
User Manual

Frama-C User Manual
Release 22.0 (Titanium)

Loïc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand
Puccetti, Julien Signoles and Boris Yakobowski

This work is licensed under a Creative Commons “Attribution-
ShareAlike 4.0 International” license.

CEA LIST, Software Safety Laboratory, Saclay, F-91191

©2009-2020 CEA LIST
This work has been supported by the ANR project CAT (ANR-05-RNTL-00301) and by the
ANR project U3CAT (08-SEGI-021-01).

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

CONTENTS

Contents

Foreword 9

1 Introduction 11
1.1 About this document . 11
1.2 Outline . 11

2 Overview 13
2.1 What is Frama-C? . 13
2.2 Frama-C as a Static Analysis Tool . 13

2.2.1 Frama-C as a Lightweight Semantic-Extractor Tool 14
2.2.2 Frama-C for Formal Verification of Critical Software 14

2.3 Frama-C as a Tool for C programs . 14
2.4 Frama-C as an Extensible Platform . 14
2.5 Frama-C as a Collaborative Platform . 15
2.6 Frama-C as a Development Platform . 15
2.7 Frama-C as an Educational Platform . 16

3 Getting Started 17
3.1 Installation . 17
3.2 One Framework, Several Executables . 18
3.3 Frama-C Command Line and General Options 19

3.3.1 Getting Help . 19
3.3.2 Frama-C Configuration . 19
3.3.3 Options Outline . 19
3.3.4 Autocompletion for Options . 20
3.3.5 Splitting a Frama-C Execution into Several Steps 21
3.3.6 Verbosity and Debugging Levels . 22
3.3.7 Copying Output to Files . 22
3.3.8 Terminal Capabilities . 23
3.3.9 Getting time . 23

5

CONTENTS

3.3.10 Inputs and Outputs of Source Code 23
3.4 Environment Variables . 24

3.4.1 Variable FRAMAC_LIB . 24
3.4.2 Variable FRAMAC_PLUGIN . 24
3.4.3 Variable FRAMAC_SHARE . 24
3.4.4 Variable FRAMAC_SESSION . 24
3.4.5 Variable FRAMAC_CONFIG . 24

3.5 Exit Status . 25

4 Setting Up Plug-ins 27
4.1 The Plug-in Taxonomy . 27
4.2 Installing Internal Plug-ins . 27
4.3 Installing External Plug-ins . 27
4.4 Loading Plug-ins . 28

5 Preparing the Sources 29
5.1 Overview of source processing in Frama-C . 29
5.2 Preprocessing the Source Files . 30
5.3 Merging the Source Code files . 31
5.4 Normalizing the Source Code . 31
5.5 Predefined macros . 34
5.6 Compiler and language extensions . 35
5.7 Warnings during normalization . 35
5.8 Testing the Source Code Preparation . 36

6 Platform-wide Analysis Options 37
6.1 Entry Point . 37
6.2 Feedback Options . 37
6.3 Customizing Analyzers . 38

7 Property Statuses 43
7.1 A Short Detour through Annotations . 43
7.2 Properties, and the Statuses Thereof . 44
7.3 Consolidating Property Statuses . 44

8 General Kernel Services 47
8.1 Projects . 47

8.1.1 Creating Projects . 47
8.1.2 Using Projects . 47

6

CONTENTS

8.1.3 Saving and Loading Projects . 48
8.2 Dependencies between Analyses . 48
8.3 Journalisation . 49

9 Graphical User Interface 51
9.1 Frama-C Main Window . 51
9.2 Menu Bar . 53
9.3 Tool Bar . 54

10 Reports 55
10.1 Reporting on Property Statuses . 55
10.2 Exporting to CSV . 56
10.3 Classification . 56

10.3.1 Action . 57
10.3.2 Rules . 57
10.3.3 Regular Expressions . 58
10.3.4 Reformulation . 58
10.3.5 JSON Output Format . 58
10.3.6 Classification Options . 59

10.4 SARIF Output via the Markdown Report Plug-in 59
10.4.1 Prerequisites . 60
10.4.2 Generating a SARIF Report . 60

11 Variadic Plug-in 61
11.1 Translating variadic function calls . 61
11.2 Automatic generation of specifications for libc functions 62
11.3 Usage . 62

11.3.1 Main options . 62
11.3.2 Similar diagnostics by other tools . 63
11.3.3 Common causes of warnings in formatted input/output functions . . . 63
11.3.4 Pretty-printing translated code . 64

12 Analysis Scripts 65
12.1 Requirements . 65
12.2 Usage . 65

12.2.1 General Framework . 65
12.2.2 Necessary Build Information . 66
12.2.3 Possible Workflows in the Absence of Build Information 66
12.2.4 Using a JSON Compilation Database (JCDB) 67

7

CONTENTS

12.3 Using the generated Makefile, via fcmake . 68
12.3.1 Important Variables . 69
12.3.2 Predefined targets . 70
12.3.3 Adding new analyses and stages . 70

12.4 Script Descriptions . 71
12.5 Practical Examples: Open Source Case Studies 72
12.6 Technical Notes . 72

13 Reporting Errors 75

A Changes 77

Bibliography 83

List of Figures 85

Index 87

8

Foreword

This is the user manual of Frama-C1. The content of this document corresponds to the version
22.0 (Titanium)(November 20, 2020) of Frama-C. However the development of Frama-C is
still ongoing: features described here may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin, Mickaël
Delahaye, Philippe Hermann, Benjamin Monate and Dillon Pariente.

1http://frama-c.com

9

http://frama-c.com

Chapter 1

Introduction

This is Frama-C’s user manual. Frama-C is an open-source platform dedicated to the analysis
of source code written in the C programming language. The Frama-C platform gathers several
analysis techniques into a single collaborative framework.
This manual gives an overview of Frama-C for newcomers, and serves as a reference for
expert users. It only describes those platform features that are common to all analyzers.
Thus it does not cover the use of the analyzers provided in the Frama-C distribution (Value
Analysis, Slicing, . . .). Each of these analyses has its own specific documentation [4, 7, 9, 13].
Furthermore, research papers [6, 10] give a synthetic view of the platform, its main and
composite analyses, and some of its industrial achievements, while the development of new
analyzers is described in the Plug-in Development Guide [12].

1.1 About this document

Appendix A references all the changes made to this document between successive Frama-C
releases.
In the index, page numbers written in bold italics (e.g. 1) reference the defining sections for
the corresponding entries while other numbers (e.g. 1) are less important references.

The most important paragraphs are displayed inside gray boxes like this one. A plug-in
developer must follow them very carefully.

1.2 Outline

The remainder of this manual is organized in several chapters.

Chapter 2 provides a general overview of the platform.

Chapter 3 describes the basic elements for starting the tool, in terms of installation and
commands.

Chapter 4 explains the basics of plug-in categories, installation, and usage.

Chapter 5 presents the options of the source code pre-processor.

Chapter 6 gives some general options for parameterizing analyzers.

11

CHAPTER 1. INTRODUCTION

Chapter 7 touches on the topic of code properties, and their validation by the platform.

Chapter 8 introduces the general services offered by the platform.

Chapter 9 gives a detailed description of the graphical user interface of Frama-C.

Chapter 10 describes the Report plug-in, used for textual consolidation and export of warn-
ings, errors and properties.

Chapter 11 presents the Variadic plug-in, used to help other plug-ins handle code con-
taining variadic functions, such as printf and scanf.

Chapter 12 details several scripts used to help setup and run analyses on large code bases.

Chapter 13 explains how to report errors via Frama-C’s public Gitlab repository.

12

Chapter 2

Overview

2.1 What is Frama-C?

Frama-C is a platform dedicated to the analysis of source code written in C. The Frama-C
platform gathers several analysis techniques into a single collaborative extensible framework.
The collaborative approach of Frama-C allows analyzers to build upon the results already
computed by other analyzers in the framework. Thanks to this approach, Frama-C can
provide a number of sophisticated tools such as a slicer [3], and a dependency analyzer [7,
Chap. 6].

2.2 Frama-C as a Static Analysis Tool

Static analysis of source code is the science of computing synthetic information about the
source code without executing it.
To most programmers, static analysis means measuring the source code with respect to
various metrics (examples are the number of comments per line of code and the depth of
nested control structures). This kind of syntactic analysis can be implemented in Frama-C
but it is not the focus of the project.
Others may be familiar with heuristic bug-finding tools. These tools take more of an in-depth
look at the source code and try to pinpoint dangerous constructions and likely bugs (locations
in the code where an error might happen at run-time). These heuristic tools do not find all
such bugs, and sometimes they alert the user for constructions which are in fact not bugs.
Frama-C is closer to these heuristic tools than it is to software metrics tools, but it has two
important differences with them: it aims at being correct, that is, never to remain silent
for a location in the source code where an error can happen at run-time. And it allows its
user to manipulate functional specifications, and to prove that the source code satisfies these
specifications.
Frama-C is not the only correct static analyzer out there, but analyzers of the correct family
are less widely known and used. Software metrics tools do not guarantee anything about
the behavior of the program, only about the way it is written. Heuristic bug-finding tools
can be very useful, but because they do not find all bugs, they can not be used to prove
the absence of bugs in a program. Frama-C on the other hand can guarantee that there are
no bugs in a program ("no bugs" meaning either no possibility of a run-time error, or even
no deviation from the functional specification the program is supposed to adhere to). This

13

CHAPTER 2. OVERVIEW

of course requires more work from the user than heuristic bug-finding tools usually do, but
some of the analyses provided by Frama-C require comparatively little intervention from the
user, and the collaborative approach proposed in Frama-C allows the user to get results about
complex semantic properties.

2.2.1 Frama-C as a Lightweight Semantic-Extractor Tool

Frama-C analyzers, by offering the possibility to extract semantic information from C code,
can help better understand a program source.
The C language has been in use for a long time, and numerous programs today make use of C
routines. This ubiquity is due to historical reasons, and to the fact that C is well adapted for
a significant number of applications (e.g. embedded code). However, the C language exposes
many notoriously awkward constructs. Many Frama-C plug-ins are able to reveal what the
analyzed C code actually does. Equipped with Frama-C, you can for instance:

• observe sets of possible values for the variables of the program at each point of the
execution;

• slice the original program into simplified ones;

• navigate the dataflow of the program, from definition to use or from use to definition.

2.2.2 Frama-C for Formal Verification of Critical Software

Frama-C can verify that an implementation complies with a related set of formal specifications.
Specifications are written in a dedicated language, ACSL (ANSI/ISO C Specification Lan-
guage) [2]. The specifications can be partial, concentrating on one aspect of the analyzed
program at a time.
The most structured sections of your existing design documents can also be considered as
formal specifications. For instance, the list of global variables that a function is supposed to
read or write to is a formal specification. Frama-C can compute this information automatically
from the source code of the function, allowing you to verify that the code satisfies this part
of the design document, faster and with less risks than by code review.

2.3 Frama-C as a Tool for C programs

The C source code analyzed by Frama-C is assumed to follow the C99 ISO standard. C
comments may contain ACSL annotations [2] used as specifications to be interpreted by
Frama-C. The subset of ACSL currently interpreted in Frama-C is described in [1].
Each analyzer may define the subsets of C and ACSL that it understands, as well as introduce
specific limitations and hypotheses. Please refer to each plug-in’s documentation.

2.4 Frama-C as an Extensible Platform

Frama-C is organized into a modular architecture (comparable to that of the Gimp or Eclipse):
each analyzer comes in the form of a plug-in and is connected to the platform itself, or kernel,
which provides common functionalities and collaborative data structures.

14

2.5. FRAMA-C AS A COLLABORATIVE PLATFORM

Several ready-to-use analyses are included in the Frama-C distribution. This manual covers
the set of features common to all plug-ins, plus some plug-ins which are used by several
others, such as the graphical user interface (GUI) and reporting tools (Report). It does
not cover use of the plug-ins that come in the Frama-C distribution: value analysis (Eva),
functional dependencies (From), functional verification (WP), program slicing (Slicing), etc.
Each of these analyses has its own specific documentation [7, 4, 3].

Additional plug-ins can be provided by third-party developers and installed separately from
the kernel. Frama-C is thus not limited to the set of analyses initially installed. For instance,
it may be extended with the E-ACSL plug-in [11, 8] which instruments the program in order
to check annotations at runtime. In this way, Frama-C is not restricted to static analysis of
source code, but also provides dynamic analysis.

2.5 Frama-C as a Collaborative Platform

Frama-C’s analyzers collaborate with each other. Each plug-in may interact with other plug-
ins of his choosing. The kernel centralizes information and conducts the analysis. This makes
for robustness in the development of Frama-C while allowing a wide functionality spectrum.
For instance, the Slicing plug-in uses the results of the Eva (value analysis) plug-in and of the
From (functional dependencies) plug-in.

Analyzers may also exchange information through ACSL annotations [2]. A plug-in that needs
to make an assumption about the behavior of the program may express this assumption as
an ACSL property. Because ACSL is the lingua franca of all plug-ins, another plug-in can
later be used to establish the property.

With Frama-C, it is possible to take advantage of the complementarity of existing analysis
approaches. It is possible to apply the most sophisticated techniques only on those parts of
the analyzed program that require them. The low-level constructs can for instance effectively
be hidden from them by high-level specifications, verified by other, adapted plug-ins. Note
that the sound collaboration of plug-ins on different parts of a same program that require
different modelizations of C is a work in progress. At this time, a safe restriction for using
plug-in collaboration is to limit the analyzed program and annotations to those C and ACSL
constructs that are understood by all involved plug-ins.

2.6 Frama-C as a Development Platform

Frama-C may be used for developing new analyses. The collaborative and extensible approach
of Frama-C allows powerful plug-ins to be written with relatively little effort.

There are a number of reasons for a user of Frama-C to be also interested in writing their
own plug-in:

• a custom plug-in can emit very specific queries for the existing plug-ins, and in this way
obtain information which is not easily available through the normal user interface;

• a custom plug-in has more flexibility for finely tuning the behavior of the existing
analyses;

• some analyses may offer specific opportunities for extension.

15

CHAPTER 2. OVERVIEW

If you are a researcher in the field of program analysis, using Frama-C as a testbed for your
ideas is a choice to consider. You may benefit from the ready-made parser for C programs
with ACSL annotations. The results of existing analyses may simplify the problems that are
orthogonal to those you want to consider (in particular, the value analysis provides sets of
possible targets of every pointer in the analyzed C program). And lastly, being available as a
Frama-C plug-in increases your work’s visibility among existing industrial users of Frama-C.
The development of new plug-ins is described in the Plug-in Development Guide [12].

2.7 Frama-C as an Educational Platform

Frama-C is being used as part of courses on formal verification, program specification, testing,
static analysis, and abstract interpretation, with audiences ranging from Master’s students to
active professionals, in institutions world-wide. Frama-C is part of the curriculum at several
universities in France, England, Germany, Portugal, Russia and in the US; at schools such as
Ecole Polytechnique, ENSIIE, ENSMA, or ENSI Bourges; and as part of continuing education
units at CNAM, or at Fraunhofer FOKUS.
If you are a teacher in the extended field of software safety, using Frama-C as a support for
your course and lab work is a choice to consider. You may benefit from a clean, focused
interface, a choice of techniques to illustrate, and a in-tool pedagogical presentation of their
abstract values at all program points. A number of course materials are also available on the
web, or upon simple inquiry to the Frama-C team.

16

Chapter 3

Getting Started

This chapter describes how to install Frama-C and what this installation provides.

