
WP 0.7

WP Plug-in Manual

Version 0.7 for Fluorine-20130601

Patrick Baudin, Loïc Correnson, Zaynah Dargaye

CEA LIST, Software Safety Laboratory
April 2013

©2010-2013 CEA LIST

This work has been supported by the 'U3CAT' ANR project.

Contents

1 Introduction 7

1.1 Installation . 8

1.2 Tutorial . 8

1.3 Weakest Preconditions . 10

1.4 Memory Models . 11

1.5 Arithmetics Models . 13

2 Using WP Plug-in 15

2.1 Installing Provers . 15

2.2 Graphical User Interface . 16

2.3 Command Line Options . 18

2.3.1 Goal Selection . 18

2.3.2 Program Entry Point . 19

2.3.3 Model Selection . 19

2.3.4 Computation Strategy . 20

2.3.5 Trigger Generation . 20

2.3.6 Qed Simpli�er Engine . 21

2.3.7 Decision Procedures Interface . 21

2.3.8 Generated Proof Obligations . 23

2.3.9 Additional Proof Libraries . 23

2.3.10 Linking ACSL Symbols to External Libraries 24

2.4 Plug-in Developer Interface . 24

2.5 Proof Obligation Reports . 26

2.6 Plug-in Persistent Data . 28

3 WP Models 29

3.1 Language of Proof Obligations . 29

3.2 The Hoare Memory Model . 30

3.3 Memory Models with Pointers . 30

5

CONTENTS

3.4 Hoare Variables mixed with Pointers . 31

3.5 Hoare Variables for Reference Parameters . 31

3.6 The Typed Memory Model . 32

4 WP Simpli�er 33

4.1 Logic Normalizations . 33

4.2 Simpli�er Engine (Qed) . 34

4.3 E�cient WP Computation . 35

6

Chapter 1

Introduction

This document describes a Frama-C plug-in that uses external decision procedures to prove
ACSL annotations of C functions.

The WP plug-in is named after Weakest Precondition calculus, a technique used to prove pro-
gram properties initiated by Hoare [Hoa69], Floyd [Flo67] and Dijkstra [Dij68]. Recent tools
implement this technique with great performances, for instance Boogie [Lei08] andWhy [Fil03].
There is already a Frama-C plug-in, Jessie [MM09], developed at INRIA, that implements a
weakest precondition calculus for C programs by compiling them into the Why language.

The WP plug-in is a novel implementation of such a Weakest Precondition calculus for an-
notated C programs, which focuses on parametrization w.r.t the memory model. It is a
complementary work to Jessie plug-in, which relies on a separation memory model in the
spirit of Burstall's work [Bur72]. The Jessie memory model is very e�cient for a large variety
of well structured C-programs. However, it does not apply when low-level memory manip-
ulations, such as heterogeneous casts, are involved. Moreover, Jessie operates by compiling
the C program to Why, a solution that prevents the user from combining weakest precondition
calculus with other techniques, such as the Value analysis plug-in.

The WP plug-in has been designed with cooperation in mind. That is, you may use WP for
proving some annotations of your C programs, and prove other ones with other plug-ins. The
recent improvements of the Frama-C kernel are then responsible for managing such partial
proofs and consolidate them altogether.

This manual is divided into three parts. This �rst chapter introduces the WP plug-in, the
Weakest Precondition calculus and Memory Models. Then, Chapter 2 details how to use
and tune the plug-in within the Frama-C platform. Chapter 3 provides a description for the
included memory models. Finally, we present in Chapter 4 the simpli�er module and the
e�cient weakest precondition engine implemented in WP plug-in.

7

CHAPTER 1. INTRODUCTION

1.1 Installation

The WP plug-in is distributed with the Frama-C platform. However, you must install at least
an external prover in order to ful�ll proof obligations. An easy choice is to install the Alt-Ergo
theorem prover developped at inria1. See section 2.1 for installing other provers.

1.2 Tutorial

Consider the very simple example of a function that swaps the values of two integers passed
by reference:

File swap.c

vo i d swap(i n t *a, i n t *b)

{

i n t tmp = *a ;

*a = *b ;

*b = tmp ;

r e t u r n ;

}

A simple, although incomplete, ACSL contract for this function can be:

File swap1.h

/*@ ensures A: *a == \o ld (*b) ;
@ ensures B: *b == \o ld (*a) ;
@*/

vo i d swap(i n t *a, i n t *b) ;

You can run wp on this example with:

frama -c -wp swap.c swap1.h

[kernel] preprocessing with "gcc -C -E -I. swap.c"

[kernel] preprocessing with "gcc -C -E -I. swap1.h"

[wp] Running WP plugin ...

[wp] Collecting axiomatic usage

[wp] warning: Missing RTE guards

[wp] 2 goals scheduled

[wp] [Alt -Ergo] Goal typed_swap_post_A : Valid (8)

[wp] [Qed] Goal typed_swap_post_B : Valid

As expected, running WP for the swap contract results in two proof obligations (one for each
'ensures' clause). The �rst one is discharged internally by the Qed simpli�er of WP, the
second one is terminated by Alt-Ergo.

You should notice the warning �Missing RTE guards�, emitted by theWP plug-in. That is, the
weakest precondition calculus implemented in WP relies on the hypothesis that your program
is runtime-error free. In this example, the swap function dereferences its two parameters, and
these two pointers should be valid.

The WP plug-in does not generate proof obligation to prevent your program from raising a
runtime error, because this property may be validated with any other technique, for instance
by running the value analysis plug-in or the rte generation one.

1Alt-Ergo: http://alt-ergo.lri.fr

8

http://alt-ergo.lri.fr

1.2. TUTORIAL

Hence, consider the following new contract for swap:

File swap2.h

/*@ requires \ v a l i d (a) && \ v a l i d (b) ;
@ ensures A: *a == \o ld (*b) ;
@ ensures B: *b == \o ld (*a) ;
@ assigns *a,*b ;
@*/

vo i d swap(i n t *a, i n t *b) ;

For simplicity, the WP plug-in is able to run the rte generation plug-in for you. Now, WP

reports that the function swap ful�lls its contract:

frama -c -wp -wp -rte swap.c swap2.h

[kernel] preprocessing with "gcc -C -E -I. swap.c"

[kernel] preprocessing with "gcc -C -E -I. swap2.h"

[wp] Running WP plugin ...

[wp] Collecting axiomatic usage

[rte] annotating function swap

[wp] 9 goals scheduled

[wp] [Alt -Ergo] Goal typed_swap_post_A : Valid (13)

[wp] [Qed] Goal typed_swap_post_B : Valid

[wp] [Alt -Ergo] Goal typed_swap_assert_rte_mem_access : Valid (15)

[wp] [Qed] Goal typed_swap_assert_rte_mem_access_2 : Valid

[wp] [Alt -Ergo] Goal typed_swap_assert_rte_mem_access_3 : Valid (15)

[wp] [Qed] Goal typed_swap_assert_rte_mem_access_4 : Valid

[wp] [Qed] Goal typed_swap_assign_part1 : Valid

[wp] [Alt -Ergo] Goal typed_swap_assign_part2 : Valid (20)

[wp] [Alt -Ergo] Goal typed_swap_assign_part3 : Valid (20)

We have �nished the job of validating this simple C program with respect to its speci�cation,
as reported by the report plug-in that displays a consolidation status of all annotations:

frama -c -wp -verbose 0 [...] -then -report

[kernel] preprocessing with "gcc -C -E -I. swap.c"

[kernel] preprocessing with "gcc -C -E -I. swap2.h"

[rte] annotating function swap

[report] Computing properties s t a t u s ...

