
WP (Draft Manual)

WP Plug-in (Draft) Manual
Release 1.0

Loïc Correnson, Zaynah Dargaye, Anne Pacalet

CEA LIST, Software Reliability Laboratory

c©2010 CEA LIST

This work has been supported by the ’U3CAT’ ANR project.

Contents

1 Introduction 7

1.1 Tutorial . 8

1.2 Weakest Preconditions . 9

1.3 Memory Models . 11

2 Using WP Plug-in 13

2.1 Graphical User Interface . 13

2.2 Command Line Options . 15

2.2.1 Goal Selection . 16

2.2.2 Model Selection . 16

2.2.3 Computation Strategy . 16

2.2.4 Decision Procedures Interface . 17

2.2.5 Generated Proof Obligations . 18

2.3 Plug-in Developer Interface . 19

3 Weakest Preconditions Calculus 21

4 WP Models 23

5

Chapter 1

Introduction

We present here a plug-in of Frama-C for proving ACSL annotations of C function thanks to
automated theorem provers.

The WP plug-in is named afterWeakest Precondition calculus, a technique for proving program
properties initiated by Hoare [Hoa69], Floyd [Flo67] and Dijkstra [Dij68]. Recent tools imple-
ment this thechnique with great performances, for instance Boogie [Lei08] and Why [Fil03].
There is already a Frama-C plug-in, Jessie [MM09], developped at INRIA, that implements a
weakest precondition calculus for C programs thanks to a compilation to the Why platform.

The WP plug-in is a novel implementation of such a Weakest Precondition calculus for anno-
tated C programs, which focus on parametrization w.r.t memory model. It is a completary
work to Jessie plug-in, which rely on a separation memory model in the spirit of Burstall’s
one [Bur72]. The Jessie memory model is very efficient for a large variety of well structured
C-programs. However, it does not apply when low-level memory manipulations are involved,
such as heterogeneous casts. Moreover, Jessie operates by translating the C program to Why,
a solution that prevents the user from combining weakest precondition calculs with other
techniques, such as the Value analysis plug-in.

The WP plug-in has been designed with cooperation in mind. That is, you may use WP for
proving some annotations of your C programs, and prove other ones with other plug-ins. The
recent improvements of Frama-C kernel are then responsible for managing such partial proofs
and consolidate them altogether.

This manual is divided into four parts. This first chapter introduces the WP plug-in, Weakest
Precondition calculus and Memory Models. Then, chapter 2 details how to use and tune the
plug-in within the Frama-C platform. Chapter 3 specifies the internal calculus of WP and
Chapter 4 provides a specification for the available memory models.

7

CHAPTER 1. INTRODUCTION

1.1 Tutorial

The WP plug-in is distributed with the Frama-C platform. However, you must install some
external provers in order to fulfill proof obligations. You have several choices, see section 2.2.4
for details. To starts with, you may install the Alt-Ergo [CCK06] prover. You can install it
from source at http://alt-ergo.lri.fr or with Godi.

Consider new the very simple example of a function that swaps the values of two integers
passed by reference:

File swap.c

vo i d swap(i n t *a, i n t *b)
{

i n t tmp = *a ;
*a = *b ;
*b = tmp ;
r e t u r n ;

}

A simple, although incomplete, ACSL contract for this function can be:

File swap1.c

/∗@ ensures A: ∗a == \o ld (∗b) ;
@ ensures B: ∗b == \o ld (∗a) ;
@∗/

vo i d swap(i n t *a, i n t *b) ;

You can run wp on this example with:
frama -c -wp -wp -proof alt -ergo swap.c swap1.c
[kernel] preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swap1.c"
[wp] warning: Missing RTE guards
[wp] [Alt -Ergo] Goal store_swap_post_2_B : Valid
[wp] [Alt -Ergo] Goal store_swap_post_1_A : Valid

As expected, Alt-Ergo discharged the two proof obligations generated by WP for the contract
of swap. You should notice the warning “Missing RTE guards”, emitted by the WP plug-in.
That is, the weakest precondition calculus implemented in WP rely on the hypothesis that
your program is runtime-error free. In this example, the swap function dereferences its two
parameters, and these two pointers should be valid.

The WP plug-in does not generate proof obligation to prevent your program from raising a
runtime error, because this property may be validated with any other technique, for instance
by running the value analysis plug-in or the rte generation one.