3.1 Installation

The Frama-C platform is distributed as source code, including the Frama-C kernel and a base
set of open-source plug-ins.
The recommended way to install Frama-C is by using the opam 1 package manager to install
the frama-c package, which should always point to the latest release compatible with the
configured OCaml compiler. opam is able to handle the dependencies required by the Frama-C
kernel.
Frama-C can also be installed via pre-compiled binaries, which include many of the required
libraries and other dependencies, although there is a delay between each new Frama-C release
and the availability of a binary package for the considered platform.
Finally, Frama-C can be compiled and installed from the source distribution, as long as its
dependencies have already been installed. The exact set of dependencies varies from release
to release. They are listed as constraints in the opam/opam file of the source distribution.
A reference configuration, guaranteed to be a working set of dependencies for Frama-C ker-
nel and the open-source plug-ins included in the source distribution, is available in the
reference-configuration.md file of the source distribution.
For more installation instructions, consider reading the INSTALL.md file of the source distri-
bution. The main components necessary for compiling and running Frama-C are described
below.

A C pre-processor is required for using Frama-C on C files. If you do not have any C
pre-processor, you can only run Frama-C on already pre-processed .i files.

A C compiler is required to compile the Frama-C kernel.

A Unix-like compilation environment with at least the tool GNU make2, as well as var-
ious POSIX commands, libraries and header files, is necessary for compiling Frama-C
and its plug-ins.

1http://opam.ocaml.org
2http://www.gnu.org/software/make

17

http://opam.ocaml.org
http://www.gnu.org/software/make

CHAPTER 3. GETTING STARTED

The OCaml compiler 3 is required both for compiling Frama-C from source and for com-
piling additional plug-ins. Compatible OCaml versions are listed as constraints in the
opam/opam file.

Other components, such as OcamlGraph, Zarith, Gtk-related packages for the GUI, etc., are
listed in the INSTALL.md and opam/opam files.

3.2 One Framework, Several Executables

Frama-C installs some executables4, namely:

• frama-c: natively-compiled batch version;

• frama-c.byte: bytecode batch version;

• frama-c-gui: natively-compiled interactive version;

• frama-c-gui.byte: bytecode interactive version;

• frama-c-config: auxiliary batch version for quickly retrieving configuration informa-
tion (e.g. installation path);

• frama-c-script: contains several utilities related to source preparation, results visu-
alization and analysis automation. Run it without arguments to obtain more details.

The differences between these versions are described below.

native-compiled vs bytecode: native executables contain machine code, while bytecode
executables contain machine-independent instructions which are run by a bytecode
interpreter.
The native-compiled version is usually ten times faster than the bytecode one. The
bytecode is sometimes able to provide better debugging information. Use the native-
compiled version unless you have a specific reason to use the bytecode one.

batch vs interactive: The interactive version is a GUI that can be used to select the set of
files to analyze, specify options, launch analyses, browse the code and observe analysis
results at one’s convenience (see Chapter 9 for details).
With the batch version, all settings and actions must be provided on the command-line.
This is not possible for all plug-ins, nor is it always easy for beginners. Modulo the
limited user interactions, the batch version allows the same analyses as the interactive
version5. A batch analysis session consists in launching Frama-C in a terminal. Results
are printed on the standard output.
The task of analyzing some C code being iterative and error-prone, Frama-C provides
functionalities to set up an analysis project, observe preliminary results, and progress
until a complete and satisfactory analysis of the desired code is obtained.

3http://ocaml.org
4On Windows OS, the usual extension .exe is added to each file name.
5For a single analysis project. Multiple projects can only be handled in the interactive version or program-

matically. See Section 8.1

18

http://ocaml.org

3.3. FRAMA-C COMMAND LINE AND GENERAL OPTIONS

3.3 Frama-C Command Line and General Options

3.3.1 Getting Help

The option -help or -h or --help gives a very short summary of Frama-C’s command line,
with its version and the main help entry points presented below.

The other options of the Frama-C kernel, i.e. those which are not specific to any plug-in, can
be printed out through either the option -kernel-help or -kernel-h.

The list of all installed plug-ins can be obtained via -plugins, while -version prints the
Frama-C version only (useful for installation scripts).

The options of the installed plug-ins are displayed by using either the option -<plug-in
shortname>-help or -<plug-in shortname>-h.

Finally, the option -explain can be used to obtain information about some specific options
of the kernel or of any installed plug-ins: it prints a help message for each other option given
on the command line.

3.3.2 Frama-C Configuration

The complete configuration of Frama-C can be obtained with various options, all documented
with -kernel-h:

-print-version version number only
-print-share-path directory for shared resources
-print-lib-path directory for the Frama-C kernel
-print-plugin-path directory for installed plug-ins
-print-config summary of the Frama-C configuration
-plugins list of installed plug-ins

There are many aliases for these options, but for backward compatibility purposes only.
Those listed above should be used for scripting.

For a more thorough display of configuration-related data, in JSON format, use option
-print-config-json. Note that the data output by this option is likely to change in future
releases.

3.3.3 Options Outline

The batch and interactive versions of Frama-C obey a number of command-line options. Any
option that exists in these two modes has the same meaning in both. For instance, the
batch version can be made to launch the value analysis on the foo.c file with the command
frama-c -eva foo.c. Although the GUI allows to select files and to launch the value anal-
ysis interactively, the command frama-c-gui -eva foo.c can be used to launch the value
analysis on the file foo.c and immediately start displaying the results in the GUI.

Any option requiring an argument may use the following format:

-option_name value

19

CHAPTER 3. GETTING STARTED

Parameterless Options Most parameterless options have an opposite option, often writ-
ten by prefixing the option name with no-. For instance, the option -unicode for using the
Unicode character set in messages has an opposite option for limiting the messages to ASCII.
Plug-in options with a name of the form -<plug-in name>-<option name> have their oppo-
site option named -<plug-in name>-no-<option name>. For instance, the opposite of op-
tion -wp-print is -wp-no-print. When prefixing an option name by -no is meaningless, the
opposite option is usually renamed. For instance, the opposite option of -journal-enable is
-journal-disable. Use the options -kernel-help and -<plug-in name>-help to get the
opposite option name of each parameterless option.

String Options If the option’s argument is a string (that is, neither an integer nor a float,
etc), the following format is also possible:

-option_name=value

This format must be used when value starts with a minus sign.

Set Options Some options (e.g. option -cpp-extra-args) accept a set of comma-separated
values as argument. Each value may be prefix by + (resp. -) to indicate that this value must
be added to (resp. deleted from) the set. When neither is specified, + is added by default.
As for string options, the extended format is also possible:

-option_name=values

This format must be used if your argument contains a minus sign.
For instance, you can ask the C preprocessor to search for header files in directory src by
setting:

-cpp-extra-args="-I src"
Categories are specific values which describe a subset of values. Their names begin with an
@. Available categories are option-dependent, but most set options accept the category @all
which defines the set of all acceptable values.
For instance, you can ask the Eva plug-in to use the ACSL specification of each function but
main instead of their definitions by setting:

-eva-use-spec="@all, -main"

If the first character of a set value is either +, -, @ or \, it must be escaped with a \.

Map Options Map options are set options whose values are of the form key:value. For
instance, you can override the default Eva’s slevel [7] for functions f and g by setting:

-slevel-function="f:16, g:42"

3.3.4 Autocompletion for Options

The autocomplete_frama-c file in the directory of shared resources (see -print-share-path
option above) contains a bash autocompletion script for Frama-C’s options. In order to take
advantage of it, several possibilities exist.

• In order to enable system-wide completion, the file can be copied into the directory
/etc/bash_completion.d/ where bash search for completion scripts by default

20

3.3. FRAMA-C COMMAND LINE AND GENERAL OPTIONS

• If you only want to add completion for yourself, you can append the content of the file
to ˜/.bash_completion

• You can source the file, e.g. from your .bashrc with the following command:

source $(frama-c-config -print-share-path)/autocomplete_frama-c || true

There is also an autocompletion script for zsh, _frama-c, also in the shared resources direc-
tory. Look inside for installation instructions.
The kernel option -autocomplete provides a text output listing all Frama-C options, so
that autocompletion scripts may use it to provide completion. The Frama-C team welcomes
improved and additional autocompletion scripts.

3.3.5 Splitting a Frama-C Execution into Several Steps

By default, Frama-C parses its command line in an unspecified order and runs its actions
according to the read options. To enforce an order of execution, you have to use the option
-then: Frama-C parses its command line until the option -then and runs its actions accord-
ingly, then it parses its command line from this option to the end (or to the next occurrence
of -then) and runs its actions according to the read options. Note that this second run starts
with the results of the first one.
Consider for instance the following command.

$ frama-c -eva -ulevel 4 file.c -then -ulevel 5

It first runs the value analysis plug-in (option -eva, [7]) with an unrolling level of 4 (option
-ulevel, Section 5.4). Then it re-runs the value analysis plug-in (option -eva is still set)
with an unrolling level of 5.
It is also possible to specify a project (see Section 8.1) on which the actions are applied thanks
to the option -then-on. Consider for instance the following command.

$ frama-c -semantic-const-fold main file.c -then-on propagated -eva

It first propagates constants in function main of file.c (option -semantic-const-fold)
which generates a new project called propagated. Then it runs the value analysis plug-
in on this new project. Finally it restores the initial default project, except if the option
-set-project-as-default is used as follow:

$ frama-c -semantic-const-fold main file.c \
-then-on propagated -eva -set-project-as-default

Another possibility is the option -then-last which applies the next actions on the last
project created by a program transformer. For instance, the following command is equivalent
to the previous one.

$ frama-c -semantic-const-fold main file.c -then-last -eva

The last option is -then-replace which behaves like -then-last but also definitively de-
stroys the previous current project. It might be useful to prevent a prohibitive memory
consumption. For instance, the following command is equivalent to the previous one, but
also destroys the initial default project.

$ frama-c -semantic-const-fold main file.c -then-replace -eva

21

CHAPTER 3. GETTING STARTED

3.3.6 Verbosity and Debugging Levels

The Frama-C kernel and plug-ins usually output messages either in the GUI or in the console.
Their levels of verbosity may be set by using the option -verbose <level>. By default, this
level is 1. Setting it to 0 limits the output to warnings and error messages, while setting it to
a number greater than 1 displays additional informative message (progress of the analyses,
etc).
In the same fashion, debugging messages may be printed by using the option -debug <level>.
By default, this level is 0: no debugging message is printed. By contrast with standard
messages, debugging messages may refer to the internals of the analyzer, and may not be
understandable by non-developers.
The option -quiet is a shortcut for -verbose 0 -debug 0.
In the same way that -verbose (resp. -debug) sets the level of verbosity (resp. debugging),
the options -kernel-verbose (resp. -kernel-debug) and -<plug-in shortname>-verbose
(resp. -<plug-in shortname>-debug) set the level of verbosity (resp. debugging) of the
kernel and particular plug-ins. When both the global level of verbosity (resp. debug-
ging) and a specific one are modified, the specific one applies. For instance, -verbose 0
-slicing-verbose 1 runs Frama-C quietly except for the slicing plug-in.
It is also possible to choose which categories of message should be displayed for a given plugin.
See section 6.2 for more information.

3.3.7 Copying Output to Files

Messages emitted by the logging mechanism (either by the kernel or by plug-ins) can be
copied to files using the -<plug-in shortname>-log option (or -kernel-log), according to
the following syntax: kinds1:file1,kinds2:file2,...
Its argument is a map from kind specifiers to output files, where each key is a set of flags
defining the kind(s) of message to be copied, that is, a sequence of one or several of the
following characters:

a: all (equivalent to defrw or dfiruw)

d: debug

e: user or internal error (equivalent to iu)

f: feedback

i: internal error

r: result

u: user error

w: warning

If kinds is empty (e.g. :file1), it defaults to erw, that is, copy all but debug and feedback
messages.
file1, file2, etc. are the names of the files where each set of messages will be copied to.
Each file will be overwritten if existing, or created otherwise. Note that multiple entries can
be directed to a single file (e.g. -kernel-log w:warn.txt -wp-log w:warn.txt).

22

3.3. FRAMA-C COMMAND LINE AND GENERAL OPTIONS

Here is an example of a sophisticated use case for this option:
frama-c -kernel-log ew:warn.log -wp-log ew:warn.log

-metrics-log :../metrics.log [...] file.c
The command above will run some unspecified analyses ([...]), copying the error and warning
messages produced by both the kernel and the wp plug-in into file warn.log, and copying all
non-debug, non-feedback output from the metrics plug-in into file ../metrics.log (note
that there is a separator (:) before the file path).
This option does not suppress the standard Frama-C output, but only copies it to a file. Also,
only messages which are effectively printed (according to the defined verbosity and debugging
levels) will be copied.

3.3.8 Terminal Capabilities

Some plug-ins can take advantage of terminal capabilities to enrich output. These features
are automatically turned off when the Frama-C standard output channel is not a terminal,
which typically occurs when you redirect it into a file or through a pipe.
You can control use of terminal capabilities with option -tty, which is set by default and
can be deactivated with -no-tty.

3.3.9 Getting time

The option -time <file> appends user time and date to the given log <file> at exit.

3.3.10 Inputs and Outputs of Source Code

The following options deal with the output of analyzed source code:

-print causes Frama-C’s representation for the analyzed source files to be printed as a single
C program (see Section 5.4). Note that files from the Frama-C standard library are kept
by default under the form of #include directives, to avoid polluting the output. To
expand them, use -print-libc.

-ocode <file name> redirects all output code of the current project to the designated file.

-keep-comments keeps C comments in-lined in the code.

-unicode uses unicode characters in order to display some ACSL symbols. This option is
set by default, so one usually uses the opposite option -no-unicode.

A series of dedicated options deal with the display of floating-point and integer numbers:

-float-hex displays floating-point numbers as hexadecimal

-float-normal displays floating-point numbers with an internal routine

-float-relative displays intervals of floating-point numbers as [lower bound ++ width]

-big-ints-hex <max> prints all integers greater than max (in absolute value) using hex-
adecimal notation

23

CHAPTER 3. GETTING STARTED

3.4 Environment Variables

Different environment variables may be set to customize Frama-C.

3.4.1 Variable FRAMAC_LIB

External plug-ins (see Section 4.3) or scripts (see Section 4.4) are compiled against the Frama-
C compiled library. The Frama-C option -print-lib-path prints the path to this library.
The default path to this library may be set when configuring Frama-C by using the configure
option --libdir. Once Frama-C is installed, you can also set the environment variable
FRAMAC_LIB to change this path.

3.4.2 Variable FRAMAC_PLUGIN

Dynamic plug-ins (see Section 4.4) are searched for in a default directory. The Frama-C
option -print-plugin-path prints the path to this directory. It can be changed by setting
the environment variable FRAMAC_PLUGIN.

3.4.3 Variable FRAMAC_SHARE

Frama-C looks for all its other data (installed manuals, configuration files, C modelization
libraries, etc) in a single directory. The Frama-C option -print-share-path prints this
path.
The default path to this library may be set when configuring Frama-C by using the configure
option --datarootdir. Once Frama-C is installed, you can also set the environment variable
FRAMAC_SHARE to change this path.
A Frama-C plug-in may have its own share directory (default is ‘frama-c -print-share-path
‘/<plug-in shortname>). If the plug-in is not installed in the standard way, you can set
this share directory by using the option -<plug-in shortname>-share.

3.4.4 Variable FRAMAC_SESSION

Frama-C may have to generate files depending on the project under analysis during a session
in order to reuse them later in other sessions.
By default, these files are generated or searched in the subdirectory .frama-c of the current
directory. You can also set the environment variable FRAMAC_SESSION or the option -session
to change this path.
Each Frama-C plug-in may have its own session directory (default is .frama-c/<plug-in
shortname>). It is also possible to change a plug-in’s session directory by using the option
-<plug-in shortname>-session.

3.4.5 Variable FRAMAC_CONFIG

Frama-C may have to generate configuration files during a session in order to reuse them later
in other sessions.

24

3.5. EXIT STATUS

By default, these files are generated or searched in a subdirectory frama-c (or .frama-c) of
the system’s default configuration directory (e.g. %USERPROFILE% onWindows or $HOME/.config
on Linux). You can also set the environment variable FRAMAC_CONFIG or the option -config
to change this path.
Each Frama-C plug-in may have its own configuration directory if required (on Linux, default
is $HOME/.config/frama-c/<plug-in shortname>). It is also possible to change a plug-in’s
config directory by using the option -<plug-in shortname>-config.

