99 paragraph 6.5.7 de�nes unde�ned and implementation de�ned behaviors for bitwise
shift operators. The type of the result is the type of the promoted left operand.

The unde�ned behaviors are the following:

� the value of the right operand is negative or is greater than or equal to the width of the
promoted left operand:

i n t x,y,z;

/*@ a s s e r t rte: shift: 0 <= y && y < 32; */

z = x << y; // same annotation for z = x >> y;

� in E1 << E2, E1 has signed type and negative value:

i n t x,y,z;

/*@ a s s e r t rte: shift: 0 <= x; */

z = x << y;

� in E1 << E2, E1 has signed type and nonnegative value, but the value of the result

E1× 2E2 is not representable in the result type:

i n t x,y,z;

/*@ a s s e r t rte: signed_overflow: x<<y <= 2147483647; */

z = x << y;

There is also an implementation de�ned behavior if in E1 >> E2, E1 has signed type and
negative value. This case corresponds to the arithmetic right-shift, usually de�ned as signed
division by a power of two, with two possible implementations: either by rounding the result
towards minus in�nity (which is standard) or by rounding towards zero. RTE generates an
annotation for this implementation de�ned behavior.

i n t x,y,z;

/*@ a s s e r t rte: shift: 0 <= x; */

z = x << y;

Example 2.2 The following example summarizes RTE generated annotations for bitwise

shift operations, with -machdep x86_64:

l ong x,y,z;

/*@ a s s e r t rte: shift: 0 <= y && y < 64; */

/*@ a s s e r t rte: shift: 0 <= x; */

/*@ a s s e r t rte: signed_overflow: x<<y <= 9223372036854775807; */

z = x << y;

/*@ a s s e r t rte: shift: 0 <= y && y < 64; */

/*@ a s s e r t rte: shift: 0 <= x; */

z = x >> y;

2.2 Left-values access

Dereferencing a pointer is an unde�ned behavior if:

14

2.2. LEFT-VALUES ACCESS

� the pointer has an invalid value: null pointer, misaligned address for the type of object
pointed to, address of an object after the end of its lifetime (see ISO C99 paragraph
6.5.3.2.4);

� the pointer points one past the last element of an array object: such a pointer has a
valid value, but should not be dereferenced (ISO C99 paragraph 6.5.6.8).

The RTE plug-in generates annotations to prevent this type of unde�ned behavior in a system-
atic way. It does so by deferring the check to the ACSL built-in predicate valid(p): valid(s)
(where s is a set of terms) holds if and only if dereferencing any p ∈ s is safe (i.e. points to
a safely allocated memory location). A distinction is made for read accesses, that generate
\valid_read(p) assertions (the locations must be at least readable), and write accesses, for
which \valid (p) annotations are emitted (the locations must be readable and writable).

Since an array subscripting E1[E2] is identical to (*((E1) + (E2))) (ISO C99 paragraph
6.5.2.1.2), the �invalid access� unde�ned behaviors naturally extend to array indexing, and
RTE will generate similar annotations. However, when the array is known, RTE attempts
to generate simpler assertions. Typically, on an access t[i] where t has size 10, RTE will
generate two assertions 0 <= i and i < 10, instead of \valid (&t[i]).

The kernel option -safe-arrays (or -unsafe-arrays) in�uences the annotations that are gen-
erated for an access to a multi-dimensional array, or to an array embedded in a struct. Option
-safe-arrays, which is set by default in Frama-C, requires that all syntactic accesses to such
an array remain in bound. Thus, if the �eld t of the struct s has size 10, the access s.t[i] will
generate an annotation i < 10, even if some �elds exist after t in s.1 Similarly, if t is declared
as int t[10][10], the access t[i][j] will generate assertions 0 <= i < 10 and 0 <= j < 10,
even though t[0][12] is also t[1][2].

Finally, pointers to functions are not treated by RTE since there is no predicate in ACSL
expressing that such a pointer actually points to an existing function.