--

--- Properties of Function 'swap '

--

[Valid] Post -condition 'A'

by Wp.typed.

[Valid] Post -condition 'B'

by Wp.typed.

[Valid] Assigns (file swap2.h, line 4)

by Wp.typed.

[Valid] Assertion 'rte ,mem_access ' (file swap.c, line 3)

by Wp.typed.

[Valid] Assertion 'rte ,mem_access ' (file swap.c, line 4)

by Wp.typed.

[Valid] Assertion 'rte ,mem_access ' (file swap.c, line 4)

by Wp.typed.

[Valid] Assertion 'rte ,mem_access ' (file swap.c, line 5)

by Wp.typed.

[Valid] Default behavior

by Frama -C kernel.

--

--- Status Report Summary

--

8 Completely validated

8 Total

--

9

CHAPTER 1. INTRODUCTION

1.3 Weakest Preconditions

The principles of weakest precondition calculus are quite simple in essence. Given a code anno-
tation of your program, say, an assertion Q after a statement stmt , the weakest precondition
of P is by de�nition the �simplest� property P that must be valid before stmt such that Q
holds after the execution of stmt .

Hoare's triples. In mathematical terms, we denote such a property by a Hoare's triple:

{P} stmt {Q}

which reads: �whenever P holds, then after running stmt , Q holds�.

Thus, we can de�ne the weakest precondition as a function wp over statements and properties
such that the following Hoare triple always holds:

{wp(stmt,Q)} stmt {Q}

For instance, consider a simple assignment over an integer local variable x; we have:

{x+ 1 > 0} x = x + 1; {x > 0}

It should be intuitive that in this simple case, the weakest precondition for this assignment of
a property Q over x can be obtained by replacing x with x+ 1 in Q. More generally, for any
statement and any property, it is possible to de�ne such a weakest precondition.

Veri�cation. Consider now function contracts. We basically have pre-conditions, assertions
and post-conditions. Say function f has a precondition P and a post condition Q, we now
want to prove that f satis�es its contract, which can be formalized by:

{P} f {Q}

Introducing W = wp(f,Q), we have by de�nition of wp:

{W} f {Q}

Suppose now that we can prove that precondition P entails weakest precondition W ; we can
then conclude that P precondition of f always entails its postcondition Q. This proof can be
summarized by the following diagram:

(P =⇒W) {W} f {Q}
{P} f {Q}

This is the main idea of how to prove a property by weakest precondition computation.
Consider an annotation Q, compute its weakest precondition W across all the statements
from Q up to the beginning of the function. Then, submit the property P =⇒ W to a
theorem prover, where P are the preconditions of the function. If this proof obligation is
discharged, then one may conclude the annotation Q is valid for all executions.

10

1.4. MEMORY MODELS

Termination. We must point out a detail about program termination. Strictly speaking,
the weakest precondition of property Q through statement stmt should also ensure termination
and execution without runtime error.

The proof obligations generated by WP do not entail systematic termination, unless you sys-
tematically specify and validate loop variant ACSL annotations. Nevertheless, exit behaviors
of a function are correctly handled by WP.

Regarding runtime errors, the proof obligations generated by WP assume your program never
raises any of them. As illustrated in the short tutorial example of section 1.2, you should
enforce the absence of runtime error on your own, for instance by running the value analysis

plug-in or the rte generation one and proving the generated assertions.

1.4 Memory Models

The essence of a weakest precondition calculus is to translate code annotation into mathemat-
ical properties. Consider the simple case of a property about an integer C-variable x:

x = x+1;

//@ assert P: x >= 0 ;

We can translate P into the mathematical property P (X) = X ≥ 0, where X stands for
the value of variable x at the appropriate program point. In this simple case, the e�ect of
statement x=x+1 over P is actually the substitution X 7→ X + 1, that is X + 1 ≥ 0.

The problem when applying weakest precondition calculus to C programs is to deal with
pointers. Consider now:

p = &x ;

x = x+1;

//@ assert Q: *p >= 0 ;

It is clear that, taking into account the aliasing between *p and x, the e�ect of the increment
of x can not be translated by a simple substitution of X in Q.

This is where memory models comes to rescue.

A memory model de�nes a mapping from values inside the C memory heap to mathematical
terms. The WP has been designed to support di�erent memory models. There are currently
three memory models implemented, and we plan to implement new ones in future releases.
Those three models are all di�erent from the one in the Jessie plug-in, which makes WP

complementary to Jessie.

Hoare model. A very e�cient model that generates concise proof obligations. It simply maps
each C variable to one pure logical variable.

However, the heap can not be represented in this model, and expressions such as *p can
not be translated at all. You can still represent pointer values, but you can not read or
write the heap through pointers.

Typed model. The default model for WP plug-in. Heap values are stored in several separated
global arrays, one for each atomic type (integers, �oats, pointers) and additional one
for memory allocation. Pointer values are translated into an index into these arrays.

In order to generate reasonable proof obligations, the values stored in the global array are
not the machine-ones, but the logical ones. Hence, all C integer types are represented by

11

CHAPTER 1. INTRODUCTION

mathematical integers and each pointer type to a given type is represented by a speci�c
logical abstract datatype.

A consequence of having separated arrays is that heterogeneous cast of pointers can not
be translated in this model. For instance within this memory model, you can not cast
a pointer to int into a pointer to char, and then access the internal representation of
the original int value into memory.

However, variants of the Typed model enables limited forms of casts. See chapter 3 for
details.

Bytes model. (Not Implemented Yet). This is a low-level memory model, where the
heap is represented as a wide array of bytes. Pointer values are exactly translated
into memory addresses. Read and write operations from/to the heap are translated into
manipulation of range of bits in the heap.

This model is very precise in the sense that all the details of the program are represented.
This comes at the cost of huge proof obligations that are very di�cult to discharge by
automated provers, and generally require an interactive proof assistant.

Thus, each memory model o�ers a di�erent trade-o� between expressive power and ease of
discharging proof obligations. The Hoare memory model is very restricted but generates easy
proof obligations, Runtime is very expressive but generates di�cult proof obligations, and
Store o�ers an intermediate solution.

Chapter 3 is dedicated to a more detailed description of memory models, and how the WP

plug-in use and combine them to generate e�cient proof obligations.

Remark. The original Store and Runtime memory models are no more available since WP

version 0.7. Typed replaces model Store; Runtime will be entirely re-implemented as Bytes
model in some future release.

12

1.5. ARITHMETICS MODELS

1.5 Arithmetics Models

TheWP plug-in is able to take into account the precise semantics of integral and �oating-point
operations of C programs. However, it generally leads to very complex proof obligations.

For tackling this complexity, the WP plug-in rely on several arithmetic models:

Natural Model: integer operations are performed on mathematical integers. Conversions
between di�erent integer types are still translated with modulo, though. Generated
proof obligations with this model are well supported by state-of-the-art provers. But
the C operations must never over�ow for the proof obligations to be correct.