3.5 Exit Status

When exiting, Frama-C has one of the following status:

0 Frama-C exits normally without any error;

1 Frama-C exits because of invalid user input;

2 Frama-C exits because the user kills it (usually via Ctrl-C);

3 Frama-C exits because the user tries to use an unimplemented feature. Please report a
“feature request” on the Bug Tracking System (see Chapter 13);

4,5,6 Frama-C exits on an internal error. Please report a “bug report” on the Bug Tracking
System (see Chapter 13);

125 Frama-C exits abnormally on an unknown error. Please report a “bug report” on the
Bug Tracking System (see Chapter 13).

25

Chapter 4

Setting Up Plug-ins

The Frama-C platform has been designed to support third-party plug-ins. In the present
chapter, we present how to configure, compile, install, run and update such extensions. This
chapter does not deal with the development of new plug-ins (see the Plug-in Development
Guide [12]). Nor does it deal with usage of plug-ins, which is the purpose of individual
plug-in documentation (see e.g. [7, 4, 3]).

4.1 The Plug-in Taxonomy

There are two kinds of plug-ins: internal and external plug-ins. Internal plug-ins are
those distributed within the Frama-C kernel while external plug-ins are those distributed
independently of the Frama-C kernel. They only differ in the way they are installed (see
Sections 4.2 and 4.3).

4.2 Installing Internal Plug-ins

Internal plug-ins are automatically installed with the Frama-C kernel.
If you use a source distribution of Frama-C, it is possible to disable (resp. force) the in-
stallation of a plug-in of name <plug-in name> by passing the configure script the option
--disable-<plug-in name> (resp. --enable-<plug-in name>). Disabling a plug-in means
it is neither compiled nor installed. Forcing the compilation and installation of a plug-in
against configure’s autodetection-based default may cause the entire Frama-C configuration
to fail. You can also use the option --with-no-plugin in order to disable all plug-ins.

4.3 Installing External Plug-ins

To install an external plug-in, Frama-C itself must be properly installed first. In particular,
frama-c -print-share-path must return the share directory of Frama-C (see Section 3.4.3),
while frama-c -print-lib-path must return the directory where the Frama-C compiled
library is installed (see Section 3.4.1).
The standard way for installing an external plug-in from source is to run the sequence of
commands make && make install, possibly preceded by ./configure. Please refer to each
plug-in’s documentation for installation instructions.

27

CHAPTER 4. SETTING UP PLUG-INS

External plug-ins may also be configured and compiled at the same time as the Frama-C
kernel by using the option --enable-external=<path-to-plugin> . This option may be
passed several times.

4.4 Loading Plug-ins

At launch, Frama-C loads all plug-ins in the directories indicated by frama-c -print-plugin-path
(see Section 3.4.2). Frama-C can locate plug-ins in additional directories by using the option
-add-path <paths>. To prevent this behavior, you can use option -no-autoload-plugins.
Another way to load a plug-in is to set the -load-module <files> or -load-script <files>
options, using in both cases a comma-separated list of specifications, which may be one of
the following:

• an OCaml source file (in which case it will be compiled);

• an OCaml object file (.cmo or .cma if running Frama-C in bytecode, or .cmxs if running
Frama-C in native code);

• a Findlib package.

File extensions for source and object files may be omitted, e.g. -load-script file will
search for file.ml and file.cm* (where cm* depends if Frama-C is running in bytecode or
native code).

In general, plug-ins must be compiled with the very same OCaml compiler than Frama-C
was, and against a consistent Frama-C installation. Loading will fail and a warning will be
emitted at launch if this is not the case.
These options require the OCaml compiler that was used to compile Frama-C to be available
and the Frama-C compiled library to be found (see Section 3.4.1).

28

Chapter 5

Preparing the Sources

This chapter explains how to specify the source files that form the basis of an analysis project,
and describes options that influence parsing.

5.1 Overview of source processing in Frama-C

For small projects and tests, processing the sources in Frama-C is as simple as running frama-c
*.c. For more complex projects, however, some problems may arise when using this com-
mand, and the user must be aware of the several steps involved in Frama-C source processing
to fix them.

The diagram in Figure 5.1 presents an overview of the steps described in this chapter. For
comparison purposes, we add the equivalent process performed by a compiler such as GCC.

Figure 5.1: Overview of source preparation steps: as performed by GCC (top) and as per-
formed by Frama-C (bottom).

29

CHAPTER 5. PREPARING THE SOURCES

The following sections describe various options related to the steps shown in the figure.
Note that some plug-ins, such as Variadic (described in chapter 11), perform further AST
transformations before most analyses are run.

5.2 Preprocessing the Source Files

The list of files to analyze must be provided on the command line, or chosen interactively in
the GUI. Files with the suffix .i are assumed to be already preprocessed C files. Frama-C
preprocesses .c and .h files with the following basic command:

$ gcc -C -E -I .

Plus some architecture-dependent flags. The exact preprocessing command line can be ob-
tained via options -kernel-msg-key pp and -print-cpp-commands (the latter exits Frama-C
after printing).
Option -cpp-extra-args can be used to add arguments to the default preprocessing com-
mand, typically via the inclusion of defines (-D switches) and header directories (-I switches),
as in -cpp-extra-args="-DDEBUG -DARCH=ia32 -I./headers". You can also add argu-
ments on a per-file basis, using option -cpp-extra-args-per-file.
If you need to, you can also replace the preprocessing command entirely with option -cpp-command.
Placeholders (see below) can be used for advanced commands. If no placeholders are used,
the preprocessor is invoked in the following way.

<cmd> <args> <input file> -o <output file>

In this command, <output file> is a temporary filename chosen by Frama-C while <input
file> is one of the filenames provided by the user.
For commands which do not follow this pattern, it is also possible to use the following
placeholders:
%input, %i or %1 Input file
%output, %o or %2 Output file
%args Additional arguments (see -cpp-extra-args below)

Here are some examples for using this option.
$ frama-c -cpp-command 'gcc -C -E -I. -x c' file1.src file2.i
$ frama-c -cpp-command 'gcc -C -E -I. %args -o %o %i' file1.c file2.i
$ frama-c -cpp-command 'cp %i %o' file1.c file2.i
$ frama-c -cpp-command 'cat %i > %o' file1.c file2.i
$ frama-c -cpp-command 'CL.exe /C /E %args %i > %o' file1.c file2.i

When using -cpp-command, you may add -cpp-frama-c-compliant to indicate that the
custom preprocessor accepts the same set of options as GNU cpp. -cpp-frama-c-compliant
also implies some extra constraints, such as accepting architecture-specific flags, e.g. -m32.
If you have a JSON compilation database file1, you can use it to retrieve preprocessing macros
such as -D and -I for each file in the database, via option -json-compilation-database
<path>, where <path> is the path to the JSON file or to a directory containing a file
named compile_commands.json. With this option set, Frama-C will parse the compila-
tion database and include associated preprocessing flags, as if they had been manually added
via -cpp-extra-args-per-file. Note: if both -cpp-extra-args-per-file and the JSON

1http://clang.llvm.org/docs/JSONCompilationDatabase.html

30

http://clang.llvm.org/docs/JSONCompilationDatabase.html

5.3. MERGING THE SOURCE CODE FILES

compilation database specify options for a given file, the former are used and the latter are
ignored. Also note that the use of the database simply adds flags for the files specified on the
command-line, but these files must still be specified by the user.

In all of the above cases, ACSL annotations are preprocessed by default (option -pp-annot
is set by default). Unless a custom preprocessor is specified (via -cpp-frama-c-compliant),
Frama-C considers that GCC is installed and uses it as preprocessor. If you do not want
annotations to be preprocessed, you need to pass option -no-pp-annot to Frama-C. Note
that some headers in the standard C library provided with Frama-C (described below) use
such annotations, therefore it might be necessary to disable inclusion of such headers.

Also note that ACSL annotations are preprocessed separately from the C code in a second
pass, and that arguments given as -cpp-extra-args are not given to the second pass of
preprocessing. Instead, -pp-annot relies on the ability of GCC to output all macro definitions
(including those given with -D) in the preprocessed file. In particular, -cpp-extra-argsmust
be used if you are including header files who behave differently depending on the number of
times they are included.

In addition, files having the suffix .ci will be considered as needing preprocessing for ACSL
annotations only. Those files may contain #define directives and annotations are prepro-
cessed as explained in the previous paragraph. This allows to have macros in ACSL annota-
tions while using a non-GNU-like preprocessor.

An experimental, incomplete, C standard library is bundled with Frama-C and installed
in the sub-directory libc of the directory printed by frama-c -print-share-path. It
contains standard C headers, some ACSL specifications and definitions for some library
functions. By default, these headers are used instead of the standard library ones: op-
tion -frama-c-stdlib (set by default) adds -I$FRAMAC_SHARE/libc to the preprocessor
command, and also -nostdinc if -cpp-frama-c-compliant is set. Note that this library is
provided on a best-effort basis, but it is part of the trusted computing base: the specifications
must be proofread for correctness.

5.3 Merging the Source Code files

After preprocessing, Frama-C parses, type-checks and links the source code. It also performs
these operations for the ACSL annotations optionally present in the program. Together, these
steps form the merging phase of the creation of an analysis project.

Frama-C aborts whenever any error occurs during one of these steps. However users can use
the option -kernel-warn-key annot-error=active2 in order to continue after emitting a
warning when an ACSL annotation fails to type-check.

5.4 Normalizing the Source Code

After merging the project files, Frama-C performs a number of local code transformations in
the normalization phase. These transformations aim at making further work easier for the
analyzers. Analyses usually take place on the normalized version of the source code. The
normalized version may be printed by using the option -print (see Section 3.3.10).

2See section 6.2 for more information on warning statuses.

31

CHAPTER 5. PREPARING THE SOURCES

Normalization gives a program which is semantically equivalent to the original one, except
for one point. Namely, when the specification of a function f that is only declared and has
no ACSL assigns clause is required by some analysis, Frama-C generates an assigns clause
based on the prototype of f (the form of this clause is left unspecified). Indeed, as mentioned
in the ACSL manual [2], assuming that f can write to any location in the memory would
amount to stop any semantical analysis at the first call to f, since nothing would be known
on the memory state afterwards. The user is invited to check that the generated clause makes
sense, and to provide an explicit assigns clause if this is not the case.
The following options allow to customize the normalization process.

-aggressive-merging forces some function definitions to be merged into a single function if
they are equal modulo renaming. Note that this option may merge two functions even
if their original source code is different but their normalized version coincides. This
option is mostly useful to share function definitions that stem from headers included
by several source files.

-allow-duplication allows the duplication of small blocks of code during normalization
of loops and tests. This is set by default and the option is mainly found in its opposite
form, -no-allow-duplication which forces Frama-C to use labels and gotos instead.
Note that bigger blocks and blocks with a non-trivial control flow are never duplicated.
Option -ulevel (see below) is not affected by this option and always duplicates the
loop body.

-annot forces Frama-C to interpret ACSL annotations. This option is set by default, and
is only found in its opposite form -no-annot, which prevents interpretation of ACSL
annotations.

-asm-contracts tells Frama-C to generate assigns clauses for inline asm statements using
extended GNU notation with output and input operands. This option is set by default,
and opposite form -no-asm-contracts prevents the generation of such clauses. If the
assembly block already has a statement contract which is not guarded by a for b: clause
assigns clauses are generated only for behaviors which do not already have one.

-asm-contracts-auto-validate tells Frama-C to automatically mark as valid assigns clauses
generated from asm statements. However, if an asm statement contains memory in its
clobber list, the corresponding clause will not be considered valid through this option.

-collapse-call-cast allows, in some cases, the value returned by a function call to be
implicitly cast to the type of the value it is assigned to (if such a conversion is au-
thorized by the C standard). Otherwise, a temporary variable separates the call and
the cast. The default is to have implicit casts for function calls, so the opposite form
-no-collapse-call-cast is more useful.

-constfold performs a syntactic folding of constant expressions. For instance, the expres-
sion 1+2 is replaced by 3.

-continue-annot-error Deprecated option. Just emits a warning and discards the anno-
tation when it fails to type-check, instead of generating an error (errors in C are still
fatal). This behavior is now managed by warning category (Section 6.2) annot-error,
whose default status is “abort”. Behavior of -continue-annot-error can thus be
obtained with -kernel-warn-key annot-error=active, or even -kernel-warn-key
annot-error=inactive to silently ignore any ill-formed annotations.

32

5.4. NORMALIZING THE SOURCE CODE

-enums <repr name> specifies which representation should be used for a given enumerated
type. Namely, the C standard allows the use of any integral type in which all the
corresponding tags can be represented. Default is gcc-enums. A list of supported
options can be obtained by typing:

$ frama-c -enums help

This includes:

• int: treat everything as int (including enumerated types with packed attribute).
• gcc-enums: use an unsigned integer type when no tag has a negative value, and

choose the smallest rank possible starting from int (default GCC’s behavior)
• gcc-short-enums: use an unsigned integer type when no tag has a negative value,

and choose the smallest rank possible starting from char (GCC’s -fshortenums
option)

-initialized-padding-locals forces to initialize padding bits of locals to 0. If false,
padding bits are left uninitialized. This option is set by default.

-inline-calls <f1,...,fn> inlines calls to functions. Use @inline to select all functions
with attribute inline. For recursive functions, only the first level is inlined (e.g., the
function will contain an inlined version of itself with a recursive call inside it). Calls
via function pointers are ignored.

-remove-inlined <f1,...,fn> removes from the AST functions f1,...,fn, which must
have been given to -inline-calls. Note: this option does not check if the given
functions were fully inlined.

-keep-switch preserves switch statements in the source code. Without this option, they
are transformed into if statements. An experimental plug-in may require this option
to be unset to avoid having to handle the switch construct. Other plug-ins may prefer
this option to be used because it better preserves the structure of the original program.

-keep-unused-specified-functions does not remove from the AST uncalled function
prototypes that have ACSL contracts. This option is set by default. So you mostly use
the opposite form, namely -remove-unused-specified-functions.

-keep-unused-types does not remove unused types and enum/struct/union declarations.
By default, such types are removed, that is, its opposite option -remove-unused-types
is set.

-machdep <machine architecture name> defines the target platform. The default value is
a x86_32 bits platform. Analyzers may take into account the endianness of the target,
the size and alignment of elementary data types, and other architecture/compilation
parameters. The -machdep option provides a way to define all these parameters consis-
tently in a single step. Note that multiarch preprocessors such as GCC’s may require
special flags to ensure compatibility with the chosen machdep, e.g. -m32 for a x86_64
GCC compiling 32-bit code. In most cases this is handled automatically, but otherwise
option -cpp-command can be used.
The list of supported platforms can be obtained by typing:

$ frama-c -machdep help

The process for adding a new platform is described in the Plug-in Development Guide [12].

33

CHAPTER 5. PREPARING THE SOURCES

-simplify-cfg allows Frama-C to remove break, continue and switch statements. This op-
tion is automatically set by some plug-ins that cannot handle these kinds of statements.
This option is off by default.

-simplify-trivial-loops simplifies trivial loops such as do ... while(0). This option
is set by default.

-ulevel <n> unrolls all loops n times. This is a purely syntactic operation. Loops can
be unrolled individually, by inserting the UNROLL pragma just before the loop state-
ment. Do not confuse this option with plug-in-specific options that may also be called
“unrolling” [7]. Below is a typical example of use.

/∗@ loop pragma UNROLL 10; ∗/
for(i = 0; i < 9; i++) ...