Hence, consider the following new contract for swap:

File swap2.c

/∗@ requires \ v a l i d (a) && \ v a l i d (b) ;
@ ensures A: ∗a == \o ld (∗b) ;
@ ensures B: ∗b == \o ld (∗a) ;
@∗/

vo i d swap(i n t *a, i n t *b) ;

For simplicity of use, the WP plug-in is able to run the rte generation plug-in for you. Now,
WP reports that the function swap fulfills its contract:

frama -c -wp -wp -rte -wp -proof alt -ergo swap.c swap2.c
[kernel] preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swap2.c"
[rte] annotating function swap

8

1.2. WEAKEST PRECONDITIONS

[wp] [Alt -Ergo] Goal store_swap_assert_4_rte : Valid
[wp] [Alt -Ergo] Goal store_swap_assert_3_rte : Valid
[wp] [Alt -Ergo] Goal store_swap_assert_2_rte : Valid
[wp] [Alt -Ergo] Goal store_swap_assert_1_rte : Valid
[wp] [Alt -Ergo] Goal store_swap_post_2_B : Valid
[wp] [Alt -Ergo] Goal store_swap_post_1_A : Valid

We have finished the job for validating this simple C program with respect to its specification,
as reported by the report plug-in that displays a consolidation status of all annotations:

frama -c -wp-verbose 0 [...] -then -report
[kernel] preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swap2.c"
[rte] annotating function swap
[report] Computing properties s t a t u s ...
--

Properties for Function ’swap ’
--

[Valid] Function ’swap ’ ensures A: (*\ at (a,Old) == \ o l d (*b))
[Valid] Function ’swap ’ ensures B: (*\ at (b,Old) == \ o l d (*a))
[Valid] Function ’swap ’ assert rte: \ v a l i d (a);
[Valid] Function ’swap ’ assert rte: \ v a l i d (a);
[Valid] Function ’swap ’ assert rte: \ v a l i d (b);
[Valid] Function ’swap ’ assert rte: \ v a l i d (b);

--
No proofs : 0
Partial proofs : 0
Complete proofs : 6
Total : 6

--

1.2 Weakest Preconditions

The principles of weakest precondition calculus are quite simple in spirit. Given a code anno-
tation of your program, say, an assertion Q after a statement stmt , the weakest precondition
of P is by definition the “simplest” property P that must be valid before stmt such that Q
holds after the execution of stmt .

Hoare’s triples. In mathematical words, we denote such a property by a Hoare’s triple:

{P} stmt {Q}

which reads: “whenever P holds, then after running stmt , Q holds”.

Thus, we can define the weakest precondition as a function wp over statements and properties
such that the following Hoare triple always holds:

{wp(stmt,Q)} stmt {Q}

For instance, consider a simple assignment over an integer local variable x, we have:

{x+ 1 > 0} x = x+ 1; {x > 0}

It shall be intuitive that in this simple case, the weakest precondition for this assignment of
a property Q over x can be obtained by replacing x with x+ 1 in Q. More generally, for any
statement and any property, it is possible to define such a weakest precondition.

9

CHAPTER 1. INTRODUCTION

Verification. Consider now function contracts. We basically have pre-conditions, assertions
and post-conditions. Say function f have a precondition P and a post condition Q, we now
want to prove that f satisfies its contract, which can be formalized by:

{P} f {Q}

Consider now W = wp(f,Q), we have by definition of wp:

{W} f {Q}

Suppose now that we can prove that P entailsW , we can use the weakest precondition calculus
intermediate result to prove the function contracts, which can be summarized by the following
diagram:

(P =⇒W) {W} f {Q}
{P} f {Q}

This is the main idea of how to prove a property by weakest precondition. Consider an
annotation Q, computes its weakest precondition W across all the statements from Q up to
the beginning of the function. Then, submit the property P =⇒ Q to a theorem prover,
where P are the preconditions of the function. If this proof obligation is discharged, then one
may conclude the annotation Q is valid for all executions.

Termination. We must point out a detail about program termination. Strictly speaking,
the weakest precondition of property Q through statement stmt should also ensures termina-
tion and execution without runtime error.