This can be veri�ed aside by running RTE plug-in with speci�c options, or with the
-wp-rte option.

Machine Integer Model: integer operations are always performed withmodulo. This model
removes the constraint of generating the guards against over�ows. But the generated
proof obligations are generally di�cult to discharge.

Real Model: �oating-point operations are transformed on real, with no rounding. This is
completely unsound with respect to C and IEEE semantics. There is no way of recovering
a correct or partial property from the generated proof obligations on �oating-point
operations with this model.

Float Model: �oating-point operations are de�ned to be the mathetical ones with a rounding
operation. This is fully consistent with the IEEE semantics. Most automated provers
are not able to discharge the generated proof obligations. Special support for the Gappa
theorem prover is available through Why3.

By default, the WP plug-in uses the Natural model for integers and the (unsound) Real model
for �oating-points.

13

Chapter 2

Using WP Plug-in

The WP plug-in can be used from the Frama-C command line or within its graphical user
interface. It is a dynamically loaded plug-in, distributed with the kernel since the Carbon

release of Frama-C.

This plug-in computes proof obligations of programs annotated with ACSL annotations by
weakest precondition calculus, using a parametrized memory model to represent pointers and
heap values. The proof obligations may then be discharged by external decision procedures,
which range over automated theorem provers such as Alt-Ergo [CCK06], interactive proof
assistant like Coq [Coq10] and the interactive proof manager Why3 [BFMP11].

This chapter describes how to use the plug-in, from the Frama-C graphical user interface
(section 2.2), from the command line (section 2.3), or from another plug-in (section 2.4).
Additionally, the combination of the WP plug-in with the load and save commands of Frama-
C and/or the -then command-line option is explained in section 2.6.

2.1 Installing Provers

The WP plug-in requires external provers to work. The natively supported provers are:

Prover Version Download

Alt-Ergo 0.95+ http://alt-ergo.lri.fr [CCK06]
Coq 8.4+ http://coq.inria.fr [Coq10]
Why3 0.81+ http://why3.lri.fr [BFMP11]

Other provers, like Gappa, Z3, CVC3, CVC4, PVS, and many others, are accessible from WP

throught Why3. We refer the user to the manual of Why3 to handle speci�c con�guration
tasks.

Provers can be installed before and after the installation of WP. However, if Coq is already
installed before con�guration of WP, pre-compiled Coq librairies for the WP are generated
and installed, that reduce signi�cantly the proof time overhead of Coq prover.

Remark. The Why [Fil03] prover is no more supported since WP version 0.7.

15

http://alt-ergo.lri.fr
http://coq.inria.fr
http://why3.lri.fr

CHAPTER 2. USING WP PLUG-IN

2.2 Graphical User Interface

To useWP plug-in under the GUI, you simply need to run the Frama-C graphical user interface.
No additional option is required, although you can preselect some of theWP options described
in section 2.3:

$ frama -c-gui [options ...] *.c

As we can see in �gure 2.1, the memory model, the decision procedure, and some WP options
can be tuned from the WP side panel. Others options of the WP plug-in are still modi�able
from the Properties button in the main GUI toolbar.

To prove a property, just select it in the internal source view and choose WP from the contex-
tual menu. The Console window outputs some information about the computation. Figure 2.2
displays an example of such a session.

If everything succeeds, a green bullet should appear on the left of the property. The computa-
tion can also be run for a bundle of properties if the contextual menu is open from a function
or behavior selection.

The options from the WP side panel correspond to some options of the plug-in command-
line. Please refer to section 2.3 for more details. In the graphical user interface, there are
also speci�c panels that display more details related to WP plug-in, that we shortly describe
below.

Source Panel. On the center of the Frama-C window, the status of each code annotation is
reported in the left-margin. The meaning of icons is the same for all plug-ins in Frama-C and
more precisely described in the general user's manual of the platform. The status emitted by
the WP plug-in are:

Icons for properties:

No proof attempted.

The property has not been validated.

The property is valid but has dependencies.

The property and all its dependencies are valid.

Proof Obligations Panel. This panel is dedicated to the WP plug-in. It shows the gen-
erated proof obligations and their status for each prover. By double-clicking an annotation,
you can view its mathematical de�nition in a human readable format. By clicking on a prover
column, you can also submit a proof obligation to a prover by hand.

Properties Panel. This panel summarizes the consolidated status of properties, from vari-
ous plug-ins. This panel is not automatically refreshed. You should press the Refresh button
to update it. This panel is described in more details in the general Frama-C platform user's
manual.

Property Dependency Graph. By double-clicking on the status column of a property
in the properties panel, you can display a dependency graph for this property. The graph
displays the property, its status, which plug-in has participated in the proof, and on which
properties the proof directly depends on.

16

2.2. GRAPHICAL USER INTERFACE

Figure 2.1: WP in the Frama-C GUI

Figure 2.2: WP run from the GUI

17

CHAPTER 2. USING WP PLUG-IN

2.3 Command Line Options

The best way to know which options are available is to use:

frama -c -wp -help

The WP plug-in generally operates in three steps:

1. Annotations are selected to produce a control-�ow graph of elementary statements an-
notated with hypothesis and goals.

2. Weakest preconditions are computed for all selected goals in the control-�ow graph.
Proof obligations are emitted and saved on disk.

3. Decision procedures (provers) are run to discharge proof obligations.

The WP options allow to re�ne each step of this process. It is very convenient to use them
together with the standard -then option of Frama-C, in order to operate successive pass on
the project. See section 2.6 for details.

2.3.1 Goal Selection

This group of options re�nes the selection of annotations for which proof obligations are
generated. By default, all annotations are selected. A property which is already proved � by
WP or by any other plug-in � does not lead to any proof-obligation generation, unless the
property is individually selected from the graphical user interface of the programmatic API.

-wp generates proof obligations for all (selected) properties.

-wp-fct <f1,...,fn> selects annotations of functions f1,...,fn (defaults to all functions).

-wp-skip-fct <f1,...,fn> remove annotations of functions f1,...,fn (defaults to none).

-wp-bhv <b1,...,bn> selects annotation for behaviors b1,...bn (defaults to all behaviors) of
the selected functions.

-wp-prop <p1,...,pn> selects properties having p1 or ...pn as tagname (defaults to all prop-
erties). You may also replace a tagname by a @<category> of properties.
Recognized categories are: @lemma, @requires, @assigns, @ensures, @exits, @assert,
@invariant, @variant, @breaks, @continues, @returns, @complete_behaviors, @disjoint_behaviors.
Properties can be pre�xed with a minus sign to skip the associated annotations. For ex-
ample -wp-prop="-@assigns" removes all assigns and loop assigns properties from
the selection.

-wp-(no)-status-all includes in the goal selection all properties regardless of their current
status (default is: no).

-wp-(no)-status-valid includes in the goal selection those properties for which the current
status is already 'valid' (default is: no).

-wp-(no)-status-invalid includes in the goal selection those properties for which the cur-
rent status is already 'invalid' (default is: no).

18

2.3. COMMAND LINE OPTIONS

-wp-(no)-status-maybe includes in the goal selection those properties with an undetermined
status (default is: yes).

Remark: options -wp-status-xxx are not taken into account when selecting a property by
its name or from the GUI.