The transformation introduces an UNROLL pragma indicating that the unrolling process
has been done:

... // loop unrolled 10 times
/∗@ loop pragma UNROLL 10;

loop pragma UNROLL "done", 10; ∗/
... // remaining loop

That allows to disable unrolling transformation on such a loop when reusing Frama-C
with a code obtained by a previous use of Frama-C tool. To ignore this disabling UNROLL
pragma and force unrolling, the option -ulevel-force has to be set.

Passing a negative argument to -ulevel will disable unrolling, even in case of UNROLL
pragma.

-c11 allows the use of some C11 constructs. Currently supported are typedefs redefinition.

5.5 Predefined macros

Frama-C, like several compilers and code analysis tools, predefines and uses a certain number
of C macros. They are summarized below.

__FRAMAC__: defined to 1 during preprocessing by Frama-C, as if the user had added
-D__FRAMAC__ to the command line. Useful for conditional compilation and detection
of an execution by Frama-C.

__FC_MACHDEP_XXX , where XXX is one of X86_16, X86_32, X86_64, PPC_32 or MSVC_X86_64:
according to the option -machdep chosen by the user, the corresponding macro is prede-
fined by Frama-C. Those macros correspond to the values of -machdep that are built-in
in the Frama-C kernel. In addition, custom machdeps can be added by plug-ins or
scripts. If such a machdep named custom-name is selected, Frama-C will predefine
the macro __FC_MACHDEP_CUSTOM_NAME, that is the upper-case version of the name
of the machdep. Conversely, if an __FC_MACHDEP_XXX macro is defined by the user in
-cpp-command or -cpp-extra-args, then Frama-C will consider it as a custom machdep
and will not add any machdep-related macros. It is then the responsibility of the user
to ensure that -machdep and __FC_MACHDEP_XXX are coherent.

34

5.6. COMPILER AND LANGUAGE EXTENSIONS

__FC_*: macros prefixed by __FC_ are reserved by Frama-C and should not be defined by the
user (except for custom machdeps, as mentioned above, and for customization macros,
as described below). These include machdep-related macros and definitions related to
Frama-C’s standard library.

Furthermore, some macros are undefined in the standard library, and can be defined (e.g.
through -cpp-extra-args) to customize the Frama-C standard library. They are described
below.

__FC_NO_MONOTONIC_CLOCK: By default, Frama-C defines a MONOTONIC_CLOCK in time.h. If
this macro is defined, this clock is not available.

__FC_INDETERMINABLE_FLOATS: By default, Frama-C’s libc uses an IEEE-754 compatible
environment. If this macro is defined, rounding mode and float evaluation (macros
FLT_ROUNDS and FLT_EVAL_METHOD) will be considered as indeterminable.

5.6 Compiler and language extensions

Frama-C’s default behavior is to be fairly strict concerning language features. By default,
most non-C99 compiler extensions are not accepted, similarly to when compiling a program
with gcc -std=c99 -pedantic -pedantic-errors.

However, depending on the machine architecture (see option -machdep, in Section 5.4), Frama-
C accepts some compiler extensions, namely for GCC and MSVC machdeps. For instance,
trying to parse a program containing an empty initializer, such as int c[10] = {}; will
result in the following error message:

[kernel] user error: empty initializers only allowed for GCC/MSVC

This means that using a GCC or MSVC machdep (e.g., -machdep gcc_x86_32) will allow
the language extension to be accepted by Frama-C.
Alternatively, some C11 extensions are supported via option -c11. For instance, the following
program is invalid in C99 but valid in C11 (typedef redefinition): typedef int a; typedef int a;

The error message given by Frama-C when trying to parse this program will indicate the
option needed to allow the file to be parsed:

[kernel] user error: redefinition of type 'a' in the same scope is only
allowed in C11 (option -c11).

5.7 Warnings during normalization

Note: the options below are deprecated, replaced by the more general and flexible mechanism
of warning categories, described in Section 6.2.

Some options can be used to influence the warnings that are emitted by Frama-C during the
normalization phase.

35

CHAPTER 5. PREPARING THE SOURCES

-warn-decimal-float <freq> (deprecated) warns when floating-point constants in the pro-
gram cannot be exactly represented; freq must be one of none, once or all. Defaults
to once. Superseded by warning category parser:decimal-float.

-implicit-function-declaration <action> (deprecated) defines the action to perform
(ignore, warn or error) whenever a call to a function that has not been previously de-
clared is found. This is invalid in C90 or in C99, but could be valid K&R code. Defaults
to warn. Superseded by warning category typing:implicit-function-declaration.
Note: parsing is not guaranteed to succeed, regardless of the emission of the warning.
Upon encountering a call to an undeclared function, Frama-C attempts to continue its
parsing phase by inferring a prototype corresponding to the type of the arguments at
the call (modulo default argument promotions). If the real declaration does not match
the inferred prototype, parsing will later end with an error.

5.8 Testing the Source Code Preparation

If the steps up to normalization succeed, the project is then ready for analysis by any Frama-C
plug-in. It is possible to test that the source code preparation itself succeeds, by running
Frama-C without any option.

$ frama-c <input files>

If you need to use other options for preprocessing or normalizing the source code, you can
use the option -typecheck for the same purpose. For instance:

frama-c -cpp-command 'gcc -C -E -I. -x c' -typecheck file1.src file2.i

36

Chapter 6

Platform-wide Analysis Options

The options described in this chapter provide each analysis with common hypotheses that
influence directly their behavior. For this reason, the user must understand them and the
interpretation the relevant plug-ins have of them. Please refer to individual plug-in docu-
mentations (e.g. [7, 3, 4]) for specific options.

6.1 Entry Point

The following options define the entry point of the program and related initial conditions.

-main <function_name> specifies that all analyzers should treat function function_name
as the entry point of the program.

-lib-entry indicates that analyzers should not assume globals to have their initial values
at the beginning of the analysis. This option, together with the specification of an entry
point f, can be used to analyze the function f outside of a calling context, even if it is
not the actual entry point of the analyzed code.

6.2 Feedback Options

All Frama-C plug-ins define the following set of common options.

-<plug-in shortname>-help (or -<plug-in shortname>-h) prints out the list of options
of the given plug-in.

-<plug-in shortname>-verbose <n> sets the level of verbosity to some positive integer n.
A value of 0 means no information messages. Default is 1.

-<plug-in shortname>-debug <n> sets the debug level to a positive integer n. The higher
this number, the more debug messages are printed. Debug messages do not have to be
understandable by the end user. This option’s default is 0 (no debugging messages).

-<plug-in shortname>-msg-key <keys> sets the categories of messages that must be out-
put for the plugin. keys is a comma-separated list of names. The list of available
categories can be obtained with -<plug-in shortname>-msg-key help. To enable all

37

CHAPTER 6. PLATFORM-WIDE ANALYSIS OPTIONS

categories, use the wildcard ’*’1. Categories can have subcategories, defined by a colon
in their names. For instance, a:b:c is a subcategory c of a:b, itself a subcategory of
a. Enabling a category will also enable all its subcategories. An enabled category cat
can be disabled by using -cat in the list of keys. Several occurrences of the option
may appear on the command line and will be processed in order.

-<plug-in shortname>-warn-key <keys> allows setting the status of a category of warn-
ings. The argument keys is a comma-separated list of key of the form <category>=<status>,
where category is a warning category (possibly a sub-category as for messages categories
above), and status is one of:

inactive no message is emitted for the category
feedback a feedback message is emitted
active a proper warning is emitted
once a proper warning is emitted, and the status of the category is reset to inactive,

i.e. at most one message for the category will be emitted.
error a warning is emitted. Frama-C execution continues, but its exit status will not

be 0 at the end of the run.
abort a warning is emitted and Frama-C will immediately abort its execution with an

error.
feedback-once a feedback message is emitted, and the status is reset to inactive

err-once combines the actions of error and once statuses.

The =<status> part might be omitted, which is equivalent to asking for active sta-
tus. The new status will be propagated to subcategories, with one exception: statuses
“abort”, “error” and “err-once” will only be propagated to subcategories whose current
status is not “inactive”.

Finally, as for debug categories, passing help (without status) in the list of keys will
list the available categories, together with their current status. Passing * in the list of
keys will change the status of all warning categories, and affect warnings that do not
have a category. Hence, -kernel-warn-key *=abort will stop Frama-C’s execution at
the first warning triggered by the kernel.

The two following options modify the behavior of output messages:

-add-symbolic-path takes a list of the form name1 : path1, . . . , namen : pathn in argument
and replaces each pathi by namei when displaying file locations in messages.

-permissive performs less verification on validity of command-line options.

6.3 Customizing Analyzers

The descriptions of the analysis options follow. For the first two, the description comes from
the Eva manual [7]. Note that these options are very likely to be modified in future versions
of Frama-C.

1Be sure to enclose it in single quotes or your shell might expand it, leading to unexpected results.

38

6.3. CUSTOMIZING ANALYZERS

-absolute-valid-range m-M specifies that the only valid absolute addresses (for reading or
writing) are those comprised between m and M inclusive. This option currently allows to
specify only a single interval, although it could be improved to allow several intervals in
a future version. m and M can be written either in decimal or hexadecimal notation.

-unsafe-arrays can be used when the source code manipulates n-dimensional arrays, or
arrays within structures, in a non-standard way. With this option, accessing indexes
that are out of bounds will instead access the remainder of the struct. For example,
the code below will overwrite the fields a and c of v.

struct s {
int a;
int b[2];
int c;

};

void main(struct s v) {
v.b[-1] = 1;
v.b[2] = 4;

}

The opposite option, called -safe-arrays, is set by default. With -safe-arrays, the
two accesses to v are considered invalid. (Accessing v.b[-2] or v.b[3] remains incorrect,
regardless of the value of the option.)

-warn-invalid-pointermay be used to check that the code does not perform illegal pointer
arithmetics, creating pointers that do not point inside an object or one past an object.
This option is disabled by default, allowing the creation of such invalid pointers without
alarm — but the dereferencing of an invalid pointer always generates an alarm.
For instance, no error is detected by default in the following example, as the derefer-
encing is correct. However, if option -warn-invalid-pointer is enabled, an error is
detected at line 4.

int x;
int *p = &x;
p++; // valid
p++; // undefined behavior
*(p-2) = 1;

-unspecified-access may be used to check when the evaluation of an expression depends
on the order in which its sub-expressions are evaluated. For instance, this occurs with
the following piece of code.

int i, j, *p;
i = 1;
p = &i;
j = i++ + (*p)++;

In this code, it is unclear in which order the elements of the right-hand side of the
last assignment are evaluated. Indeed, the variable j can get any value as i and p are
aliased. The -unspecified-access option warns against such ambiguous situations.
More precisely, -unspecified-access detects potential concurrent write accesses (or
a write access and a read access) over the same location that are not separated by a
sequence point. Note however that this option does not warn against such accesses if
they occur in an inner function call, such as in the following example:

39

CHAPTER 6. PLATFORM-WIDE ANALYSIS OPTIONS

int x;
int f() { return x++; }
int g() { return f() + x++; }

Here, the x might be incremented by g before or after the call to f, but since the two
write accesses occur in different functions, -unspecified-access does not detect that.

-warn-pointer-downcast may be used to check that the code does not downcast a pointer
to an integer type. This option is set by default. In the following example, analyz-
ers report by default an error on the third line. Disabling the option removes this
verification.

int x;
uintptr_t addr = &x;
int a = &x;

-warn-signed-downcast may be used to check that the analyzed code does not downcast
an integer to a signed integer type. This option is not set by default. Without it,
the analyzers do not perform such a verification. For instance consider the following
function.

short truncate(int n) {
return (short) n;

}

If -warn-signed-downcast is set, analyzers report an error on (short) n which down-
casts a signed integer to a signed short. Without it, no error is reported.

-warn-unsigned-downcast is the same as -warn-signed-downcast for downcasts to un-
signed integers. This option is also not set by default.

-warn-signed-overflow may be used to check that the analyzed code does not overflow on
integer operations. If the opposite option -no-warn-signed-overflow is specified, the
analyzers assume that operations over signed integers may overflow by following two’s
complement representation. This option is set by default. For instance, consider the
function abs that computes the absolute value of its int argument.

int abs(int x) {
if (x < 0) x = -x;
return x;

}

By default, analyzers detect an error on -x since this operation overflows when MININT
is the argument of the function. But, with the -no-warn-signed-overflow option, no
error is detected.

-warn-unsigned-overflow is the same as -warn-signed-overflow for operations over un-
signed integers. This option is not set by default.

-warn-left-shift-negative can be used to check that the code does not perform signed
left shifts on negative values, i.e., x << n with x having signed type and negative value.
This is set by default, and can be disabled with option -no-warn-left-shift-negative.

-warn-right-shift-negative, as its left-shift counterpart, can be used to check for nega-
tive right shifts, i.e., x >> n with x having signed type and negative value. This is not
set by default. -no-warn-right-shift-negative can be used to disable the option if
previously enabled.

40

6.3. CUSTOMIZING ANALYZERS

-warn-special-float <type> may be used to allow or forbid special floating-point values,
generating alarms when they are produced. <type> can be one of the following values:

non-finite : warn on infinite floats or NaN
nan : warn on NaN only
none : no warnings

-warn-invalid-bool may be used to check that the code does not use invalid _Bool values
by reading trap representations from lvalues of _Bool types. A trap representation
does not represent a valid value of the _Bool type, which can only be 0 or 1. This
option is set by default, and can be disabled with -no-warn-invalid-bool.

41

Chapter 7

Property Statuses

This chapter touches on the topic of program properties, and their validation by either
standalone or cooperating Frama-C plug-ins. The theoretical foundation of this chapter is
described in a research paper [5].

7.1 A Short Detour through Annotations

Frama-C supports writing code annotations with the ACSL language [2]. The purpose of
annotations is to formally specify the properties of C code: Frama-C plug-ins can rely on
them to demonstrate that an implementation respects its specification.

Annotations can originate from a number of different sources:

the user who writes his own annotations: an engineer writing code specifications is the
prevalent scenario here;

some plug-ins may generate code annotations. These annotations can, for instance, indi-
cate that a variable needs to be within a safe range to guarantee no runtime errors are
triggered (cf the RTE plug-in [9]).

the kernel of Frama-C, that attempts to generate as precise an annotation as it can, when
none is present.

Of particular interest is the case of unannotated function prototypesa: the ACSL specification
states that a construct of that kind “potentially modifies everything” [2, Sec. 2.3.5]. For
the sake of precision and conciseness, the Frama-C kernel breaks this specification, and
generates a function contract with clauses that relate its formal parameters to its resultsb.
This behavior might be incorrect – for instance because it does not consider functions that
can modify globals. While convenient in a wide range of cases, this can be averted by writing
a custom function contract for the contentious prototypes.

aA function prototype is a function declaration that provides argument types and return type, but lacks
a body.

bResults here include the return value, and the formal modifiable parameters.

The rest of this chapter will examine how plug-ins can deal with code annotations, and in
particular what kind of information can be attached to them.

43

CHAPTER 7. PROPERTY STATUSES

7.2 Properties, and the Statuses Thereof

A property is a logical statement bound to a precise code location. A property might originate
from:

• an ACSL code annotation – e.g. assert p[i] * p[i] <= INT_MAX. Recall from the
previous section that annotations can either be written by the user, or generated by
the Frama-C plug-ins or kernel;

• a plugin-dependent meta-information – such as the memory model assumptions.

Consider a program point i, and call T the set of traces that run through i. More precisely,
we only consider the traces that are coming from the program entry point1 (see option -main
in chapter 6). A logical property P is valid at i if it is valid on all t ∈ T . Conversely, any
trace u that does not validate P , stops at i: properties are blocking.

As an example, a property might consist in a statement p[j]×p[j] ≤ 2147483647 at a program
point i. A trace where p[j] = 46341 at i will invalidate this property, and will stop short of
reaching any instruction succeeding i.