Example 2.3 An example of RTE annotation generation for checking the validity of each

memory access:

e x t e r n vo i d f(i n t * p);

i n t i;

uns i gned i n t j;

i n t main(vo i d) {

i n t *p;

i n t tab [10];

/*@ a s s e r t rte: mem_access: \ v a l i d (p); */

*p = 3;

/*@ a s s e r t rte: index_bound: 0 <= i; */

/*@ a s s e r t rte: index_bound: i < 10; */

/*@ a s s e r t rte: mem_access: \va l i d_read (p); */

tab[i] = *p;

/*@ a s s e r t rte: mem_access: \ v a l i d (p+1); */

/*@ a s s e r t rte: index_bound: j < 10; */

// No annotation 0 <= j, as j is unsigned

*(p + 1) = tab[j];

r e t u r n 0;

}

1 Thus, by default, RTE is more stringent than the norm. Use option -unsafe-arrays if you want to

allow code such as s.t[12] in the example above.

15

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

Example 2.4 An example of memory access validity annotation generation for structured

types, with option -safe-array set.

s t r u c t S {

i n t val;

s t r u c t S *next;

};

s t r u c t C {

s t r u c t S cell [5];

i n t (*f)(i n t);
};

s t r u c t ArrayStruct {

s t r u c t C data [10];
};

uns i gned i n t i, j;

i n t main() {

i n t a;

s t r u c t ArrayStruct buff;

// some code

/*@ a s s e r t rte: index_bound: i < 10; */

/*@ a s s e r t rte: index_bound: j < 5; */

/*@ a s s e r t rte: mem_access: \va l i d_read (&(buff. data [i].cell[j].next)->val); */

a = (buff. data [i].cell[j].next)->val;

/*@ a s s e r t rte: index_bound: i < 10; */

(*(buff. data [i].f))(a);

r e t u r n 0;

}

There is no annotation generated for the validity of the �eld buff.data[i].f because it is a

function pointer. RTE emits a warning in such a case.

2.3 Unsigned over�ow annotations

ISO C99 states that unsigned integer arithmetic is modular: over�ows do not occur (paragraph
6.2.5.9 of ISO C99). On the other hand, most �rst-order solvers used in deductive veri�cation
(excluding dedicated bit-vector solvers such as [1]) either provide only non-modular arithmetic
operators, or are much more e�cient when no modulo operation is used besides classic full-
precision arithmetic operators. Therefore RTE o�ers a way to generate assertions preventing
unsigned arithmetic operations to over�ow (i.e. involving computation of a modulo).

Operations which are considered by RTE regarding unsigned over�ows are addition, subtrac-
tion, multiplication, and left shift. Negation (unary minus) and right shift are not considered.
The generated assertion requires the result of the operation (in non-modular arithmetic) to
be less than the maximal representable value of its type, and nonnegative (for subtraction).

Proviso: assertion generation for unsigned over�ows is only available for unsigned integer
types whose bit size is at most 32. In particular, in order to be able to treat 64 bits integers,
it would be necessary to use big constants such as 264 − 1 in generated assertions.

Example 2.5

The following �le only contains unsigned arithmetic operations: no assertion is generated by

RTE by default.

16

2.4. UNSIGNED DOWNCAST ANNOTATIONS

uns i gned i n t f(uns i gned i n t a, uns i gned i n t b) {

uns i gned i n t x, y, z;

x = a << 3;

y = b * (uns i gned i n t)2;

z = x - y;

r e t u r n (z);

}

To generate assertions w.r.t. unsigned over�ows, options -warn-unsigned-overflow must be

used. Here is the resulting �le on a 32 bits target architecture (-machdep x86_32):

uns i gned i n t f(uns i gned i n t a, uns i gned i n t b) {

uns i gned i n t x, y, z;

/*@ a s s e r t rte: unsigned_overflow: a<<3 <= 4294967295; */

x = a << 3;

/*@ a s s e r t rte: unsigned_overflow: 0 <= b*(uns i gned i n t)2; */

/*@ a s s e r t rte: unsigned_overflow: b*(uns i gned i n t)2 <= 4294967295; */

y = b * (uns i gned i n t)2;