2.3.2 Program Entry Point

The generic Frama-C options dealing with program entry point are taken into account by WP

plug-in as follows:

-main <f> designates f to be the main entry point (defaults to main).

-lib-entry the main entry point (as de�ned by option -main) is analyzed regardless of its
initial context (default is no).

These options impact the generation of proof-obligations for the �requires� contract of the
main entry point. More precisely, if there is a main entry point, and -lib-entry is not set:

� the global variables are set to their initial values at the beginning of the main entry
point for all its properties to be established ;

� special proof obligations are generated for the preconditions of the main entry point,
hence to be proved with globals properly initialized.

Otherwise, initial values for globals are not taken into account and no proof obligation is
generated for preconditions of the main entry point.

2.3.3 Model Selection

These options modify the underlying memory model that is used for computing weakest
preconditions. See chapter 3 for details.

-wp-model <spec...> specify the models to use. The speci�cation is a list of selectors. Se-
lectors are usually separated by `,' although other separators are accepted as well: `+',
`_', spaces, newlines, tabs and parentheses `(', `)'.
Selectors are case insensitive. The option -wp-model can be used several times. All pro-
vided selectors are processed from left to right, potentially reverting previous selectors.
The available selectors are:

19

CHAPTER 2. USING WP PLUG-IN

Selector Description

Hoare Select Hoare memory model.
Typed Select Typed memory model with limited casts.
cast Select Typed memory model with unlimited casts (unsound).
nocast Select Typed memory model with no casts.

raw Disable the combination of memory models.
var Combination of memory models based on variable analysis.
ref Activate the detection of pointer variables used for reference passing style.

nat Use natural integer model (no over�ows).
int Use machine integers (modulo arithmetics).
cint alias for int.

real Use mathematical reals instead of �oating-points.
float Use �oating-point operations.
cfloat alias for float.

Default settings corresponds to -wp-model "Typed,var,nat,real".

-wp-literals exports the contents of string literals to provers (default: no).

-wp-extern-arrays gives an arbitrary large size to arrays with no dimensions. This is a
modelization of in�nite size arrays (default is: no).

2.3.4 Computation Strategy

These options modi�es the way proof obligations are generated during weakest precondition
calculus.

-wp-(no)-rte generates RTE guards before computing weakest preconditions. This op-
tion calls the rte generation plug-in with the following options: -rte-mem, -rte-div,
-rte-signed and -rte-unsigned-ov. The generated guards, when proved1, ful�ll the
requirements for using the WP plug-in with natural integer domain (default is: no).

-wp-(no)-split conjunctions in generated proof obligations are recursively split into sub-
goals. The generated goal names are su�xed by �part<n>� (defaults to no).

-wp-(no)-invariants computes proof obligations for arbitrary invariants inside loops. Also
modi�es the calculus for proper loop invariants2 (default is: no).

2.3.5 Trigger Generation

The ACSL language does not provide user with syntax for declaring triggers associated to
lemmas and axioms. However, triggers are generally necessary for SMT solvers to discharge
e�ciently the generated proof obligations.

There is a limited support for triggers in WP. The sub-terms and sub-predicates marked with
label "TRIGGER" in an axiom or lemma are collected to generate a multi-trigger for their
associated free variables.

1It is still correct to prove these RTE annotations with WP plug-in.
2To be e�cient, it is better to put all the loop invariants inside only one annotation. Otherwise, Frama-C

insert them at di�erent program points. Then, the WP calculus cuts the generated proof obligations at each

invariant instead of proving all of them inside the same induction scheeme. Notice that, when using the ACSL-

Importer plug-in, all the loop invariants are placed at one unique program point, and are treated e�ciently by

WP plug-in.

20

2.3. COMMAND LINE OPTIONS

2.3.6 Qed Simpli�er Engine

These options control the simpli�cations performed by the WP plug-in before sending proof
obligations to external provers.

-wp-(no)-simpl simpli�es constant expressions and tautologies (default is: yes).

-wp-(no)-clean removes unused terms and variables from proof obligations (default is: yes).

-wp-(no)-let propagates equalities by substitutions and let-bindings (default is: yes).

-wp-(no)-pruning eliminates trivial branches of conditionals (default is: yes).

2.3.7 Decision Procedures Interface

The generated proof obligations are submitted to external decision procedures. If proof obli-
gations have just been generated, by using -wp, -wp-fct, -wp-bhv or -wp-prop, then only the
new proof obligations are sent. Otherwise, all unproved proof obligations are sent to external
decision procedures.

-wp-prover <dp,...> selects the decision procedures used to discharge proof obligations.
See below for supported provers. By default, alt-ergo is selected, but you may specify
another decision procedure or a list of to try with. Finally, you should supply none for
this option to skip the proof step.

It is possible to ask for several decision procedures to be tried. For each goal, the �rst
decision procedure that succeed cancels the other attempts.

-wp-proof <dp,...> alias for -wp-prover for backward compatibility with WP version 0.6.

-wp-gen only generates proof obligations, do not run provers. See option -wp-out to obtain
the generated proof obligations.

-wp-par <n> limits the number of parallel process runs for decision procedures. Defaults is
4 processes. With -wp-par 1, the order of logged results is �xed. With more processes,
the order is runtime dependent.

-wp-(no)-proof-trace asks for provers to output extra information on proved goals when
available (default is: no).

-wp-(no)-unsat-model asks for provers to output extra information when goals are not
proved (default is: no).

-wp-timeout <n> sets the timeout (in seconds) for the calls to the decision prover (defaults
to 10 seconds).

Alt-Ergo. Direct support for the Alt-Ergo prover is provided. You need at least version
0.95 of the prover. It is also the default selected prover.

-wp-prover alt-ergo selects Alt-Ergo.

-wp-prover altgr-ergo opens the graphical interface of Alt-Ergo when the goal is not proved.

21

CHAPTER 2. USING WP PLUG-IN

-wp-steps <n> sets the maximal number of Alt-Ergo steps. This can be used as a machine-
independant alternative to timeout.

-wp-depth <n> sets 'stop' and 'age-limite' parameters of Alt-Ergo such that n cycles of quan-
ti�er instantiations are enabled.

-wp-alt-ergo-opt <opt,...> passes additional options to Alt-Ergo (default: none).

Coq. Direct support for the Coq proof assistant is provided. The generated proof obligations
are accepted by Coq version 8.4. When working with Coq, you will enter interactive session,
then save the proof scripts in order to replay them in batch mode.

-wp-proof coq runs coqc with the default tactic or with the available proof script (see below).

-wp-proof coqide �rst tries to replay some known proof script (if any). If it does not
succeed, then a new interactive session for coqide is opened. As soon as coqide exits,
the edited proof script is saved back (see below) and �nally checked by coqc.

The only part of the edited �le retained byWP is the proof script between �Proof. . . Qed.�.

-wp-script <f.script> speci�es the �le which proof scripts are retrieved from, or saved to.
The format of this �le is private to the WP plug-in. It is, however, a regular text �le
from which you can cut and paste part of previously written script proofs. The WP

plug-in manages the content of this �le for you.

-wp-(no)-update-script if turned o�, the user's script �le will not be modi�ed. A warning
is emitted if script data base changed.