An important part of the interactions between Frama-C components (the plug-ins/the kernel)
rely on their capacity to emit a judgment on the validity of a property P at program point
i. In Frama-C nomenclature, this judgment is called a local property status. The first part of
a local status ranges over the following values:

• True when the property is true for all traces;

• False when there exists a trace that falsifies the property;

• Maybe when the emitter e cannot decide the status of P .

As a second part of a local property status, an emitter can add a list of dependencies, which is
the set of properties whose validity may be necessary to establish the judgment. For instance,
when the WP plug-in [4] provides a demonstration of a Hoare triple {A} c {B}, it starts by
setting the status of B to “True”, and then adds to this status a dependency on property A.
In more formal terms, it corresponds to the judgment ` A ⇒ B: “for a trace to be valid in
B, it may be necessary for A to hold”. This information on the conditional validity of B is
provided as a guide for validation engineers, and should not be mistaken for the formal proof
of B, which only holds when all program properties are verified – hence the local status.

7.3 Consolidating Property Statuses

Recall our previous example, where the WP plug-in sets the local status of a property B to
“True”, with a dependency on a property A. This might help another plug-in decide that the
validity of a third property C, that hinges upon B, now depends on A. When at last A is
proven by, say, the value analysis plug-in, the cooperative proofs of A, B, and C are marked

1Some plug-ins might consider all possible traces, which constitute a safe over-approximation of the intended
property.

44

7.3. CONSOLIDATING PROPERTY STATUSES

as completed. In formal terms, Frama-C has combined the judgments: ` A ⇒ B, ` B ⇒ C,
and ` A into proofs of ` B and ` C, by using the equivalent of a modus ponens inference:

` A ` A⇒ B

` B

Notice how, without the final ` A judgment, both proofs would be incomplete.
This short example illustrates how incremental the construction of program property proofs
can be. By consolidating property statuses into an easily readable display, Frama-C aims
at informing its users of the progress of this process, allowing them to track unresolved
dependencies, and selectively validate subsets of the program’s properties.
As a result, a consolidated property status can either be a simple status:

– never_tried: when no status is available for the property.

– unknown: whenever the status is Maybe.

– surely_valid: when the status is True, and dependencies have the consolidated status
surely_valid or considered_valid.

– surely_invalid: when the status is False, and all dependencies have the consolidated
status surely_valid.

– inconsistent: when there exist two conflicting consolidated statuses for the same
property, for instance with values surely_valid and surely_invalid. This case may
also arise when an invalid cyclic proof is detected. This is symptomatic of an incoherent
axiomatization.

or an incomplete status:

– considered_valid: when there is no possible way to prove the property (e.g., the
post-condition of an external function). We assume this property will be validated by
external means.

– valid_under_hyp: when the local status is True but at least one of the dependencies
has consolidated status unknown. This is typical of proofs in progress.

– invalid_under_hyp: when the local status is False, but at least one of the depen-
dencies has status unknown. This is a telltale sign of a dead code property, or of an
erroneous annotation.

and finally:

– unknown_but_dead: when the status is locally Maybe, but in a dead or incoherent
branch.

– valid_but_dead: when the status is locally True, but in a dead or incoherent branch.

– invalid_but_dead: when the status is locally False, but in a dead or incoherent
branch.

45

CHAPTER 7. PROPERTY STATUSES

The dependencies are meant as a guide to safety engineers. They are neither correct, nor
complete, and should not be relied on for formal assessment purposes. In particular, as
long as partial proofs exist (there are unknown or never_tried), there is no certainty with
regards to any other status (including surely_valid properties).

These consolidated statuses are displayed in the GUI (see section 9 for details), or in batch
mode by the report plug-in.

46

Chapter 8

General Kernel Services

This chapter presents some important services offered by the Frama-C platform.

8.1 Projects

A Frama-C project groups together one source code with the states (parameters, results, etc)
of the Frama-C kernel and analyzers.
In one Frama-C session, several projects may exist at the same time, while there is always one
and only one so-called current project in which analyses are performed. Thus projects help
to structure a code analysis session into well-defined entities. For instance, it is possible to
perform an analysis on the same code with different parameters and to compare the obtained
results. It is also possible to extract a program p′ from an initial program p and to compare
the results of an analysis run separately on p and p′.

8.1.1 Creating Projects

A new project is created in the following cases:

• at initialization time, a default project is created; or

• via an explicit user action in the GUI; or

• a source code transforming analysis has been made. The analyzer then creates a new
project based on the original project and containing the modified source code. A typical
example is code slicing which tries to simplify a program by preserving a specified
behaviour.

8.1.2 Using Projects

The list of existing projects of a given session is visible in the graphical mode through the
Project menu (see Section 9.2). Among other actions on projects (duplicating, renaming,
removing, saving, etc), this menu allows the user to switch between different projects during
the same session.
In batch mode, the only way to handle a multi-project session is through the command line
options -then-on, -then-last or -then-replace (see Section 3.3.5). It is also possible to

47

CHAPTER 8. GENERAL KERNEL SERVICES

remove existing projects through the option -remove-projects. It might be useful to prevent
prohibitive memory consumptions. In particular, the category @all_but_current removes
all the existing projects, but the current one.

8.1.3 Saving and Loading Projects

A session can be saved to disk and reloaded by using the options -save <file> and -load
<file> respectively. Saving is performed when Frama-C exits without error. In case of a
fatal error or an unexpected error, saving is done as well, but the generated file is modified
into file.crash since it may have been corrupted. In other error cases, no saving is done.
The same operations are available through the GUI.
When saving, all existing projects are dumped into an unique non-human-readable file.
When loading, the following actions are done in sequence:

1. all the existing projects of the current session are deleted;

2. all the projects stored in the file are loaded;

3. the saved current project is restored;

4. Frama-C is replayed with the parameters of the saved current project, except for those
parameters explicitly set in the current session.

Consider for instance the following command.
$ frama-c -load foo.sav -eva

It loads all projects saved in the file foo.sav. Then, it runs the value analysis in the new
current project if and only if it was not already computed at save time.

Recommendation 8.1 Saving the result of a time-consuming analysis before trying to use
it in different settings is usually a good idea.

Beware that all the existing projects are deleted, even if an error occurs when reading the
file. We strongly recommend you to save the existing projects before loading another project
file.

Special Cases Options -help, -verbose, -debug (and their corresponding plugin-specific
counterpart) as well as -explain, -quiet and -unicode are not saved on disk.

8.2 Dependencies between Analyses

Usually analyses do have parameters (see Chapter 6). Whenever the values of these parame-
ters change, the results of the analyses may also change. In order to avoid displaying results
that are inconsistent with the current value of parameters, Frama-C automatically discards
results of an analysis when one of the analysis parameters changes.
Consider the two following commands.

$ frama-c -save foo.sav -ulevel 5 -absolute-valid-range 0-0x1000 -eva foo.c
$ frama-c -load foo.sav

48

8.3. JOURNALISATION

Frama-C runs the value analysis plug-in on the file foo.c where loops are unrolled 5 times
(option -ulevel, see Section 5.4). To compute its result, the value analysis assumes the
memory range 0:0x1000 is addressable (option -absolute-valid-range, see Section 6.3).
Just after, Frama-C saves the results on file foo.sav and exits.
At loading time, Frama-C knows that it is not necessary to redo the value analysis since the
parameters have not been changed.
Consider now the two following commands.

$ frama-c -save foo.sav -ulevel 5 -absolute-valid-range 0-0x1000 -eva foo.c
$ frama-c -load foo.sav -absolute-valid-range 0-0x2000

The first command produces the very same result than above. However, in the second
(load) command, Frama-C knows that one parameter has changed. Thus it discards the
saved results of the value analysis and recomputes it on the same source code by using the
parameters -ulevel 5 -absolute-valid-range 0-0x2000 (and the default value of each
other parameter).
In the same fashion, results from an analysis A1 may well depend on results from another
analysis A2. Whenever the results from A2 change, Frama-C automatically discards results
from A1. For instance, slicing results depend on value analysis results; thus the slicing results
are discarded whenever the value analysis ones are.

8.3 Journalisation

Journalisation logs each operation that modifies some parameters or results into a file called
a journal. Observational operations like viewing the set of possibles values of a variable in
the GUI are not logged.
By default, the name of the journal is SESSION_DIR/frama_c_journal.ml where SESSION_DIR
is the Frama-C session directory (see Section 3.4.4). It can be modified by using the option
-journal-name.
A journal is a valid Frama-C dynamic plug-in. Thus it can be loaded by using the option
-load-script (see Section 4.4). The journal replays the very same results as the ones
computed in the original session.
Journals are commonly used for the three different purposes described thereafter.

• Easily replaying a given set of analysis operations in order to reach a certain state.
Once the final state is reached, further analyses can be performed normally. Beware
that journals may be source dependent and thus may not necessarily be reused on
different source codes to perform the same analyses.

• Acting as a macro language for plug-in developers. They can perform actions on the
GUI to generate a journal and then adapt it to perform a more general but similar task.

• Debugging. In the GUI, a journal is always generated, even when an error occurs. The
output journal usually contains information about this error. Thus it provides an easy
way to reproduce the very same error. Consequently, it is advised to attach the journal
when reporting an error in the Frama-C BTS (see Chapter 13).

By default, a journal is generated upon exit of the session only whenever Frama-C crashes in
graphical mode. In all other cases, no journal is generated. This behavior may be customized

49

CHAPTER 8. GENERAL KERNEL SERVICES

by using the option -journal-enable (resp. -journal-disable) that generates (resp. does
not generate) a journal upon exiting the session.

Special Cases Modifications of options -help, -verbose, -debug (and their corresponding
counterpart) as well as -explain, -quiet and -unicode are not written in the journal.

50

Chapter 9

Graphical User Interface

Running frama-c-gui or frama-c-gui.byte displays the Frama-C Graphical User Interface
(GUI).

9.1 Frama-C Main Window

Upon launching Frama-C in graphical mode on some C files, the following main window is
displayed (figure 9.1):

Figure 9.1: Initial View

From top to bottom, the window is made of several separate sub-parts.

51

CHAPTER 9. GRAPHICAL USER INTERFACE

The menu bar organizes the highest-level functions of the tool into structured categories.
Plug-ins may also add their own entries in the “Analyses” menu.

The toolbar gives access to the main functions of the tool. They are usually present in one
menu of the menu bar. Plug-ins may also add their own entries here.

The file tree provides a tree-like structure of the source files involved in the current analysis.
This tree lists all the global variables and functions each file contains. Within a file,
entries are sorted alphabetically, without taking capitalization into account. Functions
are underlined, to separate them from variables. Plug-ins may also display specific
information for each file and/or function. Finally, the “Source file” button offers some
options to filter the elements of the file tree:

• The “Hide variables” and “Hide functions” options offer the possibility to hide the
non-desired entries from the tree.

• The “Flat mode” option flattens the tree, by removing the filename level. Instead,
functions and globals are displayed together, as if they were in a big namespace.
This makes it easier to find a function whose only the name is known.

The normalized and original source code views display the source code of the current
selected element of the file tree and its normalized code (see Section 5.4). Left-clicking
on an object (statement, left-value, etc) in the normalized source code view displays
information about it in the “Information” page of the Messages View and displays the
corresponding object of the original source view, while right-clicking on them opens a
contextual menu. Items of this menu depend on the kind of the selected object and on
plug-in availability.

Only the normalized source view is interactive: the original one is not.

The plug-ins view shows specific plug-in interfaces. The interface of each plug-in can be
collapsed.

The messages view contains by default six different pages, namely:

Information: provides brief details on the currently selected object, or informative
messages from the plugins.

Messages: shows important messages generated by the Frama-C kernel and plug-ins,
in particular all alarms. Please refer to the specific documentation of each plug-in
in order to get the exact form of alarms. Alarms that have a location in the original
source can be double-clicked; this location will then be shown in the original and
normalized source code viewers.1

Console: displays messages to users in a textual way. This is the very same output
than the one shown in batch mode.

Properties: displays the local and consolidated statuses of properties.

Values: displays information relative to the Value Analysis plug-in.

WP Goals: displays information relative to the WP plug-in.
1Notice however that the location in the normalized source may not perfectly correspond, as more than

one normalized statement can correspond to a source location.

52

9.2. MENU BAR

9.2 Menu Bar

The menu bar is organised as follows:

The file menu proposes items for managing the current session.

Source files: changes the analyzed files of the current project.
Reparse: reloads the source files of the current project from the disk, reparses them,

and restarts the analyses that have been configured.
Save session: saves all the current projects into a file. If the user has not yet specified

such a file, a dialog box is opened for selecting one.
Save session as: saves all current projects into a file chosen from a dialog box.
Load Session: opens a previously saved session.

This fully resets the current session (see Section 8.1.3).
Exit Frama-C: exits Frama-C without saving.

The project menu displays the existing projects, allowing you to set the current one. You
can also perform miscellaneous operations over projects (creating from scratch, dupli-
cating, renaming, removing, saving, etc).

The analyses menu provides items for configuring and running plug-ins.

• Configure and run analyses: opens the dialog box shown in Figure 9.2, that
allows setting Frama-C parameters and re-running analyses.

Figure 9.2: The Analysis Configuration Window

53

CHAPTER 9. GRAPHICAL USER INTERFACE

• Compile and run an ocaml script: allows you to run an OCaml file as a plug-in
(in a way similar to the option -load-script, see Section 4.4).

• Load and run an ocaml module: allows you to run a pre-compiled OCaml file as
a plug-in (in a way similar to the option -load-module, see Section 4.4).

• Other items are plug-in specific.

The debug menu is only visible in debugging mode and provides access to tools for helping
to debug Frama-C and their plug-ins.

The help menu provides help items.

9.3 Tool Bar

The tool bar offers a more accessible access to some frequently used functions of the menu
bar. Currently, the available buttons are, from left to right:

• The Exit button, that exits Frama-C.

• Four buttons Source files, Reparse, Load Session and Save session, equivalent
to the corresponding entries in the File menu.

• Two navigation buttons, Back and Forward. They can be used to move within the
history of the functions that have been viewed.

• The Analyses button, equivalent to the one in the Analyses menu.

• A Stop button, which halts the running analyses and restores Frama-C to its last known
valid configuration.

54

Chapter 10

Reports

An execution of Frama-C outputs many messages, warnings and various property statuses
in textual form. The Graphical User Interface (see Chapter 9) is a very good place to
visualize all these results, but there are no synthetic results and integration with development
environments can be difficult.
The report plug-in, provided by default with the Frama-C platform, is designed for this
purpose. It provides the following features, which we detail in turn:

• Printing a summary of property consolidated statuses;

• Exporting a CSV file of property consolidated statuses;

• Filtering and classifying warnings, errors and property consolidated statuses, based on
user-defined rules in JSON format;

• Output the above classification in JSON format;

• Make Frama-C exit with a non-null status code on some classified warning or error.

Frama-C has recently earned the ability to output data in the SARIF1 format. This is
performed by the Markdown Report plug-in, described in section 10.4.

10.1 Reporting on Property Statuses

The following options of the report plug-in are available for reporting on consolidated prop-
erty statuses:

-report Displays a summary of property statuses in textual form. The output is struc-
tured by functions and behaviors. The details of which plug-ins participate into the
consolidation of each property status is also provided. This report is designed to be
human-readable, although it can be verbose, subject to changes, and not suitable for
integration with other tools.

-report-print-properties Also print the properties definition (in ACSL form) within the
report.

1Static Analysis Results Interchange Format, https://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=sarif

55

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif

CHAPTER 10. REPORTS

-report-(no)-proven If not set, filter out the proven properties from the report.

-report-(no)-specialized If not set, filter out the properties that are auxiliary instances
of other properties, like the preconditions of a function at its call sites.

-report-untried If set, also include in the report the properties that have not been tried.

10.2 Exporting to CSV

The consolidated property status database can be exported to a CSV file, eg. for an easy
import into Excel. To use this feature, simply use the following option of the report plug-in:

-report-csv <file>.csv Output the report in CSV format into the specified file.