The proof obligations generated by WP does not entails systematic termination, unless you
systematically specify and validate loop variant ACSL annotations. Although, exit behaviors
of a function are correctly handled by WP.

Regarding runtime errors, the proof obligations generated by WP does assume your program
never raise some of them. Moreover, the only integer model currently implemented assumes
no integer overflow at all (signed or unsigned). As illustrated in the short tutorial example
of section 1.1, you should enforce the absence of runtime error by your own, for instance by
running the value analysis plug-in or the rte generation one.

Provers. The WP plug-in computes the proof-obligations for post-conditions and assertions
in C functions, and submit them to external provers.

You may discharge the generated proof obligation with automated decision procedures or
interactive proof assistant. Technically, WP is interfaced with Alt-Ergo [CCK06], Coq [Coq10],
and any decision procedures supported by Why [Fil03].

10

1.3. MEMORY MODELS

1.3 Memory Models

The essence of weakest precondition calculus is to translate code annotation into mathematical
properties. Consider the simple case of an annotation referring to a non-pointer C-variable x:

x = x+1;
//@ assert P: x >= 0 ;

We can translate P into the mathematical property P (X) = X ≥ 0, where X stands for
the value of variable x at the appropriate program point. In this simple case, the effect of
statement x=x+1 over P is actually the substitution X 7→ X + 1, that is X + 1 ≥ 0.

The problem when applying weakest precondition calculus to C programs is to deal with
pointers. Consider now:

p = &x ;
x = x+1;
//@ assert Q: ∗p >= 0 ;

It is clear that, taking into account the aliasing between *p and x, the effect of the increment
of x can not be translated by a simple substitution of X in Q.

This is where memory models comes to rescue.

A memory models defines how to map values inside the C memory heap to mathematical terms.
The WP has been designed to support different memory models. There are currently three
memory models implemented, and we plan to implement new ones for future releases. Those
three models are all different from the one of Jessie plug-in, which makes WP complementary.

Hoare model. A very efficient model that generates concise proof obligations. It simply maps
C variable to a pure logic variable.

However, the heap can not be represented in this model, and expressions such as *p can
not be translated at all. You can still represent pointer values, but you can not read or
write the heap through pointers.

Store model. The default model for WP plug-in. Heap values are stored in a global array.
Pointer values are translated to an index into this array.

In order to generate reasonable proof obligations, the values stored in the global array
are not the machine-ones, but the logic ones. Hence, all C integer types are represented
by mathematical integers.

A consequence is that heterogeneous cast of pointers can not be translated with this
model. For instance, you can not cast a pointer to int into a pointer to char, and then
access the internal representation of an int value in memory.

Runtime model. This is a low-level memory model, where the heap is represented as a wide
array of bits. Pointer values are exactly translated into memory addresses. Read and
write operations with the heap are translated into manipulation of a range of bits in the
heap.

This model is very precise in the sense that all the details of the program are represented.
But at the cost of huge proof obligations that are very difficult to discharge by automated
provers, and you generally need an interactive proof assistant.

Thus, each memory model offers a different trade-off between expressive power and facility of
discharging proof obligations. The Hoare memory model is very restricted but easy, Runtime
is very expressive but very difficult, and Store offers an intermediate solution.

11

Chapter 2

Using WP Plug-in

The WP plug-in can be used used from the command line of Frama-C or within its graphical
user interface. It is a dynamically loaded plug-in distributed with the kernel since the Carbon
release of Frama-C.

This plug-in computes proof obligations of ACSL annotations by weakest precondition calculus,
using a parametrized memory model to represent pointers and heap values. The proof obli-
gations may then be discharged by external decision procedures, which range over automated
theorem provers such as Alt-Ergo [CCK06] or interactive proof assistant like Coq [Coq10].

2.1 Graphical User Interface

To use WP under the GUI, you simply need to run Frama-C graphical user interface. No
additional option is required, although you can preselect some WP options described in sec-
tion 2.2:

$ frama -c-gui [options ...] *.c

As we can see in figure 2.1, the memory model, the decision procedure, and some WP options
can be tuned from the WP side panel. Others options of the WP are still modifiable from the
Properties button in the main GUI toolbar.

To prove a property, just select it in the internal source view and chose WP from the contextual
menu. The Console window outputs some information about the computation. Figure 2.2
displays an example of such a session.