/*@ a s s e r t rte: unsigned_overflow: 0 <= x-y; */

/*@ a s s e r t rte: unsigned_overflow: x-y <= 4294967295; */

z = x - y;

r e t u r n (z);

}

2.4 Unsigned downcast annotations

Downcasting an integer type to an unsigned type is a well-de�ned behavior, since the value
is converted using a modulo operation just as for unsigned over�ows (ISO C99 paragraph
6.3.1.3.2). The RTE plug-in o�ers the possibility to generate assertions preventing such oc-
currences of modular operations with the -warn-unsigned-downcast option.

Example 2.6

On the following example, the sum of two int is returned as an unsigned char:

uns i gned char f(i n t a, i n t b) {

r e t u r n a+b;

}

Using RTE with the -warn-unsigned-downcast option gives the following result:

uns i gned char f(i n t a, i n t b) {

uns i gned char __retres;

/*@ a s s e r t rte: unsigned_downcast: a+b <= 255; */

/*@ a s s e r t rte: unsigned_downcast: 0 <= a+b; */

/*@ a s s e r t rte: signed_overflow: -2147483648 <= a+b; */

/*@ a s s e r t rte: signed_overflow: a+b <= 2147483647; */

__retres = (uns i gned char)(a + b);

r e t u r n (__retres);

}

2.5 Cast from �oating-point to integer types

Casting a value from a real �oating type to an integer type is allowed only if the value
�ts within the integer range (ISO C99 paragraph 6.3.1.4), the conversion being done with a
truncation towards zero semantics for the fractional part of the real �oating value. The RTE
plug-in generates annotations that ensure that no unde�ned behavior can occur on such casts.

17

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

i n t f(f l o a t v) {

i n t i = (i n t)(v+3.0f);
r e t u r n i;

}

Using RTE with the -rte-�oat-to-int option, which is set by default, gives the following
result:

i n t f(f l o a t v) {

i n t i;

/*@ a s s e r t rte: float_to_int: v+3.0f < 2147483648; */

/*@ a s s e r t rte: float_to_int: -2147483649 < v+3.0f; */

i = (i n t)(v + 3.0f);

r e t u r n i;

}

2.6 Expressions not considered by RTE

An expression which is the operand of a sizeof (or __alignof, a GCC operator parsed by Cil)
is ignored by RTE, as are all its sub-expressions. This is an approximation, since the operand
of sizeof may sometimes be evaluated at runtime, for instance on variable sized arrays: see
the example in ISO C99 paragraph 6.5.3.4.7. Still, the transformation performed by Cil on
the source code actually ends up with a statically evaluated sizeof (see the example below).
Thus the approximation performed by RTE seems to be on the safe side.

Example 2.7 Initial source code:

#i n c l u d e <stddef.h>

size_t fsize3(i n t n) {

cha r b[n + 3]; // variable length array

r e t u r n s i z e o f b; // execution time sizeof

}

i n t main() {

r e t u r n fsize3 (5);

}

Output obtained with frama-c -print with gcc preprocessing:

t y p ed e f uns i gned long size_t;

/* compiler builtin:

void *__builtin_alloca(unsigned int); */

size_t fsize3(i n t n)

{

size_t __retres;

cha r *b;

uns i gned i n t __lengthofb;

{

/* undefined sequence */

__lengthofb = (uns i gned i n t)(n + 3);

b = (cha r *) __builtin_alloca(s i z e o f (*b) * __lengthofb);

}

__retres = (uns i gned long)(s i z e o f (*b) * __lengthofb);

r e t u r n __retres;

}

i n t main(vo i d)
{

i n t __retres;

size_t tmp;

tmp = fsize3 (5);

__retres = (i n t)tmp;
r e t u r n __retres;

}

18

2.7. UNDEFINED BEHAVIORS NOT COVERED BY RTE

2.7 Unde�ned behaviors not covered by RTE

One should be aware that RTE only covers a small subset of all possible unde�ned behaviors
(see annex J.2 of [4] for a complete list).