-wp-tactic <ltac> speci�es the Coq tactic to try with when no user-script is found. The
default tactical is "auto with zarith". See also how to load external libraries and
user-de�ned tactics in section 2.3.9.

-wp-tryhints When both the user-provided script and the default tactic solve the goal, other
scripts for similar goals can be tried instead.

-wp-hints <n> sets the maximal number of suggested proof scripts.

-wp-coq-timeout <n> sets the maximal time in seconds for running coqc checker. Does not
apply to coqide (default: 30s).

-wp-coq-opt <opt,...> additional options for coqc and coqide (default: none).

Why3. Since WP version 0.7, native support for Why3 and Why3-Ide are provided. The
older system Why 2.x is no more supported.

-wp-proof "<p>" runs a Why3 prover named <p>.

-wp-proof "why3ide" runs Why-Ide with all generated goals. On exit, the WP plug-in reads
back your Why3 session and update the proof obligation status accordingly.

-wp-proof "why3:<p>" useful alias when "<p>" can be ambiguous. It is actually di�erent to
run alt-ergo or coq directly from WP or through Why3.

22

2.3. COMMAND LINE OPTIONS

-wp-detect lists the provers available with Why3. This command calls why3 �list-provers

but you have to con�gure Why3 on your own before, for instance by using why3config.
Consult the Why3 user manual for details. The listed prover names can be directly used
with -wp-proof option.

Sessions. Your Why3 session is saved in the "project.session" sub-directory of -wp-out.
You may run why3ide by hand by issuing the following command:

why3ide -I <frama -c-share >/wp <out >/ project.session

Proof recovering features of Why3 are fully available, and you can interleave proving from WP

with manual runs of why3ide. Interactive proofs with Why3 are completely separated from
those managed by the native WP interface with Coq.

2.3.8 Generated Proof Obligations

Your proof obligations are generated and saved to several text �les. With the -wp-out option,
you can specify a directory of your own where all these �les are generated. By default, this
output directory is determined as follows: under the GUI, it is <home>/.frama-c-wp where
<home> is the user's home directory returned by the HOME environment variable. In command-
line, a temporary directory is automatically created and removed at Frama-C exit.

The other options controlling the output of generated proof obligations are:

-wp-(no)-print pretty-prints the generated proof obligations on the standard output. Re-
sults obtained by provers are reported as well (default is: no).

-wp-out <dir> sets the user directory where proof obligations are saved. The directory is
created if it does not exist yet. Its content is not cleaned up automatically.

2.3.9 Additional Proof Libraries

It is possible to add additional bases of knowledge to decision procedures. This support is
provided for Alt-Ergo, Why3 and Coq thanks to the following options:

-wp-share <dir> modi�es the default directory where resources are found. This option can
useful for using a modi�ed or patched distribution of WP.

-wp-include <dir,...,+sharedir> sets the directories where external libraries and driver
�les are looked for. The current directory (implicitly added to that list) is always looked
up �rst. Relative directory names are relative to the current directory except for names
pre�xed by the character +. In such a name, the directory is relative to the main
FRAMAC_SHARE directory.

-wp-alt-ergo-lib <f,...> looks for Alt-Ergo library �les "f.mlw" and inlines them into the
proof obligation �les for Alt-Ergo.

-wp-coq-lib <f,...> looks for Coq �les "f.v" or "f.vo". If "f.vo" is not found, then WP

copies "f.v" is copied into its working directory (see option -wp-out and compiles it
locally.

-wp-why-lib <f,...> looks for Why3 library �le "f.why" and open the library "f.F" for the
proving the goals.

23

CHAPTER 2. USING WP PLUG-IN

2.3.10 Linking ACSL Symbols to External Libraries

In addition to additional proof libraries, it is also possible to link declared ACSL symbols to
external or prede�ned symbols. In such a case, the corresponding ACSL de�nitions, if any,
are not exported by WPs.

External linkage is speci�ed in driver �les. It is possible to load one or several drivers with
the following WP plug-in option:

-wp-driver <file,...> load speci�ed driver �les (section 2.3.9 describes how -wp-include

can be used for giving directories where these driver �les are looked for).

Each driver �le contains a list of bindings with the following syntax:

library "lib": "lib" . . . "lib"
type symbol = "link" ;

ctor type symbol (type,. . . ,type) = "link" ;

logic type symbol (type,. . . ,type) = optional-algebraic-property-tags "link" ;

predicate symbol (type,. . . ,type) = "link" ;

Library speci�cation is optional and applies to subsequent linked symbols. If provided, the
WP plug-in automatically load the speci�ed external libraries when linked symbols are used
in a goal. Dependencies among libraries can be speci�ed also, after the ':'.

C-Comments are allowed in the �le. For overloaded ACSL symbols, it is necessary to provide
one "link" symbol for each existing signature. The same "link" symbol is used for all provers,
and must be de�ned in the speci�ed libraries, or in the external ones (see 2.3.9).

When a library "lib" is speci�ed, the loaded module depend on the target solver:

library "lib":

Coq: loads Lib.v
Alt-Ergo: loads lib.mlw
Why3: loads theory Lib from lib.why

Optional algebraic-property tags can be given to logic "link" symbols to allow the WP to
performs additional simpli�cations (See section 4). Tags consists of an identi�er with column
(`:'), sometimes followed by a link (`"link";'). The available tags are depicted on �gure 2.3.

2.4 Plug-in Developer Interface

The WP plug-in has several entry points registered in the Dynamic3 module of Frama-C.

All the entry points are documented in the Frama-C html documentation, in the �Wp API�
page of the plug-in section.

3See the plug-in development guide

24

2.4. PLUG-IN DEVELOPER INTERFACE

Tags Operator Properties

commutative: specify a commutative symbol: x� y = y � x
associative: specify an associative symbol: (x� y)� z = x� (y � z)
ac: shortcut for associative: commutative:

left: balance the operator on left during export to solvers (requires
the associative tag): x� y � z = (x� y)� z

right: balance the operator on right during export to solvers (re-
quires the associative tag): x� y � z = x� (y � z)

absorbant: "a-link": specify "a-link" as being the absorbant element of the sym-
bol:
"a-link"� x = "a-link"

x� "a-link" = "a-link"

neutral: "e-link": specify "e-link" as being the neutral element of the symbol:
"e-link"� x = x
x� "e-link" = x

inversible: specify simpli�cation relying on the existence of an inverse:
x� y = x� z ⇐⇒ y = z
y � x = z � x⇐⇒ y = z

idempotent: specify an idempotent symbol: x� x = x

injective: specify an injective function:
f(x1, . . . , xn) = f(y1, . . . , yn) =⇒ ∀i xi = yi

constructor: specify an injective function, that construct di�erent values
from any other constructor. Formally, whenever f and g
are two distinct constructors, they are both injective and:
f(x1, . . . , xn) 6= g(y1, . . . , ym) forall xi and yj .

Figure 2.3: Driver Property Tags

25

CHAPTER 2. USING WP PLUG-IN

2.5 Proof Obligation Reports

The WP plug-in can export statistics on generated proof obligations. These statistics are
called WP reports and are distinct from those property reports generated by the Report plug-
in. Actually,WP reports are statistics on proof obligations generated byWP, whereas property
reports are consolidated status of properties, generated by Frama-C kernel from various ana-
lyzers. We only discuss WP reports in this section.