If everything succeeds, a green bullet should be displayed on the left of the property. The
computation can also be run for a bundle of properties if the contextual menu is open from a
function or behavior selection.

The options from the WP side panel correspond to some options of the plug-in command-line.
Please refer to section 2.2 for more details. In the graphical user interface, there are also
specific panels that display more details related to WP, that we shortly describe below.

13

CHAPTER 2. USING WP PLUG-IN

Figure 2.1: WP in the Frama-C GUI

Figure 2.2: WP run from the GUI

14

2.2. COMMAND LINE OPTIONS

Properties Panel. This panel summarizes the consolidated status of properties, from var-
ious plug-ins. The property status is indicated by two codes: a colored-bullet indicating
whether this property has been proved or not; and a background color indicating whether
this proof depends on proved properties or not. The color codes are:

Icons for status:
The property has not been validated.
The property is invalid.
The property is valid with dependencies.
The property and all its dependencies are valid.

This panel is not automatically refreshed. You should press the Refresh button to update it.
Actually, computing a consolidated status requires to navigate over the properties dependency
graph, which may take a noticeable amount of time.

Property Dependency Graph. By double-clicking on the status column of a property
in the properties panel, you can display a dependency graph for this property. The graph
displays the property, its status, which plug-in has participated in the proof, and on which
properties the proof directly depends on.

Proof Obligations Panel. This panel is dedicated to WP plug-in. It shows the generated
proof obligations and their status for each prover. By clicking on a prover column, you can
also submit a proof obligation to a prover by hand. By double-clicking an annotation, you
can view its mathematical definition in a human readable fashion.

2.2 Command Line Options

The best way to know the available options is to use:

frama -c -wp-help

The WP plug-in generally operates into three steps:

1. Annotations are selected to produce a control-flow graph of elementary statements an-
notated with hypothesis and goals.

2. Weakest preconditions are computed for all selected goals in the control-flow graph.
Proof obligations are emitted and saved on disk.

3. Decision procedures (provers) are run to discharged proof obligations.

The WP options allow to refine each step of this process. It is very convenient to use WP
together with the standard -then option of Frama-C, in order to operate successive pass of
the process.

15

CHAPTER 2. USING WP PLUG-IN

2.2.1 Goal Selection

This group of options allow to refine the selection of annotations for which proof obligations
are generated. By default, all annotations are selected.

-wp generates proof obligations for all (selected) properties.

-wp-fct <f1,...,fn> selects annotations of functions f1,...,fn (defaults to all functions).

-wp-bhv <b1,...,bn> selects annotation for behaviors b1,...bn (defaults to all behaviors).

-wp-prop <p1,...,pn> selects properties with name p1,...pn. (defaults to all properties).
You may also type “assigns” for all assigns properties.

2.2.2 Model Selection

These options modify the underlying memory model that is used for computing weakest
preconditions.

-wp-model <m> set the memory model among Hoare, Store or Runtime. For more informa-
tion about the models and how to chose it, see section 1.3 and chapter 4.

-wp-(no)-logicvar (deactivates) optimization for variables whose address is never taken, for
which WP uses Hoare model. See chapter 4 for details.

-wp-assigns <m> sets the method for proving assigns clause. Possible methods are:

effect: Each statement with side-effect produces one sub-goal. The locations writen by
each statement are checked to be included in the assigns clause. This is a stronger
result than required, but the proof obligations are generally simple and sufficient
in practice.

region: (experimental) an optimized version of effect. Only works with Store model.

acsl: use the ACSL definition of assigns clause, where memory states are compared
before and after the considered block. Generates much more complex proof obli-
gations than effect.

none: skip proof of assigns clause. This is the default and only method for Hoare model.

2.2.3 Computation Strategy

These options modifies the way proof obligations are generated during weakest precondition
calculus.

-wp-axioms (experimental) instantiates user-defined lemmas and axioms with memory-labels.

-wp-huge <s> cut off proof terms with size exceeding 2s (default: 230). The size of a term is
linearly related to its size on the disk, and to the size of proof obligation sent to decision
procedures.

-wp-norm <m> sets the normalization method applied to let-bindings in obligations generated
for Alt-Ergo and Coq:

16

2.2. COMMAND LINE OPTIONS

Exp: let-bindings are expanded (default for Alt-Ergo).