In particular, unde�ned behaviors related to the following operations are not considered:

� Use of relational operators for the comparison of pointers that do not point to the same
aggregate or union (ISO C99 6.5.8)

� Demotion of a real �oating type to a smaller �oating type type producing a value outside
of the representable range (ISO C99 6.3.1.5)

� Conversion between two pointer types produces a result that is incorrectly aligned
(ISO C99 6.3.2.3)

� Use of a pointer to call a function whose type is not compatible with the pointed-to
type (ISO C99 6.3.2.3)

� Use of a variable with automatic storage duration before its initialization (ISO C99
6.7.8.10): such a variable has an indeterminate value

19

Chapter 3

Precondition annotation generation

Using ACSL, the Frama-C frameworks allows the user to write contracts for C functions.
These contracts contain in particular:

� requires clauses R1, R2, . . . (preconditions),

� ensures clauses E1, E2, . . . (postconditions),

� assigns clauses A1, A2, . . . (set of locations assigned by the function).

The intended behavior is that any caller must make sure that the function is called in a state
where the required property R1 && R2 && . . . holds, to ensure that E1 && E2 && . . . holds in
the state returned by the function call. Contracts may contain several named behaviors as
well, see the ACSL manual.

For a function having a contract, the RTE plug-in generates a statement annotation corre-
sponding to the contract at each call site, if the option -rte-precond is speci�ed. It does
so by substituting formal parameters of the contract with actual parameters at the call site.
The generated statement annotation ensures that the function is called in the proper state
and speci�es its return state.

Example 3.1

Consider function f with the following contract:

1 /*@ e n s u r e s (\ r e s u l t == -\at (x,Old));
2 b eha v i o r pos:

3 assumes (x >= 0);

4 e n s u r e s (\ r e s u l t <= 0);

5 a s s i g n s *y;

6 b eha v i o r neg:

7 assumes (x < 0);

8 e n s u r e s (\ r e s u l t > 0);

9 a s s i g n s \noth ing ;
10 */

11 i n t f(i n t x , i n t *y)

12 {

13 i n t __retres ;

14 i f (x >= 0) { *y = x; }

15 __retres = - x;

16 r e t u r n (__retres);

17 }

Here is the output of RTE with the option -rte-precond:

21

CHAPTER 3. PRECONDITION ANNOTATION GENERATION

1 i n t main(vo i d)
2 {

3 i n t a, b ,c;

4 a = 5;

5 /*@ b eha v i o r pre_f:

6 e n s u r e s b == - \o ld (a);
7

8 b eha v i o r pre_f_pos:

9 assumes a >= 0;

10 e n s u r e s b <= 0;

11 a s s i g n s b, *(&c);

12

13 b eha v i o r pre_f_neg:

14 assumes a < 0;

15 e n s u r e s b > 0;

16 a s s i g n s b;

17 */

18 b = f(a,& c);

19 /*@ a s s e r t rte: signed_overflow: -2147483648 <= b+c; */

20 /*@ a s s e r t rte: signed_overflow: b+c <= 2147483647; */

21 r e t u r n (b + c);

22 }

The generated behaviors names are pre_f, pre_f_pos, pre_f_neg). Notice that assigns clauses

are also taken into account, and that the formal \result is substituted with the assigned left-

value.

The main restriction is that the RTE plug-in only performs syntactic detection of function
calls: functions called through pointers are warned about but no statement annotation is
generated. This is unlikely to change until ACSL introduces contracts on function pointers.

22

Chapter 4

Plug-In options

Enabling RTE plug-in is done by adding -rte on the command-line of Frama-C. The plug-in
then selects every C function which is in the set de�ned by the -rte-select: if no explicit
set of functions is provided by the user, all C functions de�ned in the program are selected.
Selecting the kind of annotations which will be generated is performed by using other RTE
options (see �g. ?? and 4.2 for a summary).

Pretty-printing the output of RTE and relaunching the plug-in on the resulting �le will gen-
erate duplicated annotations, since the plug-in does not check existing annotations before
generation. This behaviour does not happen if RTE is used in the context of a Frama-C
project [5]: the annotations are not generated twice.