Reports are generated with the following command-line options:

-wp-report <Rspec1,...,Rspecn> speci�es the list of reports to export. Each value Rspeci
is a WP report speci�cation �le (described below).

-wp-report-basename <name> set the basename for exported reports (described below).

Reports are created from user de�ned wp-report speci�cation �les. The general format of a
wp-report �le is as follows:

<configuration section ...>

@HEAD

<head contents ...>

@CHAPTER

<per chapter contents ...>

@SECTION

<per section contents of a chapter ...>

@TAIL

<tail contents ...>

@END

Con�guration section consists of optional commands, one per line, among:

@CONSOLE the report is printed on standard output.
Also prints all numbers right-aligned on 4 ASCII characters.

@FILE "<file >" the report is generated in �le �le.

@SUFFIX "<ext >" the report is generated in �le base.ext,
where base can be set with -wp-report-basename option.

@ZERO "<text >" text to be printed for 0-numbers. Default is "-".

@GLOBAL_SECTION "<text >" text to be printed for the chapter name about globals

@AXIOMATIC_SECTION "<text >" text to be printed for the chapter name about axiomatics

@FUNCTION_SECTION "<text >" text to be printed for the chapter name about functions

@AXIOMATIC_PREFIX "<text >" text to be printed before axiomatic names. Default is "Axiomatic"
(with a trailing space).

@FUNCTION_PREFIX "<text >" text to be printed before function names. Default is empty.

@GLOBAL_PREFIX "<text >" text to be printed before global property names. Default is
"(Global)" (with a trailing space).

@LEMMA_PREFIX "<text >" text to be printed before lemma names. Default is "Lemma" (with
a trailing space).

26

2.5. PROOF OBLIGATION REPORTS

@PROPERTY_PREFIX "<text >" text to be printed before other property names.

The generated report consists of several optional parts, corresponding to Head, Chapter and
Tail sections of the wp-report speci�cation �le. First, the head contents lines are produced.
Then the chapters and their sections are produced. Finally, the Tail content lines are printed.

The di�erent chapters are about globals, axiomatics and functions. Outputs for these chapters
can be speci�ed using these directives:

@CHAPTER <chapter header...>

@GLOBAL <global section contents...>

@AXIOMATIC <per axiomatic section contents...>

For each axiomatic, a speci�c section is produced under the chapter about axiomatics.

@FUNCTION <per function section contents...>

For each function analyzed by WP, a speci�c section is produced under the chapter
about functions.

@SECTION <default section contents...>

@PROPERTY <per property contents...>

For each property of a section, a speci�c textual contents can be speci�ed.

Textual contents use special formatters that will be replaced by actual statistics values when
the report is generated. There are several categories of formatters (PO stands for Proof

Obligations):

Formatters Description

&<col>: insert spaces up to column col

&& prints a "&"

%% prints a "%"

%<stat> statistics for section
%prop percentage of �nally proved properties in section
%prop:total number of covered properties
%prop:valid number of �nally proved properties
%prop:failed number of remaining unproved properties
%<prover> discharged PO by prover

%<prover>:<stat> statistics for prover in section

Provers

(<prover>) A prover name (see -wp-prover)

Statistics

(<prover>)
total number of generated PO
valid number of discharged PO
failed number of non-discharged PO
time maximal time used by prover for one PO
steps maximal steps used by prover for one PO
success percentage of discharged PO

27

CHAPTER 2. USING WP PLUG-IN

Remarks: &ergo is a shortcut for &alt-ergo. Formatters can be written "%.." or "%{..}".

Textual contents can use naming formatters that will be replaced by current names:

Names Description

%chapter current chapter name
%section current section name
%global current global name (under the chapter about globals)
%axiomatic current axiomatic name (under the chapter about axiomatics)
%function current function name (under the chapter about functions)
%name current name de�ned by the context:

- property name inside @PROPERTY contents,
- function name inside @FUNCTION contents,
- axiomatic name inside @AXIOMATIC contents,
- global name inside @GLOBAL contents,
- section name inside @SECTION contents,
- chapter name inside @CHAPTER contents.

2.6 Plug-in Persistent Data

As a general observation, hardly none of the internal WP data is kept in memory after each
execution. Most of the generated proof-obligation data is stored on disk before being sent to
provers, and they are stored in a temporary directory that is removed upon Frama-C exit (see
also -wp-out option).

The only information which is added to the Frama-C kernel consists in a new status for those
properties proved by WP plug-in with their dependencies.

Thus, when combining WP options with -then, -save and -load options, the user should be
aware of the following precisions:

-wp, -wp-prop, -wp-fct, -wp-bhv. These options make the WP plug-in generate proof-
obligations for the selected properties. The values of theses options are never saved and
they are cleared by -then. Hence, running -wp-prop A -then -wp-fct F does what
you expect: properties tagged by A are proved only once.

-wp-print, -wp-prover, -wp-gen, -wp-detect. These options do not generate new proof-
obligations, but run other actions on all previously generated ones. For the same reasons,
they are not saved and cleared by -then.

-wp-xxx. All other options are tunings that can be easily turned on and o� or set to the
desired value. They are saved and kept across -then command.

28

Chapter 3

WP Models

Basically, a memory model is a set of datatypes, operations and properties that are used to
abstract the values living inside the heap during the program execution.

Each memory model de�nes its own representation of pointers, memory and data actually
stored in the memory. The memory models also de�ne some types, functions and properties
required to translate C programs and ACSL annotations into �rst order logic formulæ.

The interest of developing several memory models is to manage the trade-o� between the
precision of the heap's values representation and the di�culty of discharging the generated
proof obligations by external decision procedures. If you chose a very accurate and detailed
memory model, you shall be able to generate proof obligations for any program and annota-
tions, but most of them would be hardly discharged by state-of-the art external provers. On
the other hand, for most C programs, simpli�ed models are applicable and will generate less
complex proof obligations that are easier to discharge.

A practical methodology is to use the simpler models whenever it is possible, and to up the
ante with more involved models on the remaining more complex parts of the code.

This chapter is dedicated to the description of the memory models implemented by the WP

plug-in. In this manual, we only provide a high-level description of the memory models you
might select with option -wp-model (section 3.2 and 3.3). Then we focus on two general
powerful optimizations. The �rst one, activated by default (section 3.4), mixes the selected
memory model with the purely logical Hoare model for those parts of your program that
never manipulate pointers. The second one (section 3.5) is dedicated to those pointers that
are formal parameters of function passed by reference.

3.1 Language of Proof Obligations

The work of WP consists in translating C and ACSL constructs into �rst order logical formulæ.
We denote by L the logic language for constructing proof obligations. Shortly, this logical
language is made of terms (t : term) and propositions (P : prop) that consists of:

� Natural, signed, unbounded integer constants and their operations;

� Natural real numbers and their operations;

� Arrays (as total maps) and records (tuples with named �elds);

� Abstract (polymorphic) data types;

29

CHAPTER 3. WP MODELS

� Anonymous function symbols with (optional) algebraic properties;

� Logical connectors;

� Universally and existentially quanti�ed variables.

Actually, the task of the memory model consists in mapping any heap C-values at a given
program point to some variable or term in the logical L language.