Notice than it is not necessary to set -report option to use this feature. It is highly recom-
mended to use this option in combination with the following other standard Frama-C options:

> frama-c ... -then -no-unicode -report-csv <file>.csv

The format of the output CSV file is a collection of property consolidated statuses, with one
property per line. Each line consists of a collection of TAB (ascii 0x0A) separated columns.
The first line of the report contains the title of the columns, as follows:

> head -1 <file>.csv
directory file line function property kind status property

10.3 Classification

We denote by event any warning, error and (finally consolidated) property status emitted by
any plug-in during the execution of Frama-C. We introduce the notion of event classification
as follows:

• An event can be assigned a class, identified by a name;

• The event is associated to a location (file,line) when available;

• It can be reformulated with a title and an extended description;

• An event may trigger an action when it is detected.

The classification of events is defined by the user through classification rules which are pro-
vided to the report plug-in via configuration files in JSON format. A typical invocation of
Frama-C with classification has the following structure:

> frama-c -report-rules <file>.json ...other plugins... -then -report-classify

The collection of events starts once the classification rules have been loaded. Finally, a
classification report is build. There are various options to tune the classification process and
the reporting output. See section 10.3.6 for details.
Remark: it is possible to emit different classification reports successively from the command
line. At each -report-classify, the pool of collected events is flushed and will not be
included in subsequent reports.

56

10.3. CLASSIFICATION

10.3.1 Action

Classified events can trigger one of the following actions:

SKIP the event is filtered out and not included in the final report;

INFO the event is kept for user information;

REVIEW the event shall be carefully read by the user, it contains verifications to be performed
by hand to guarantee the soundness of the provided results;

ERROR all the results shall be considered wrong due to improper use of the tool.

By default, Frama-C warnings shall trigger a REVIEW action and errors an ERROR one. However,
it is possible to modify actions with classification rules.

10.3.2 Rules

Each classification rule is a JSON record following the structure of Figure 10.1. A file of
classification rules shall contain one rule or an array of rules. Several files can be loaded. The
first rule that applies to an event takes priority over subsequent ones.

An individual rule consists of one mandatory pattern field, and other optional fields. All the
details are provided in the figure.

{
// Optional Fields

"classid": "<identifier>" ; // Default is "unclassified"
"plugin": "<identifier>" ; // Default is "kernel"
"category": "<category>" ; // Default is "*" for all categories
"title": "<free text>" ; // Default is a short name of the event
"descr": "<free text>" ; // Default is the entire text of the event
"action": "<SKIP|INFO|REVIEW|ERROR>" ; Default is 'REVIEW'

// Mandatory Pattern Field (unless a category is specified)

["error" // Applies to error messages
| "warning" // Applies to warning messages
| "unknown" // Properties with « Unknown » status
| "untried" // Properties with « Not Tried » status
| "invalid" // Properties with « Invalid » status
| "unproved" // Properties with any status other than « Valid »
] : "<regexp>" ;

}

Figure 10.1: Classification Rule JSON Format

Plug-ins are identified by their short name, typically "rte" for the Rtegen plug-in, see
frama-c -plugins for details.

57

CHAPTER 10. REPORTS

Category filters apply to active warning categories2 or warning categories promoted to errors.
Use option frama-c -[plugin]-warn-key help to display the list of available warning cat-
egories for a given plugin. Category filters use the same syntax and meaning than warning
control options: category a:b applies to all messages with category a:b[:...], but not to
messages with category a or c[:...].

When using a category filter, the pattern field can be omitted to match all warning messages
of this category.

10.3.3 Regular Expressions

OCaml regular expressions are accepted for <regexp> pattern fields.

Regular expressions are used to determine when a rule applies to an event. The rule matches
a warning or error of the specified plug-in if the regular expression matches a prefix of the
event message (excluding location and header). For property rules, the regular expression
must match a prefix of the canonical property name, which have the following structure:

<Function><Behavior><Category><Names>

Each part of the canonical property name is optional and separated by a ‘_‘ character.

10.3.4 Reformulation

The optional fields title and descr of a classification rule allow for a reformulation of the
event. Reformulations are plain text enriched by references to sub-parts of the matching reg-
ular expression of the event. Hence, * stands for the entire event message, \0 is the matched
prefix, \1..\9 refers to the corresponding sub-group of the OCaml regular expression. You
can use \n to insert a new-line character and \<c> to escape character <c>.

10.3.5 JSON Output Format

The classification results can be exported to a single file in JSON format. It consists of an
array of classified events, each one following the format given in Figure 10.2.

{
"classid": "<ident>" ;
"action": "<INFO|REVIEW|ERROR>" ;
"title": "<free text>" ;
"descr": "<free text>" ;
["file": "<path>" ; "line": "<number>" ;]

}

Figure 10.2: Classified Event JSON Format

2Warning categories are described in section 6.2.

58

10.4. SARIF OUTPUT VIA THE MARKDOWN REPORT PLUG-IN

10.3.6 Classification Options

-report-classify Report classification of all properties, errors and warnings (opposite op-
tion is -report-no-classify)

-report-exit Exit on error (set by default, opposite option is -report-no-exit)

-report-output <*.json> Output -report-classify in JSON format

-report-output-errors <file> Output number of errors to <file>

-report-output-reviews <file> Output number of reviews to <file>

-report-output-unclassified <file> Output number of unclassified to <file>

-report-absolute-path Force absolute path in JSON output. Normal behavior is to output
relative filepath for files that are relative to the current working directory.

-report-rules <*.json,...> Configure the rules to apply for classification, and start mon-
itoring.

-report-status Classify also property statuses (set by default, opposite option is -report-
no-status)

-report-stderr Output detailed textual classification on stderr (opposite option is -report-
no-stderr)

-report-stdout Force detailed textual classification on stdout (opposite option is -report-
no-stdout)

-report-unclassified-error <action> Action to be taken on unclassified errors (default
is: 'ERROR')

-report-unclassified-invalid <action> Action to be taken on invalid properties (de-
fault is: 'ERROR')

-report-unclassified-unknown <action> Action to be taken on unknown properties (de-
fault is: 'REVIEW')

-report-unclassified-untried <action> Action to be taken on untried properties (de-
fault is: 'SKIP')

-report-unclassified-warning <action> Action to be taken on unclassified warnings (de-
fault is: 'REVIEW')

10.4 SARIF Output via the Markdown Report Plug-in

SARIF is a JSON-based standard output format for static analysis results. It is currently
supported by Frama-C in its version 2.1.0. Some IDEs, such as Visual Code, contain plug-
ins which allow importing SARIF reports. A few Microsoft tools and libraries related to
SARIF are available at https://sarifweb.azurewebsites.net/. Microsoft also publishes
command-line tools for SARIF, made available via NPM packages and .Net Core applications.

59

https://sarifweb.azurewebsites.net/

CHAPTER 10. REPORTS

10.4.1 Prerequisites

SARIF output is produced by the Markdown Report (MdR) plug-in. The plug-in is distributed
with Frama-C, but it depends on optional features, namely the opam package ppx_deriving_yojson,
so it may not be available in every Frama-C installation.
When installing Frama-C via opam, include the optional dependency ppx_deriving_yojson
to ensure MdR will be available. Note that MdR has other features and output formats,
which are not described here.

10.4.2 Generating a SARIF Report

To enable generation of a SARIF report, use option -mdr-gen sarif. It will produce a JSON
file (by default, report.sarif) with an entry for each ACSL property.
You can change the output file name with option -mdr-out <f>.
Note that there are no filtering options in the SARIF output; it is up to the tools importing
the file to decide which information to sort, filter, and display.
For more details about Markdown Report, use option -mdr-help.

60

Chapter 11

Variadic Plug-in

This chapter briefly presents the Variadic plug-in, which performs the translation of calls
to variadic functions into calls to semantically equivalent, but non-variadic functions.

Variadic functions

Variadic functions accept a variable number of arguments, indicated in their prototype by an
ellipsis (. . .) after a set of fixed arguments.

Some functions in the C standard library are variadic, in particular formatted input/output
functions, such as printf/scanf. Due to the dynamic nature of their arguments, such
functions present additional challenges to code analysis. The Variadic helps dealing with
some of these challenges, reducing or eliminating the need for plug-ins to have to deal with
these special cases.

11.1 Translating variadic function calls

ACSL does not allow the direct specification of variadic functions: variadic arguments have no
name and no statically known type. The Variadic plug-in performs a semantically-preserving
translation of calls to such functions, replacing them with non-variadic calls.

For instance, consider the following user-defined variadic function sum, whose first argument
n is the number of elements to be added, and the remaining n arguments are the values
themselves:

#include <stdarg.h> // for va_∗ macros
int sum(unsigned n, ...) {

int ret = 0;
va_list list ;
va_start(list , n);
for(int i = 0; i < n; i++){
ret += va_arg(list, int);

}
va_end(list);
return ret;

}

61

CHAPTER 11. VARIADIC PLUG-IN

int main(){
return sum(5, 6, 9, 14, 12, 1);

}

Since Variadic is enabled by default, running Frama-C on this code will activate the variadic
translation. The main differences in the translated code are:

• the prototype of sum becomes int sum(unsigned n, void * const *__va_params);

• the call to sum is converted into:
int sum_ret; // temporary storing the return value
{

int __va_arg0 = 6;
int __va_arg1 = 9;
int __va_arg2 = 14;
int __va_arg3 = 12;
int __va_arg4 = 1;
void *__va_args[5] = {& __va_arg0, & __va_arg1,

& __va_arg2, & __va_arg3, & __va_arg4};
sum_ret = sum(5,(void * const *)(__va_args));

}

This translation is similar to the relation between functions such as printf and vprintf,
where the former accepts a variable number of arguments, while the latter accepts a single
va_list argument.

11.2 Automatic generation of specifications for libc functions

The most common use case of variadic functions are the ubiquitous printf/scanf, but a few
other functions in the standard C library are variadic, such as open and fcntl. The former
are entirely dependent on the format string, which can have any shape, while the latter are
limited to a fixed set of possible argument numbers and types. In both cases, it is possible
to specialize the function call and generate an ACSL specification that (1) performs some
checks for undefined behaviors (e.g. that the argument given to a %d format is a signed int),
and (2) ensures postconditions about the return value and modified arguments (namely for
scanf). The Variadic plug-in generates such specifications whenever possible.
Note that not all calls have their specification automatically generated; in particular, calls
to formatted input/output functions using non-static format strings are not handled, such as
the following one:

printf (n != 1 ? "%d errors" : "%d error", n_errors);

In this case, the variadic translation is performed, but the function call is not specialized,
and no specification is automatically generated.

11.3 Usage

11.3.1 Main options

By default, Variadic is enabled and runs after parsing. A few options are available to modify
this behavior:

62

11.3. USAGE

-variadic-no-translation : disables the translation performed by the plug-in; to be used
in case it interferes with some other plug-in or analysis.

-variadic-no-strict : disables warnings about non-portable implicit casts in the calls of
standard variadic functions, i.e. casts between distinct integral types which have the
same size and signedness.

11.3.2 Similar diagnostics by other tools

Some of the issues detected by Variadic, namely some kinds of incompatible arguments in
formatted input/output functions, are also detected by compilers such as GCC and Clang,
albeit such diagnostics are rarely enabled.

In particular, GCC’s option -Wformat-signedness (available from GCC 5) reports some
issues with signed format specifiers and unsigned arguments, and vice-versa, in cases such as
the following:

printf ("%u", -1);

Clang’s option -Wformat-pedantic (available at least since Clang 4.0, possibly earlier) also
enables some extra diagnostics:

printf ("%p", "string");

warning: format specifies type 'void *' but the argument has type 'char *'.

Note that no single tool is currently able to emit all diagnostics emitted by the other two.

11.3.3 Common causes of warnings in formatted input/output functions

Many C code bases which make use of formatted input/output functions do not specify all
of them in a way that is strictly conformant to the C standard. This may result in a rather
large number of warnings emitted by Variadic, not all of them immediately obvious.

It is however important to remember that C99, §7.19.6.1 states that:

If a conversion specification is invalid, the behavior is undefined. If any argument
is not the correct type for the corresponding conversion specification, the behavior
is undefined.

CERT C lists this as Rule FIO47-C.

Some common types of discrepancies are listed below, with an explanation of their causes.

Usage of %u or %x for values of type unsigned char and unsigned short. The warn-
ing emitted by Variadic in this case will mention a signed type being cast to unsigned.
Albeit counterintuitive, this is a consequence of the fact that default argument promotions
take place for variadic arguments, and thus unsigned char and unsigned short arguments
are promoted to (signed) int, which is incompatible with %u and %x.

To avoid the warning, use the appropriate length modifiers: hh for char and h for short.

63

CHAPTER 11. VARIADIC PLUG-IN

Usage of %o, %x and %X to print signed values. The standard specifies that all of
these modifiers expect unsigned arguments. A cast to the corresponding unsigned type must
therefore be present.

11.3.4 Pretty-printing translated code

The output produced by Variadic, in particular when using va_* macros (such as va_list),
is not guaranteed to be parsable, unless option -print-libc is enabled.

64

Chapter 12

Analysis Scripts

This chapter describes some tools and scripts shipped with Frama-C to help users setup and
run analyses on large code bases. These scripts can also help dealing with unfamiliar code
and automating analyses.

12.1 Requirements

These analysis scripts are chiefly based on the following tools:

Python : most scripts are written using Python 3. Some scripts require features from
specific Python versions, and perform version checks when starting.

GNU Make : the main workflow for analysis scripts consists in using GNU Make (4.0 or
newer) to compute dependencies and cache intermediate results.

Bash : some scripts are written in Bash.

Besides those, a few tools are occasionally required by the scripts, such as Perl and GNU
Parallel.

12.2 Usage

Most scripts are accessible via the frama-c-script command, installed along with Frama-
C. Running this command without any arguments prints the list of commands, with a brief
description of each of them. Some extra scripts are available by directly running them; in both
cases, the actual scripts themselves are installed in Frama-C’s share directory, underneath
analysis-scripts.

12.2.1 General Framework

Note: while the analysis scripts are intended for usage in a wide variety of scenarios with
different plug-ins, they currently focus on analyses with the Eva plug-in only.
The main usage mode of analysis-scripts consists in creating a Makefile dedicated to the
analysis of a C code base.
This Makefile has three main purposes:

65

CHAPTER 12. ANALYSIS SCRIPTS

1. To separate the main analysis steps, saving partial results and logging output messages;

2. To avoid recomputing unnecessary data when modifying analysis-specific options;

3. To document analysis options and improve replayability, e.g. when iteratively fine-
tuning the analysis in order to improve its results.

The intended usage is as follows:

1. The user identifies a C code base on which they would like to run Frama-C;

2. The user runs a script to interactively fill a template for the analysis, with the list of
source files and required parameters (architecture, preprocessing flags, main function);

3. The user edits and runs the generated Makefile, adjusting the analysis as needed and
re-running fcmake1.

Ideally, after modifying the source code or re-parametrizing the analysis, re-running fcmake
should be enough to obtain a new result.
Section 12.3 details usage of the Makefile and presents an illustrative diagram.

12.2.2 Necessary Build Information

The command frama-c-script make-template can be used to generate the Makefile from
a template. The user must fill in the following information, required for running an Eva
analysis:

machdep : architectural information about the system where the code will run: integer
type sizes, compiler, OS, etc. See section 5.4 for more details.

preprocessing flags : options given to the C preprocessor, mainly macros (-D) and include
directories (-I).

list of sources : the actual list of source files that make a logical unit (e.g. a test case or a
whole program), without duplicate function definitions.

main function : the function where the analysis will start; it is often main, but not always.
(Note: Frama-C itself thes not require a main function, but plug-ins such as Eva do.)

A project without this information is incomplete; an alternative workflow is then necessary.
The next section presents some possibilities to retrieve such information.