Let: let-bindings are preserved (default for Coq).

Eqs: let-bindings are replaced by equalities over universally-quantified fresh variables.

Cc: let-bindings are replaced by function call or predicates by closure conversion.

-wp-rte generates RTE guards before computing weakest preconditions. This options call the
rte generation plug-in with the following options: -rte-mem, -rte-div, -rte-signed
and -rte-unsigned-ov. The generated guards, when proved1, fulfill the requirements
for using WP plug-in.

-wp-(no)-simpl (deactivates) simplification of constant expressions and tautologies.

-wp-split conjunctions in generated proof obligations are recursively split into sub-goals.
The generated goal names are suffixed by “partn”. Notice that this option is set by
default for assigns clause with effect assigns method (see -wp-assigns above).

2.2.4 Decision Procedures Interface

When -wp-proof option is selected, proof obligations are sent to a decision procedure. If proof
obligations have just been generated, by using -wp, -wp-fct, -wp-bhv or -wp-prop options,
then only the new proof obligations are sent. Otherwise, all proof obligations not yet proved
are sent.

-wp-check <dp> only checks syntax of generated proof obligations for a family of decision
procedures. Possible values of dp are: alt-ergo, coq and why.

-wp-par <n> limits the number of parallel process runs for decision procedures. Defaults is
4 processes. With -wp-par 1, the order of logged results is fixed. With more processes,
the order is runtime dependent.

-wp-proof <dp> selects the decision procedure used to discharge proof obligations. See below
for supported provers.

-wp-timeout <n> set the timeout (in seconds) for the calls to the decision prover (defaults
to 10 seconds).

-wp-trace keep user labels in generated proof obligations. This option can be useful for
tracing where the proof obligation comes from, especially when using -wp-split option
or interactive proof assistants.

Alt-Ergo Direct support for the Alt-Ergo prover is provided. You should use version 0.92.2
of the prover to benefit from its build-in array theory.

-wp-proof alt-ergo

-wp-(no)-arrays (deactivates) usage of built-in array theory of Alt-Ergo.

1It is still correct to prove these RTE annotations with WP

17

CHAPTER 2. USING WP PLUG-IN

Coq. Direct support for the Coq proof assistant is provided. The generated proof obligations
are valid for Coq version 8.3 but should work also with prior versions of the proof assistant.
When working with Coq, you will enter interactive session, then save the proof scripts in order
to replay them in batch mode.

-wp-script <f.script> specify the file from which proof scripts are retrieved, or saved in.
The format of this file is private to WP plug-in. However, it is a regular text file from
which you can cut and paste part of previously writen script proofs. The WP plug-in
manages the content of this file for you.

-wp-proof coq only run coqc of proof scripts found in the script file. If the generated goal
(or the default one) is not correctly typed-checked by coqc, the coq prover fails to
discharge the proof obligation.

-wp-proof coqide first try to replay some known proof script (if any). If it does not succeed,
then a new interactive session for coqide is opened. During interactive session with
Coq’s IDE, several files are opened for you:

<goal>.v the proof obligation to discharge.

<model>_env<n>.v the environment generated during weakest precondition calculus
(already compiled by coqc): type definitions, global variables, etc.

<model>_model.v the definitions and properties of the memory model used (already
compiled by coqc).

f.script the script file where all your proofs are stored. This is useful for reusing parts
from previous scripts on similar goals.

As soon as coqide exits, the edited proof script is saved back in the script file, and
finally checked by coqc. Do not forget to save your proof before exiting coqide.

Why. Finally, a wide range of automated provers are supported by WP thanks to the
Why 2.27 prover interface. Both the why translation tool and the why-dp utility are required.
You also need to install external provers by your own. Currently, the prover you can use with
WP and Why, and the corresponding values for the -wp-proof option, are: simplify, yices,
cvc3, z3, zenon.

2.2.5 Generated Proof Obligations

Your proof obligations are generated and saved into several text files. Those files are put in
a temporary directory which is removed when Frama-C exists. Alternatively, you can specify
a directory of your own where all these files are generated.

-wp-print pretty-prints the generated proof obligations on the standard output. Results
obtained by provers are reported as well.

-wp-out <dir> sets the user directory where proof obligations are saved. The directory is
created if not exists. Its content is never cleaned up automatically.