3.2 The Hoare Memory Model

This is the simplest model, inspired by the historical de�nition of Weakest Precondition Cal-

culus for programs with no pointers. In such programs, each global and local variable is
assigned a distinct variable in L.
Consider for instance the statement x++; where x has been declared as an int . In the Hoare

memory model, this C-variable will be assigned to two L-variables, say x1 before the statement,
and x2 after the statement, with the obvious relation x2 = x1 + 1 (if no over�ow occurred).

Of course, this model is not capable of handling memory reads or writes through pointer
values, because there is no way of representing aliasing.

You select this memory model in the WP plug-in with the option -wp-model Hoare; the
analyzer will complain whenever you attempt to access memory through pointers with this
model.

3.3 Memory Models with Pointers

Realistic memory models must deal with reads and writes to memory through pointers. How-
ever, there are many ways for modeling the raw bit stream the heap consists of. All memory
modelsM actually implement a common signature:

Pointer Type: τ , generally a pair of a base address and an o�set.

Heap Variables: for each program point, there is a set of logical variables to model the
heap. For instance, you may have a variable for the values at a given address, and
another one for the allocation table. The heap variables m1 . . .mk are denoted by m.

Read Operation: given the heap variables m, a pointer value p : τ , and some C-type T , the
model will de�ne an operation:

readT (m, p) : term

that de�nes the representation in L of the value of C-type T which is stored at address
p in the heap.

Write Operation: given the heap variables m before a statement, and their associated heap
variables m′ after the statement, a pointer value p : τ and a value v of C-type T , the
model will de�ne a relation:

writeT (m, p, v,m′) : prop

that relates the heap before and after writing value v at address p in the heap.

30

3.4. HOARE VARIABLES MIXED WITH POINTERS

Typically, consider the statement (*p)++ where p is a C-variable of type (int*). The memory
modelM will assign a unique pointer value P : τ to the address of p in memory.

Then, it retrieves the actual value of the pointer p, say Ap, by reading a value of type int*

into the memory variables m at address P :

Ap = readint∗(m,P)

Next, the model retrieves the previous int -value at actual address Ap, say Vp:

Vp = readint(m,Ap)

Finally, the model relates the �nal memory state m′ with the incremented value Vp + 1 at
address P :

writeint(m,Ap, Vp + 1,m′)

3.4 Hoare Variables mixed with Pointers

As illustrated above, a very simple statement is generally translated by memory models into
complex formulæ. However, it is possible in some situations to mix the Hoare memory model
with the other ones.

For instance, assume the address of variable x is never taken in the program. Hence, it is not
possible to create a pointer aliased with &x. It is thus legal to manage the value of x with
the Hoare memory model, and other values with another memory-modelM that deals with
pointers.

Common occurrences of such a situation are pointer variables. For instance, assume p is a
variable of type int*; it is often the case that the value of p is used (as in *p), but not the
address of the variable p itself, namely &p. Then, it is very e�cient to manage the value of p
with the Hoare memory model, and the value of *p with a memory model with pointers.

Such an optimization is possible whenever the address of a variable is never taken in the
program. It is activated by default in the WP plug-in, since it is very e�ective in practice.
You can nevertheless deactivate it with selector �-wp-model raw�.

3.5 Hoare Variables for Reference Parameters

A common programming pattern in C programs is to use pointers for function arguments
passed by reference. For instance, consider the swap function below:

vo i d swap(i n t *a, i n t *b)

{

i n t tmp = *a ;

*a = *b ;

*b = tmp ;

}

Since neither the address of a nor the one of b are taken, their values can be managed by the
Hoare Model as described in previous section. But we can do even better. Remark that none
of the pointer values contained in variables a and b is stored in memory. The only occurrences
of these pointer values are in expressions *a and *b. Thus, there can be no alias with these
pointer values elsewhere in memory, provided they are not aliased initially.

31

CHAPTER 3. WP MODELS

Hence, not only can a and b be managed by the Hoare model, but we can also treat (*a) and
(*b) expressions as two independent variables of type int with the Hoare memory model.

For the callers of the swap function, we can also take bene�t from such by-reference passing
arguments. Typically, consider the following caller program:

vo i d f (vo i d)
{

i n t x=1,y=2 ;

swap(&x,&y);

}

Strictly speaking, this program takes the addresses of x and y. Thus, it would be natural to
handle those variables by a model with pointers. However, swap will actually always use *&x

and *&y, which are respectively x and y.

In such a situation it is then correct to handle those variables with the Hoare model, and this
is a very e�ective optimization in practice. Notice however, that in the example above, the
optimization is only correct because x and y have disjoint addresses.

These optimizations can be activated in the WP plug-in with selector �-wp-model ref�, and
the necessary separation conditions are generated on-the-�y. This memory model �rst detects
pointer or array variables that are always passed by reference. The detected variables are
then assigned to the Hoare memory model.

This optimization is not activated by default, since the non-aliasing assumptions at call sites
are sometimes irrelevant.

3.6 The Typed Memory Model

This memory model is actually a reformulation of the Store memory model used in previous
versions of the WP plug-in. In theory, its power of expression is equivalent. However, in
practice, the reformulation we performed makes better usage of built-in theories of Alt-Ergo
theorem prover and Coq features. The main modi�cations concern the heap encoding and the
representation of addresses.

Addresses. We now use native records of L and provers to encode addresses as pairs of
base and o�set (integers). This simplify greatly reasoning about pointer separation and com-
mutation of memory accesses and updates.

Store Memory. In the Store memory model, the heap is represented by one single memory
variable holding an array of data indexed by addresses. Then, integers, �oats and pointers
must be boxed into data and unboxed from data to implement read and write operations.
These boxing-unboxing operations typically prevent Alt-Ergo from making maximal usage of
its native array theory.

Typed Memory. In the Typedmemory model, the heap is now represented by three memory
variables, holding respectively arrays of integers, �oats and addresses indexed by addresses.
This way, all boxing and unboxing operations are avoided. Moreover, the native array theory
of Alt-Ergo works very well with its record native theory used for addresses : memory variables
access-update commutation can now rely on record theory to decide that two addresses are
di�erent (separated).

32

Chapter 4

WP Simpli�er

The logical language L used to build proof obligations is now equipped with build-in sim-
pli�cations. This allows for proof obligations to be simpli�ed before being sent to external
provers, and sometimes to be reduced to trivial goals.

This chapter is dedicated to the description of simpli�er and how to use it with WP plug-in.
It also present how combinatorial explosion of path exploration is now tackled down thanks to
passive form transformation and automated sub-terms factorization [FS01, Lei03]. This also
leads to more compact and (somehow) more readable proof obligations, with less memory,
less disk usage and lower external prover time overhead, compared to WP versions 0.6 and
lower.

4.1 Logic Normalizations

The new logic language L is naturally equipped with term normalization and maximal sub-
term sharing. It is only used with new memory models, not with the standard ones.

The maximal sub-term sharing are responsible for the introduction of let-bindings whenever a
sub-expression appears several times in the generated proof obligations. The occupied memory
and disk usage of WP is also reduced compared to other models.

The normalization rules can not be turned o�, and are responsible for local simpli�cations.
Although modest, they can turn a proof obligation to be trivialy discharged.