Option -rte-all has a special behavior: if selected (which is the default case), the options
-warn-signed-overflow, -warn-signed-downcast, -rte-div, -rte-mem and -rte-�oat-to-int are
also selected.

The special behavior of -rte-all implies that RTE generates by default all the runtime-
errors (more precisely, unde�ned and implementation-de�ned behaviors) it handles. The user
should explicitly add -warn-unsigned-overflow and -warn-unsigned-downcast (not entailed by
-rte-all) to generated unsigned over�ows annotations and unsigned downcasts annotations
respectively, which are valid as of ISO C99. In a similar way, -rte-precond must be explictly
used to generate precondition annotations.

On the other hand, to generate only a subset of possible annotations, one has to use -rte-no-all
in conjunction with other positive options. For instance, used in conjunction with -rte-precond

alone, only precondition annotations would be generated. Adding -rte-mem, annotations for
the validity of memory access would also be generated.

Some examples:

� frama-c -rte -rte-select f,g -rte-no-all -rte-precond: only generate precondition
annotations, and only for call-sites found in functions f and g.

� frama-c -rte -rte-no-all -warn-unsigned-overflow: only generate annotations for un-
signed over�ows, for the whole C program.

� frama-c -rte -warn-unsigned-overflow -rte-precond -rte-no-trivial-annotations:
generate all possible annotations (unsigned over�ows and precondition annotations in-
cluded), but do not try to evaluate their status through constant folding.

23

CHAPTER 4. PLUG-IN OPTIONS

Option Type (Default) Description

-warn-unsigned-overflow boolean (false) Generate annotations for unsigned over�ows
(not entailed by -rte-all)

-warn-unsigned-downcast boolean (false) Generate annotations for unsigned integer down-
cast (not entailed by -rte-all)

-warn-signed-overflow boolean (true) Generate annotations for signed over�ows

-warn-signed-downcast boolean (false) Generate annotations for signed integer down-
cast

Table 4.1: Frama-C kernel options, impacting RTE

Option Type (Default) Description

-rte boolean (false) Enable RTE plug-in

-rte-all boolean (true) Enable all runtime-errors annotations

-rte-div boolean (false) Generate annotations for division by zero

-rte-mem boolean (false) Generate annotations for validity of left-values
access

-rte-�oat-to-int boolean (true) Generate annotations for casts from �oating-
point to integer

-rte-trivial-annotations boolean (true) Generate status for annotation through constant
folding

-rte-precond boolean (false) Generate contract-based statement behaviors
based at call sites

-rte-warn boolean (true) Emit warning on broken annotations

-rte-select set of function (all) Run plug-in on a subset of C functions

Table 4.2: RTE options

24

BIBLIOGRAPHY

Bibliography

[1] Armin Biere. Boolector. http://fmv.jku.at/boolector/.

[2] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. WP plug-in Manual. CEA List,
Software Reliability Laboratory.

[3] Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C's value analysis

plug-in. CEA List, Software Reliability Laboratory. http://frama-c.com/download/

frama-c-value-analysis.pdf.

[4] International Organization for Standardization (ISO). The ANSI C standard (C99). http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[5] Julien Signoles with Loïc Correnson, Matthieu Lemerre and Virgile Prevosto. Plug-in

Development Guide. CEA List, Software Reliability Laboratory.

25

http://fmv.jku.at/boolector/
http://frama-c.com/download/frama-c-value-analysis.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf

	Introduction
	RTE plug-in
	Runtime errors
	Other annotations generated

	Runtime error annotation generation
	Integer operations
	Addition, subtraction, multiplication
	Signed downcasting
	Unary minus
	Division and modulo
	Bitwise shift operators

	Left-values access
	Unsigned overflow annotations
	Unsigned downcast annotations
	Cast from floating-point to integer types
	Expressions not considered by RTE
	Undefined behaviors not covered by RTE

	Precondition annotation generation
	Plug-In options
	Bibliography