-wp-dot generates also graphical representation of the CFG in the dot format used by the
GraphViz tools2.

2http://www.graphviz.org

18

http://www.graphviz.org

2.3. PLUG-IN DEVELOPER INTERFACE

The output directory will contains a lot of files. All files are generated with the following
naming convention:

<goal>_head.txt a summary of the generated proof obligation. This file contains the warning
emitted during weakest precondition calculus.

<goal>_body.txt a human-readable description of the proof obligation.

<goal>_log.txt a log from the last prover run on the goal.

<goal>_ergo92.why the goal generated for Alt-Ergo with arrays.

<goal>_ergo91.why the goal generated for Alt-Ergo without arrays.

<goal>.v the goal generated for Coq.

<goal>.why the goal generated for Why.

For each weakest precondition generation session, an environment describing the C definitions
of your program is generated. These environment files are also saved on disk, and shared
among different proof obligations:

<env>.txt a human-readable description of the environment.

<env>_ergo92.why the environment for Alt-Ergo with arrays.

<env>_ergo91.why the environment for Alt-Ergo without arrays.

<env>.why the environment for Why.

<goal>.v the environment for Coq.

<goal>.why the environment for Why.

Finally, definitions and properties of the memory model are distributed in the Frama-C
share/wp directory with similar naming convention.

For discharging one proof obligation, WP assemble a input for the external decision prover
composed of three inputs: the resources for selected memory model, the resources from the
environment of the goal, and the goal itself.

2.3 Plug-in Developer Interface

The WP plug-in have several entry points registered in the Dynamic3 module of Frama-C:

Wp.run run weakest precondition calculus using the options to know what to compute. This
is similar to using -wp on the command line;

Wp.wp_compute kf_opt bhv_list_opt prop_opt where:

• kf_opt is an optional kernel function;
• bhv_list_opt specify an optional behavior list;
• prop_opt specify an optional property;

These entry points actually run the WP plug-in in the same way as the command-line options
do.

3See the plug-in development guide

19

Chapter 3

Weakest Preconditions Calculus

For the beta-1 release of Carbon, the final version of this chapter is not yet available.
Complete documentation will be available for final release of Carbon.

21

Chapter 4

WP Models

Basically, a memory model is a set of operations and properties that are used to abstract the
values that lives in the C heap during a program execution.

Each memory model defines its own representation of pointers, memory and data stored in
the memory. The memory models defines also the types, functions and properties required to
translate C programs and ACSL annotations into first order logic formulas.

One can wonder why we need to have several memory models in such a tool. The problem is
that some models are simple because they consider a high level abstraction, but they are not
handling all the C features ; others provide a very precise view of what is going on, but then
the proof obligations can become huge and difficult to prove. Hence, each model implements
a different trade off between precision and simplicity. A practical methodology is to use the
simpler model whenever it is possible, and to go up with more complex models when needed
on small parts of the code.

This chapter is dedicated to the description of memory models implemented in the WP plug-in.

For the beta-1 release of Carbon, the final version of this chapter is not yet available.
Complete documentation will be available for final release of Carbon.

23

BIBLIOGRAPHY

Bibliography

[Bur72] R. M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 1972.

[CCK06] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem prover
for polymorphic first-order logic modulo theories, 2006.

[Coq10] Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.3,
2010.

[Dij68] Edsger W. Dijkstra. A constructive approach to program correctness. BIT Numerical
Mathematics, Springer, 1968.

[Fil03] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research Report
1366, LRI, Université Paris Sud, March 2003.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proceedings of the American Math-
ematical Society Symposia on Applied Mathematics, 19, 1967.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 1969.

[Lei08] K. Rustan M. Leino. This is Boogie 2. Microsoft Research, 2008.

[MM09] Yannick Moy and Claude Marché. Jessie Plugin Tutorial, Beryllium version. INRIA,
2009. http://www.frama-c.cea.fr/jessie.html.

25

http://www.frama-c.cea.fr/jessie.html

	Introduction
	Tutorial
	Weakest Preconditions
	Memory Models

	Using WP Plug-in
	Graphical User Interface
	Command Line Options
	Goal Selection
	Model Selection
	Computation Strategy
	Decision Procedures Interface
	Generated Proof Obligations

	Plug-in Developer Interface

	Weakest Preconditions Calculus
	WP Models