12.2.3 Possible Workflows in the Absence of Build Information

It is sometimes the case that the Frama-C user is not the developer of the code under analysis,
and does not have full build information about it; or the code contains non-portable features
or missing libraries which prevent Frama-C from parsing it. In such cases, these analysis
scripts provide two alternative workflows, depending on how one prefers to choose their
source files: one at a time or all-in, described below.

1fcmake is described in Section 12.3.

66

12.2. USAGE

One at a time
In this workflow, the user starts from the entry point of the analysis: typically the main
function of a program or a test case. Only the file defining that function is included at first.
Then, using make-wrapper (described in section 12.4), the user iteratively adds new sources
as needed, so that all function definitions are included.

• Advantages: higher code coverage; faster preprocessing/parsing; and avoids including
possibly unrelated files (e.g. for an alternative OS/architecture).

• Drawbacks: the iterative approach recomputes the analysis several times; also, it may
miss files containing global initializers, which are not flagged as missing.

All-in
In this workflow, the user adds all source files to the analysis, and if necessary removes some
of them, e.g. when there are conflicting definitions, such as when multiple test files define a
main function.

• Advantages: optimistic approach; may not require any extra iterations, if everything is
defined, and only once. Does not miss global initializers, and may find issues in code
which is not reachable (e.g. syntax-related warnings).

• Drawbacks: preprocesses and parses several files which may end up never being used;
smaller code coverage; if parsing fails, it may be harder to find the cause (especially if
due to unnecessary sources).

12.2.4 Using a JSON Compilation Database (JCDB)

Independently of the chosen workflow, some partial information can be retrieved when CMake
or Makefile scripts are available for compiling the sources. They allow the production of a
JSON Compilation Database (compile_commands.json, called JCDB for short; see related
option in section 5.2). This leads to a different workflow:

1. For CMake:

• Run cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1 <targets>.

For Makefile:

• Install Build EAR (https://github.com/rizsotto/Bear);
• Run bear make <targets> (instead of make <targets>).

In both cases, you will obtain a compile_commands.json file.

2. Run frama-c-script list-files. A list of the compiled files, along with files defining
a main function, will be presented.

3. Run frama-c-script make-template to create a template for Frama-C/Eva. Answer
“yes” when asked about using the compile_commands.json file.

Ideally, the above approach should result in a working template. In practice, however, the
compilation database may include extraneous sources (used to compile other files than the
target object) and duplicate flags (e.g. when compiling the same source for different binary
targets or test cases). Manual intervention may be necessary.

67

https://github.com/rizsotto/Bear

CHAPTER 12. ANALYSIS SCRIPTS

12.3 Using the generated Makefile, via fcmake

The generated Makefile can be used to run one or several analyses. Its basic usage involving
the fcmake alias (equivalent to make -C .frama-c) is the following:

• fcmake <target>.parse: parse the sources

• fcmake <target>.eva: run Eva

• fcmake <target>.eva.gui: open the results in the GUI

This section details how to produce the Makefile, how to define the fcmake alias, and lists
other useful targets and settings.

Storing Frama-C files and results in .frama-c

By default, the generated GNUmakefile is created in the (hidden) directory .frama-c, which
should contain all files specific to Frama-C. This arrangement provides several benefits:

• Frama-C-related files do not pollute the original code; everything is stored in a separate
directory, easily identifiable by its name;

• Existing makefiles are not overridden by Frama-C’s;

• Having a standardized structure helps with CI integration.

However, special attention is needed due to a few consequences of this structure:

• The make process will be run from a subdirectory of the current one; therefore, source
and include paths must be either absolute or prefixed with ..;

• In some cases, it may be necessary to add flags such as -I .., so that the preprocessor
will find the required files.

Defining and using fcmake

We recommend defining the following alias in your shell:

alias fcmake='make -C .frama-c'

Running fcmake will have the same effect as running make inside the .frama-c directory.

The commands in this section assume usage of the fcmake alias defined above.

68

12.3. USING THE GENERATED MAKEFILE, VIA FCMAKE

Figure 12.1: Overview of the analysis-scripts workflow: the inputs on the left produce a
GNUmakefile which is then used for parsing, analyzing and visualizing results.

Frama-C makefile targets and variables

The diagram in Fig. 12.1 summarizes the usage of the generated Makefile. Its targets and
outputs are detailed in this section.

Each analysis is defined in a target, written by the user as follows:

<target>.parse: file1.c file2.c ...

That is, the target name (chosen by the user), suffixed with .parse, is defined as depending
on each of its source files. Changes to any of these sources will trigger a recomputation of
the AST.

Note that, since the generated makefile is inside .frama-c, relative paths to source files will
always begin with ../, except for sources located within .frama-c, e.g. fc_stubs.c.

Target names can contain hyphens and underscores, but neither slashes nor dots. See also
the Technical Notes section about some current limitations.
Then, for each .parse target, a corresponding .eva target needs to be added to the TARGETS
variable in the Makefile. This will run Eva on the test case.

Each .eva target depends on its corresponding .parse target; if the sources change, the
analysis must take into account the new AST.

12.3.1 Important Variables

Several Makefile variables are available to customize Frama-C; the main ones are presented
below.

TARGETS : as mentioned before, must contain the list of targets, suffixed with .eva.

69

CHAPTER 12. ANALYSIS SCRIPTS

CPPFLAGS : preprocessing options, passed to Frama-C inside option -cpp-extra-args,
when parsing the sources.

FCFLAGS : extra command-line options given to Frama-C when parsing the sources and
when running analyses. Typically, the options given to the Frama-C kernel.

EVAFLAGS : extra command-line options given to Eva when running its analyses.

These variables are defined globally, but they can also be customized for each target; for
instance, if a given target t1 has a main function test1 and requires a global macro -DTEST1,
but target t2’s main function is test2 and it requires -DTEST2, you can locally modify
FCFLAGS and CPPFLAGS as follows:

t1.parse: FCFLAGS += -main test1
t1.parse: CPPFLAGS += -DTEST1
t2.parse: FCFLAGS += -main test2
t2.parse: CPPFLAGS += -DTEST2

-I flags referencing relative paths must take into account the fact that Frama-C will be run
from the .frama-c directory, and therefore must include an initial “../”.

12.3.2 Predefined targets

The predefined targets below are the raison d’être of the generated Makefile; they speed up
analyses, provide self-documentation, and enable quick iterations during parametrization of
the analysis.

all (default target) : the default target simply calls <target>.eva, for each <target>
added to variable TARGETS. Does nothing once the analysis is finished and saved.

<target>.parse : runs Frama-C on the specified target, preprocessing and parsing its source
files. Produces a directory <target>.parse containing several logs, a pretty-printed
version of the parsed code, and a Frama-C session file (framac.sav) to be loaded in the
GUI or by other analyses. Does nothing if parsing already happened.

<target>.eva : loads the parsed result (from the .parse target) and runs the Eva plug-
in, with the options given in EVAFLAGS. If the analysis succeeds, produces a directory
<target>.eva with the analysis results and a saved session file. If the analysis fails,
tries to save a partial result in <target>.eva.error (when possible).

<target>.eva.gui : loads the result of the corresponding <target>.eva session and opens
it in the GUI. This allows inspecting the results of Eva. This target always opens the
GUI, even when no changes have happened.

clean : removes all results produced by the .parse and .eva targets.

12.3.3 Adding new analyses and stages

Besides the predefined Eva-oriented steps, you can easily add other stages and analyses, which
may or may not depend on Eva.
For instance, to add a SARIF report using the Markdown Report plug-in, you can simply add,
before the template epilogue, the following lines, where target is the name of your target:

70

12.4. SCRIPT DESCRIPTIONS

target.sarif: target.parse
$(FRAMAC) -load $^/framac.sav -mdr-gen sarif -mdr-out $@

This rule will create a file target.sarif inside the .frama-c directory. The rule will depend
on the parsing of target.parse and use the saved session at target.parse/framac.sav.
If you want the report to run after the analysis with Eva, instead, simply replace .parse with
.eva.
Then, running fcmake target.sarif will create or update the report, recomputing depen-
dencies when needed.
Adding a new stage, with a saved session that can be reused later for other stages and
analyses, requires just a few more lines, as in the following example:

target.wp: target.parse
mkdir -p $@
$(FRAMAC) -load $^/framac.sav -wp -save $@/framac.sav

In the example above, we define a new stage, target.wp, which depends on the parsing stage,
runs the WP plug-in, and saves the result in a session file. This session file can then be loaded
by another stage, or in the GUI. For instance, the .gui predefined target works out of the
box in this case: running fcmake target.wp.gui will load the saved session in the Frama-C
GUI.

12.4 Script Descriptions

The most useful commands are described below. Run frama-c-script help for more details
and optional arguments.

make-template : creates the initial Makefile, based on a template. This command creates
a file named .frama-c/GNUmakefile with some hardcoded sections, some sections filled
in interactively by the user, and comments indicating which parts may need change.
Once created, it enables the general workflow mentioned earlier.

make-wrapper <target> <args> : calls make <target> <args> with a special wrap-
per: when running Eva, upon encountering one of a few known error messages, suggests
some actions on how to proceed. For instance, if a missing function definition is encoun-
tered when analyzing the code with Eva, the wrapper will look for its definition and, if
found, suggest that its source code be added to the analysis. This script is meant to be
used with the one at a time workflow described in section 12.2.3.

find-fun <fun> : looks for possible declarations and definitions of function <fun>. Uses a
heuristic that does not depend on Frama-C being able to parse the sources. Useful to
find entry points and missing includes.

Other commands, only useful in a few cases, are described below.

configure <machdep> : runs a configure script (based on Autoconf) with some settings
to emulate a more portable system, removing optional code features that could prevent
Frama-C from parsing the sources. Currently, it still depends partially on the host
system, so many features are not disabled.

71

CHAPTER 12. ANALYSIS SCRIPTS

flamegraph : opens a flamegraph2 to visualize which functions take most of the time during
analysis with Eva.

summary : for monitoring the progression of multiple analyses defined in a single Makefile.
Presents a summary of the analyses when done. Mostly useful for benchmarking or
when dealing with several test cases.

The following commands require a JSON Compilation Database.

list-files : lists all files in the given JCDB. Useful for filling out the Makefile template when
running make-template.

normalize-jcdb : converts absolute paths inside a compile_commands.json file into relative
paths (w.r.t. PWD) when possible. Used to allow moving/versioning the directory
containing the JCDB file.

Finally, there is the following script, which is not available as a command in frama-c-script,
since its usage scenario is very different. It is available at
$FRAMAC_SHARE/analysis-scripts/creduce.sh.

creduce.sh : A script to help running the C-Reduce3 tool to minify C programs causing
crashes in Frama-C; useful e.g. when submitting a bug report to Frama-C, without
needing to submit potentially confidential data. The script contains extensive comments
about its usage. It is also described in a post4 from the Frama-C blog.

To use the creduce.sh script, you need to have the C-Reduce tool installed in your path or
in environment variable CREDUCE.

12.5 Practical Examples: Open Source Case Studies

The open-source-case-studies Git repository (OSCS for short), available at https://git.
frama-c.com/pub/open-source-case-studies, contains several open-source C code bases
parametrized with the help of analysis scripts. Each case study has its own directory, with a
.frama-c/GNUmakefile defining one or more analysis targets.
Due to the variety of test cases, OSCS provide practical usage examples of the GNUmakefile
described in this chapter. They are periodically synchronized w.r.t. the public Frama-C repos-
itory (daily snapshots), so they may contain features not yet available in the major Frama-C
releases. A few case studies may also contain legacy features which are no longer used; but
overall, they provide useful examples and allow the user to tweak analysis parameters to test
their effects.

12.6 Technical Notes

This section lists known issues and technical details which may help users understand some
unintuitive behaviors.

2See https://github.com/brendangregg/FlameGraph for details about flamegraphs.
3See https://embed.cs.utah.edu/creduce for more details.
4Debugging Frama-C analyses: better privacy with C-Reduce, at https://pub.frama-c.com/scripts/

usability/2020/04/02/creduce.html.

72

https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
https://github.com/brendangregg/FlameGraph
https://embed.cs.utah.edu/creduce
https://pub.frama-c.com/scripts/usability/2020/04/02/creduce.html
https://pub.frama-c.com/scripts/usability/2020/04/02/creduce.html

12.6. TECHNICAL NOTES

Changes to header files do not trigger a new parsing/analysis. Currently, changes
to included files (e.g. headers) are not tracked by the generated Makefile and may require
running fcmake with -B (to force recomputation of dependencies), or running fcmake clean
before re-running fcmake.

Most scripts are heuristics-based and offer no correctness/completeness guaran-
tees. In order to handle files before the source preparation step is complete (that is, before
Frama-C is able to parse the sources into a complete AST), most commands use scripts based
on syntactic heuristics, which were found to work well in practice but are easily disturbed by
syntactic changes (e.g. whitespaces).

Most commands are experimental. These analysis scripts are a recent addition and
subject to changes. They are provided on a best-effort basis.

73

Chapter 13

Reporting Errors

If Frama-C crashes or behaves abnormally, you are invited to report an issue via the Frama-
C Gitlab repository, located at https://git.frama-c.com. The New Issue page (https:
//git.frama-c.com/pub/frama-c/issues/new) allows creating a new report, but you will
need an account.
Unless you have an account provided by the Frama-C team, you need to sign in using a
Github account, as shown in Figure 13.1.

Figure 13.1: The Frama-C Gitlab login page. Note that no direct account creation is possible;
you need to sign in via Github unless the Frama-C team provided you an account.

When creating a new issue, choose the bug_report template next to Title, then enter the
title and fill the template.

Bug reports can be marked as public or confidential. Public bug reports can be read by
anyone and may be indexed by search engines. Confidential bug reports are only shown to
Frama-C developers.

75

https://git.frama-c.com
https://git.frama-c.com/pub/frama-c/issues/new
https://git.frama-c.com/pub/frama-c/issues/new

CHAPTER 13. REPORTING ERRORS

Reporting a new issue opens a webpage similar to the one shown in Figure 13.2.

Figure 13.2: The Gitlab new issue page, with the bug_report template. The checkbox at
the bottom enables marking the issue as private, so that only Frama-C developers can see it.

Please fill the template as precisely as possible, in English1, which helps the Frama-C team
more quickly understand, reproduce and respond to the issue. The form uses Markdown
syntax and you can attach source files and screenshots to the issue.
Replies and updates concerning your issue are sent by e-mail by Gitlab.

1French is also a possible language choice for private entries.

76

Appendix A

Changes

This chapter summarizes the changes in this documentation between each Frama-C release.
First we list changes of the last release.

22.0 (Titanium)

• Getting Started: added option -print-config-json.

• Getting Started: added option -autocomplete.

• Getting Started: updated installation instructions.

• Preparing the Sources: added option -print-cpp-commands.

• Reports: add section about SARIF output (via Markdown Report).

21.0 (Scandium)

• Preparing the Sources: added option -cpp-extra-args-per-file.

• Customizing Analyzers: added options -warn-invalid-pointer and -warn-pointer-downcast

20.0 (Calcium)

• Normalizing the Source Code: added options -keep-unused-types and its oppo-
site, -remove-unused-types.

18.0 (Argon)

• Feedback Options: change options governing status of warning categories

• Normalizing the Source Code: added category @inline to option -inline-calls,
and added option -remove-inlined.

• Customizing Analyzers: added options -warn-left-shift-negative,
-warn-right-shift-negative and
-warn-invalid-bool.

77

APPENDIX A. CHANGES

Chlorine-20180501

• Normalizing the Source Code: added option -inline-calls.

• Preparing the Sources: documentation of macros that can be defined to customize
the standard C library.

• Preparing the Sources: deprecated option -implicit-function-declaration (su-
perseded by warning categories; equivalent to
-kernel-warn-{key,abort,feedback} typing:implicit-function-declaration).