Logic normalization by commutativity and associativity ; absorption and neutral elements ;
elimination of redundant facts ; propagation of negations (Morgan laws) ; simpli�cation
of conditionals.

Arithmetic normalization by commutativity and associativity ; absorption and neutral el-
ements ; factorization with linear forms ; constant folding ; normalization of linear
equalities and inequalities.

Array elimination of consecutive access and updates.

Record elimination of consecutive access and updates ;
simpli�cation of structural equalities and inequalities.

33

CHAPTER 4. WP SIMPLIFIER

4.2 Simpli�er Engine (Qed)

Build on top of our normalizing logic language L, we have a simpli�er engine named Qed. The
simpli�er engine is used by WP plug-in to simplify the generated proof contexts and proof
obligations. The basic feature of Qed is to manage a base of knowledge Γ. It is possible to
add new facts (hypotheses) to Γ, and to simplify (rewrite) a term of a property with respect
to Γ.

By default, the only rewriting performed by Qed is the propagation of equality classes by
normalization. The Qed engine can be enriched by means of plug-ins to perform more dedi-
cated simpli�cations. For instance, we have developed a simpli�er plug-in for array and record
theories, and a prototype for linear inequalities.

WP uses the simpli�cation engine to simplify proof contexts by recursively combining for
basic laws involving the simpli�er engine. Each law is applied with respect to a local base of
knowledge Γ (initially empty).

Adding a new fact H to Γ is denoted by Γ⊕H ; rewriting a term of predicate e into e′ with
respect to Γ is denoted by Γ |= e . e′.

Inference Law. An hypothesis is simpli�ed and added to the knowledge base to simplify
the goal.

Γ |= H . H ′ Γ⊕H ′ |= G . G′

Γ |= (H → G) . (H ′ → G′)

Conjunction Law. Each side of a conjunction is simpli�ed with the added knowledge of
the other side. This law scales up to the conjunction of n facts, and simpli�cations can be
performed incrementally.

Γ⊕B |= A . A′ Γ⊕A |= B . B′

Γ |= (A ∧B) . (A′ ∧B′)

Conditional Law. The conditional expression is simpli�ed, before simplifying each branch
under the appropriate hypothesis.

Γ |= H . H ′ Γ⊕H ′ |= A . A′ Γ⊕ ¬H ′ |= B . B′

Γ |= (H ?A : B) . (H ′ ?A′ : B′)

Inside the WP plug-in, the proof contexts are only build in terms of conjunctions, conditional
and inference rules. Hence, these laws are su�cient to perform proof context simpli�cations.
Technically, simpli�cation has a quadratic complexity in the width and depth of the proof
formula. Options will be added to control the risk for combinatorial explosion. In practice,
simpli�cation is delayed until submission of the proof obligation to external provers, that
have similar complexity. Since we account on simpli�cation for enhancing prover e�ciency,
we expect this extra cost to be valuable.

The power of the simpli�cation process depends on the simpli�cation plug-ins loaded in the
Qed engine, and will be the purpose of further developments.

34

4.3. EFFICIENT WP COMPUTATION

4.3 E�cient WP Computation

During the Weakest Precondition calculus, proof obligations are constructed backwardly for
each program instruction. Conditional statements are of particular interest, since they intro-
duce a fork in the generated proof contexts.

More precisely, consider a conditional statement if (e) A else B. Let WA be the weakest
precondition calculus from block A, and WB the one from block B. Provided the transla-
tion of expression e in the current memory model leads to assumption E, the naive weakest
precondition of the conditional is: (E ?WA : WB).

With this formula, the weakest preconditions of the program after the conditional is duplicated
inside WA and WB. Moreover, this common post conditions have been transformed by the
e�ects of A and B. Then, the factorization of common sub-terms of logic language L is not
capable of avoiding the duplication. In presence of successive conditionals, proof obligations
generated become twice as big at each conditional statement.

To tackle this problem, the solution is to put the program in passive form [FS01, Lei03]. Each
variable of the program is assigned a di�erent logic variable in each branch. The di�erent
variables are joined at conditionals into new fresh variables and equality conditions.

In practice, the passive form transformation is done during the weakest precondition calculus,
together with the translation of C and ACSL by the memory model. Hence, a translation map
σ is maintained at each program point from memory model variables to L logic variables.

Joining to maps σ1 and σ2 from the branches of a conditional leads to a new map σ assigning
a new logic variable x to memory variable m whenever σ1(m) and σ2(m) are di�erent. This
join also produces the two sets of equalities H1 and H2 associated to this variables renaming.
Hence σ(m) = σ1(m) below is member of H1 and σ(m) = σ2(m) is member of H2.

Now, if W is the post-condition of the conditional program below, WA and WB can always
be decomposed into: WA = W 0

A ∧W and WB = W 0
B ∧W . Finally, the weakest precondition

of the conditional is:
(E ? H1 ∧W 0

A : H2 ∧W 0
B) ∧W

This form actually factorizes the common postcondition to A and B, which makes the weakest
precondition calculus linear into the number of program statements.

35

BIBLIOGRAPHY

Bibliography

[BFMP11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
Why3: Shepherd your herd of provers. First International Workshop on Intermediate

Veri�cation Languages, August 2011.

[Bur72] R. M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 1972.

[CCK06] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem prover
for polymorphic �rst-order logic modulo theories, 2006.

[Coq10] Coq Development Team. The Coq Proof Assistant Reference Manual � Version V8.4,
2010.

[Dij68] Edsger W. Dijkstra. A constructive approach to program correctness. BIT Numerical

Mathematics, Springer, 1968.

[Fil03] J.-C. Filliâtre. Why: a multi-language multi-prover veri�cation tool. Research Report
1366, LRI, Université Paris Sud, March 2003.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proceedings of the American Math-

ematical Society Symposia on Applied Mathematics, 19, 1967.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding Exponential Explosion: Generating
Compact Veri�cation Conditions. In Conference Record of the 28th Annual ACM

Symposium on Principles of Programming Languages, pages 193�205. ACM, January
2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 1969.

[Lei03] K. Rustan Leino. E�cient weakest preconditions, 2003.

[Lei08] K. Rustan M. Leino. This is Boogie 2. Microsoft Research, 2008.

[MM09] Yannick Moy and Claude Marché. Jessie Plugin Tutorial, Beryllium version. INRIA,
2009. http://www.frama-c.cea.fr/jessie.html.

37

http://www.frama-c.cea.fr/jessie.html

	Introduction
	Installation
	Tutorial
	Weakest Preconditions
	Memory Models
	Arithmetics Models

	Using WP Plug-in
	Installing Provers
	Graphical User Interface
	Command Line Options
	Goal Selection
	Program Entry Point
	Model Selection
	Computation Strategy
	Trigger Generation
	Qed Simplifier Engine
	Decision Procedures Interface
	Generated Proof Obligations
	Additional Proof Libraries
	Linking ACSL Symbols to External Libraries

	Plug-in Developer Interface
	Proof Obligation Reports
	Plug-in Persistent Data

	WP Models
	Language of Proof Obligations
	The Hoare Memory Model
	Memory Models with Pointers
	Hoare Variables mixed with Pointers
	Hoare Variables for Reference Parameters
	The Typed Memory Model

	WP Simplifier
	Logic Normalizations
	Simplifier Engine (Qed)
	Efficient WP Computation