• Setting Up Plug-ins: remove obsolete references to static plug-ins and –with-all-static
configure option.

• Feedback Options: introduction of warning categories and statuses.

• Customizing Analyzers: added option -warn-special-float.

• Preparing the Sources: added option -json-compilation-database.

• Reports: new chapter documenting reporting facilities.

• Variadic Plug-in: new chapter documenting the Variadic plug-in.

Sulfur-20171101

• Preparing the Sources: removed option -force-rl-arg-eval.

• Normalizing the Source Code: added section about compiler and language exten-
sions (Section 5.6).

• Normalizing the Source Code: removed option -custom-annot-char.

Phosphorus-20170501

• Getting Started: Zarith package is now mandatory.

• Setting Up Plug-ins: added option -autoload-plugins.

• Preparing the Sources: renamed option -cpp-gnu-like to -cpp-frama-c-compliant.

• Getting Started: document new bash completion script.

• Getting Started: added option -print-libc.

Silicon-20161101

• Getting Started: OCaml version greater or equal than 4.05.0 is required

• Normalizing the Source Code: New option -c11

78

Aluminium-20160501

• Getting Started: document new option -then-replace.

• Getting Started: document new option -set-project-as-default.

• Project: document new option -remove-projects.

• Getting Started: document new option -<plug-in shortname>-log.

• Normalizing the Source Code: document new options -asm-contracts and
-asm-contracts-auto-validate

• Graphical User Interface: Option -collect-messages is active by default, and
cannot be deactivated.

Magnesium-20151001

• Getting Started: support is not guaranteed for OCaml versions below 4.x.

• Getting Started: the recommended installation method now consists in using the
Frama-C OPAM package.

• Normalizing the Source Code: option -pp-annot is now active by default.

• Normalizing the Source Code: added section about macros predefined by Frama-C
(Section 5.5).

• Normalizing the Source Code: document new option -custom-annot-char (Sec-
tion 5.4)

• Normalizing the Source Code: document handling of new file suffix .ci (Sec-
tion 5.2)

• Preparing the Sources: option -warn-undefined-callee changed to
-implicit-function-declaration warn.

• Setting Up Plug-ins: removed option -dynlink.

Sodium-20150201

• Normalizing the Source Code: new options -initialized-padding-locals and
-simplify-trivial-loops.

• Pre-processing the Source Files: new options -cpp-gnu-like and -frama-c-stdlib.

• Customizing Analyzers: new options -add-symbolic-path and -permissive.

• Getting Started: document options containing several values (aka set and map).

• Getting Started: improve documentation of options.

• Getting Started: document new option -then-last.

• Getting Started: document new option -tty.

79

APPENDIX A. CHANGES

Neon-20140*01

• Getting Started: fixes list of requirements for compiling Frama-C.

• Preparing the Sources: new option -aggressive-merging

• General Kernel Services: change the default name of the journal.

• Getting Started: new options -config and -<plug-in shortname>-config, as well
as new environment variable FRAMAC_CONFIG.

• Getting Started: new options -session and -<plug-in shortname>-session, as
well as new environment variable FRAMAC_SESSION.

• Getting Started: document option -unicode.

• General Kernel Services: clarify when saving is done.

Fluorine-20130*01

• Getting Started: update installation requirements.

• Customizing Analyzers: document the following new options:

– -warn-signed-overflow,

– -warn-unsigned-overflow,

– -warn-signed-downcast, and

– -warn-unsigned-downcast.

• Preparing the Sources: document new option -enums

Oxygen-20120901

• Analysis Option: better documentation of -unspecified-access

• Preparing the Sources: better documentation of -pp-annot

• Preparing the Sources: pragma UNROLL_LOOP is deprecated in favor of UNROLL

• Preparing the Sources: document new normalization options -warn-decimal-float,
-warn-undeclared-callee and -keep-unused-specified-functions

• General Kernel Services: document special cases of saving and journalisation.

• Getting Started: optional Zarith package.

• Getting Started: new option -<plug-in shortname>-share.

80

Nitrogen-20111001

• Overview: report on Frama-C’ usage as an educational tool.

• Getting Started: exit status 127 is now 125 (127 and 126 are reserved by POSIX).

• Getting Started: update options for controlling display of floating-point numbers

• Preparing the sources: document generation of assigns clause for function proto-
types without body and proper specification

• Property Statuses: new chapter to document property statuses.

• GUI: document new interface elements.

Carbon-20110201

• Getting Started: exit status 5 is now 127; new exit status 5 and 6.

• GUI: document new options -collect-messages.

Carbon-20101201

• Getting Started: document new options -then and -then-on.

• Getting Started: option -obfuscate is no more a kernel option since the obfuscator
is now a plug-in.

Boron-20100401

• Preparing the Sources: document usage of the C standard library delivered with
Frama-C

• Graphical User Interface: simplified and updated according to the new implemen-
tation

• Getting Started: document environment variables altogether

• Getting Started: document all the ways to getting help

• Getting Started: OcamlGraph 1.4 instead 1.3 will be used if previously installed

• Getting Started: GtkSourceView 2.x instead of 1.x is now required for building the
GUI

• Getting Started: documentation of the option -float-digits

• Preparing the Sources: documentation of the option -continue-annot-error

• Using plug-ins: new option -dynlink

• Journalisation: a journal is generated only whenever Frama-C crashes on the GUI

81

APPENDIX A. CHANGES

• Configure: new option --with-no-plugin

• Configure: option --with-all-static set by default when native dynamic loading is
not available

Beryllium-20090902

• First public release

82

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Lan-
guage. Version 1.8 — Frama-C Oxygen implementation., March 2014.

[2] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. Version 1.8,
March 2014.

[3] Patrick Baudin and Anne Pacalet. Slicing plug-in. http://frama-c.com/slicing.html.

[4] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C’s WP plug-in, February
2015. http://frama-c.com/download/frama-c-wp-manual.pdf.

[5] Loïc Correnson and Julien Signoles. Combining Analysis for C Program Verification. In
Formal Methods for Industrial Critical Systems (FMICS), August 2012.

[6] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A software Analysis Perspective. In Software Engineering
and Formal Methods (SEFM), October 2012.

[7] Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C’s value analysis plug-in,
February 2015. http://frama-c.com/download/frama-c-eva-manual.pdf.

[8] M. Delahaye, N. Kosmatov, and J. Signoles. Common specification language for static
and dynamic analysis of C programs. In the 28th Annual ACM Symposium on Applied
Computing (SAC), pages 1230–1235. ACM, March 2013.

[9] Philippe Herrmann and Julien Signoles. Annotation Generation: Frama-C’s RTE plug-
in, April 2013. http://frama-c.com/download/frama-c-rte-manual.pdf.

[10] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Computing,
pages 1–37, 2015. Extended version of [6].

[11] Julien Signoles. Frama-C’s E-ACSL Plug-in, February 2015. http://frama-c.com/
eacsl.html.

[12] Julien Signoles, Thibaud Antignac, Loïc Correnson, Matthieu Lemerre, and Virgile Pre-
vosto. Frama-C Plug-in Development Guide, February 2015.
http://frama-c.com/download/frama-c-plugin-development-guide.pdf.

[13] Nicolas Stouls and Virgile Prevosto. Frama-C’s Aoraï plug-in, April 2013.
http://frama-c.com/download/frama-c-aorai-manual.pdf.

83

http://frama-c.com/slicing.html
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-eva-manual.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.com/eacsl.html
http://frama-c.com/eacsl.html
http://frama-c.com/download/frama-c-plugin-development-guide.pdf
http://frama-c.com/download/frama-c-aorai-manual.pdf

LIST OF FIGURES

List of Figures

5.1 Overview of source preparation steps: as performed by GCC (top) and as
performed by Frama-C (bottom). 29

9.1 Initial View . 51
9.2 The Analysis Configuration Window . 53

10.1 Classification Rule JSON Format . 57
10.2 Classified Event JSON Format . 58

12.1 Overview of the analysis-scripts workflow: the inputs on the left produce a
GNUmakefile which is then used for parsing, analyzing and visualizing results. 69

13.1 The Frama-C Gitlab login page. Note that no direct account creation is possi-
ble; you need to sign in via Github unless the Frama-C team provided you an
account. 75

13.2 The Gitlab new issue page, with the bug_report template. The checkbox
at the bottom enables marking the issue as private, so that only Frama-C
developers can see it. 76

85

INDEX

Index

-<plug-in>-debug, 37
-<plug-in>-help, 37
-<plug-in>-log, 22
-<plug-in>-msg-key, 37
-<plug-in>-verbose, 37
-<plug-in>-warn-key, 38
__FC_*, 35
__FC_INDETERMINABLE_FLOATS, 35
__FC_MACHDEP_XXX, 34
__FC_NO_MONOTONIC_CLOCK, 35
__FRAMAC__, 34

-absolute-valid-range, 39, 48, 49
ACSL, 14–16, 23, 31, 32, 43, 44
-add-path, 28
-add-symbolic-path, 38
-aggressive-merging, 32
-allow-duplication, 32
-annot, 32
-asm-contracts, 32
-asm-contracts-auto-validate, 32
-autocomplete, 21

Batch version, 18
-big-ints-hex, 23
Bytecode, 18

C compiler, 17
C pre-processor, 17
-c11, 34
C99 ISO standard, 14
-collapse-call-cast, 32
-config, 25
-constfold, 32
-continue-annot-error Deprecated option,

32
-cpp-command, 30, 30, 33
-cpp-extra-args, 20, 30
-cpp-extra-args-per-file, 30
-cpp-frama-c-compliant, 30, 30, 31

--datarootdir, 24

-debug, 22, 48, 50

--enable-external, 28
-enums, 33
-eva, 21
-eva-use-spec, 20
-explain, 19, 48, 50

-float-hex, 23
-float-normal, 23
-float-relative, 23
frama-c, 18
frama-c-config, 18
frama-c-gui, 18, 51
frama-c-gui.byte, 18, 51
frama-c-script, 18
-frama-c-stdlib, 31
frama-c.byte, 18
FRAMAC_CONFIG, 25
FRAMAC_LIB, 24
FRAMAC_PLUGIN, 24
FRAMAC_SESSION, 24
FRAMAC_SHARE, 24

-h, 19
-help, 19, 48, 50
--help, 19

-implicit-function-declarationDeprecated
option, 36

-initialized-padding-locals, 33
-inline-calls, 33, 33
Installation, 17
Interactive version, 18

Journal, 49
-journal-disable, 20, 50
-journal-enable, 20, 50
-journal-name, 49
-json-compilation-database, 30

-keep-comments, 23
-keep-switch, 33

87

INDEX

-keep-unused-specified-functions, 33
-keep-unused-types, 33
-kernel-debug, 22, 37
-kernel-h, 19
-kernel-help, 19, 37
-kernel-log, 22
-kernel-msg-key, 37
-kernel-verbose, 22, 37
-kernel-warn-key, 38

-lib-entry, 37
--libdir, 24
-load, 48, 48, 49
-load-module, 28, 54
-load-script, 28, 49, 54

-machdep, 33, 34, 35
-main, 37

Native-compiled, 18
-no-autoload-plugins, 28
-no-unicode, 20

OCaml compiler, 18
-ocode, 23
opam, 17
Options, 19

-permissive, 38
Plug-in

External, 27, 27
Internal, 27, 27

-plugins, 19
-pp-annot, 31
Pragma

UNROLL, 34
-print, 23, 31
-print-config, 19
-print-config-json, 19
-print-cpp-commands, 30
-print-lib-path, 19, 24, 27
-print-libc, 23
-print-plugin-path, 19, 24, 28
-print-share-path, 19, 24, 27
-print-version, 19
Project, 47

-quiet, 22, 48, 50

-remove-inlined, 33
-remove-projects, 48
-remove-unused-specified-functions, 33

-remove-unused-types, 33
report, 55

-safe-arrays, 39
-save, 48, 48, 49
-semantic-const-fold, 21
-session, 24
-set-project-as-default, 21
-simplify-cfg, 34
-simplify-trivial-loops, 34
-slevel-function, 20

-then, 21
-then-last, 21, 21, 47
-then-on, 21, 47
-then-replace, 21, 47
-time, 23
-tty, 23
-typecheck, 36

-ulevel, 21, 32, 34, 48, 49
-ulevel-force, 34
-unicode, 23, 48, 50
-unsafe-arrays, 39
-unspecified-access, 39

Variadic, 61, 61–64
-variadic-no-strict, 63
-variadic-no-translation, 63
-verbose, 22, 48, 50
-version, 19

-warn-decimal-float Deprecated option, 36
-warn-invalid-bool, 41
-warn-invalid-pointer, 39
-warn-left-shift-negative, 40
-warn-pointer-downcast, 40
-warn-right-shift-negative, 40
-warn-signed-downcast, 40
-warn-signed-overflow, 40
-warn-special-float, 41
-warn-unsigned-downcast, 40
-warn-unsigned-overflow, 40
warning status, 38
--with-no-plugin, 27
-wp-no-print, 20
-wp-print, 20

88

	Foreword
	Introduction
	About this document
	Outline

	Overview
	What is Frama-C?
	Frama-C as a Static Analysis Tool
	Frama-C as a Lightweight Semantic-Extractor Tool
	Frama-C for Formal Verification of Critical Software

	Frama-C as a Tool for C programs
	Frama-C as an Extensible Platform
	Frama-C as a Collaborative Platform
	Frama-C as a Development Platform
	Frama-C as an Educational Platform

	Getting Started
	Installation
	One Framework, Several Executables
	Frama-C Command Line and General Options
	Getting Help
	Frama-C Configuration
	Options Outline
	Autocompletion for Options
	Splitting a Frama-C Execution into Several Steps
	Verbosity and Debugging Levels
	Copying Output to Files
	Terminal Capabilities
	Getting time
	Inputs and Outputs of Source Code

	Environment Variables
	Variable FRAMAC_LIB
	Variable FRAMAC_PLUGIN
	Variable FRAMAC_SHARE
	Variable FRAMAC_SESSION
	Variable FRAMAC_CONFIG

	Exit Status

	Setting Up Plug-ins
	The Plug-in Taxonomy
	Installing Internal Plug-ins
	Installing External Plug-ins
	Loading Plug-ins

	Preparing the Sources
	Overview of source processing in Frama-C
	Preprocessing the Source Files
	Merging the Source Code files
	Normalizing the Source Code
	Predefined macros
	Compiler and language extensions
	Warnings during normalization
	Testing the Source Code Preparation

	Platform-wide Analysis Options
	Entry Point
	Feedback Options
	Customizing Analyzers

	Property Statuses
	A Short Detour through Annotations
	Properties, and the Statuses Thereof
	Consolidating Property Statuses

	General Kernel Services
	Projects
	Creating Projects
	Using Projects
	Saving and Loading Projects

	Dependencies between Analyses
	Journalisation

	Graphical User Interface
	Frama-C Main Window
	Menu Bar
	Tool Bar

	Reports
	Reporting on Property Statuses
	Exporting to CSV
	Classification
	Action
	Rules
	Regular Expressions
	Reformulation
	JSON Output Format
	Classification Options

	SARIF Output via the Markdown Report Plug-in
	Prerequisites
	Generating a SARIF Report

	Variadic Plug-in
	Translating variadic function calls
	Automatic generation of specifications for libc functions
	Usage
	Main options
	Similar diagnostics by other tools
	Common causes of warnings in formatted input/output functions
	Pretty-printing translated code

	Analysis Scripts
	Requirements
	Usage
	General Framework
	Necessary Build Information
	Possible Workflows in the Absence of Build Information
	Using a JSON Compilation Database (JCDB)

	Using the generated Makefile, via fcmake
	Important Variables
	Predefined targets
	Adding new analyses and stages

	Script Descriptions
	Practical Examples: Open Source Case Studies
	Technical Notes

	Reporting Errors
	Changes
	Bibliography
	List of Figures
	Index

