
Annotation Generation

Frama-C’s annotation generator
plug-in

for Frama-C Carbon-20110201

Philippe Herrmann

CEA LIST, Software Reliability Laboratory, Saclay, F-91191

c©2010 CEA LIST

CONTENTS

Contents

1 Introduction 7

1.1 RTE plugin . 7

1.2 Runtime errors . 8

1.3 Other annotations generated . 9

2 Runtime error annotation generation 11

2.1 Integer operations . 11

2.1.1 Addition, subtraction, multiplication 11

2.1.2 Signed downcasting . 12

2.1.3 Unary minus . 13

2.1.4 Division and modulo . 13

2.1.5 Bitwise shift operators . 14

2.2 Left-values access . 15

2.3 Unsigned overflow annotations . 16

2.4 Expressions not considered by RTE . 17

2.5 Undefined behaviors not covered by RTE . 18

3 Precondition annotation generation 19

4 Plugin options 21

Bibliography 23

5

Chapter 1

Introduction

1.1 RTE plugin

This document is a reference manual for the annotation generator plugin called RTE. The
aim of the RTE plugin is to automatically generate annotations for:

• common runtime errors, such as division by zero, signed integer overflow or invalid
memory access ;

• unsigned integer overflows, which are allowed by the C language but may pose problem
to solvers ;

• precondition checking (requires and assumes clauses) at function’s call sites, as well as
postconditions (ensures clauses) and assigns, for functions having an ACSL specification.

In a modular proof setting, the main purpose of the RTE plug-in is to seed more advanced
plug-ins (such as the weakest-preconditions generation plug-in [5]) with proof obligations.
Annotations can also be generated for their own sake in order to guard against runtime
errors. The reader should be aware that discharging such annotations is much more difficult
than simply generating them, and that there is no guarantee that a plug-in such as Frama-C’s
value analysis [6] will be able to do so automatically in all cases.

RTE performs syntactic constant folding in order not to generate trivially valid annotations.
Constant folding is also used to directly flag some annotations with an invalid status. RTE
does not perform any kind of advanced value analysis, and does not stop annotation generation
when flagging an annotation as invalid, although it may generate fewer annotations in this
case for a given statement.

Like most Frama-C plugins, RTE makes use of the hypothesis that signed integers have
a two’s complement representation, which is a common implementation choice. Also note
that annotations are dependent of the machine dependency used on Frama-C command-line,
especially the size of integer types.

The C language ISO standard [3] will be referred to as ISO C99 (of which specific paragraphs
are cited, such as 6.2.5.9).

7

CHAPTER 1. INTRODUCTION

1.2 Runtime errors

A runtime error is a usually fatal problem encountered when a program is executed. Typical
fatal problems are segmentation faults (the program tries to access memory that it is not
allowed to access) and floating point exceptions (for instance when dividing an integer by
zero: despite its name, this exception does not only occur when dealing with floating point
arithmetic). A C program may contain “dangerous” constructs which under certain conditions
lead to runtime errors when executed. For instance evaluation of the expression u / v will
always produce a floating point exception when v = 0 holds. Writing at an out-of-bounds
index of an array may result in a segmentation fault, and it is dangerous even if it fails to do
so (other variables may be overwritten). The goal of this Frama-C plug-in is to detect a number
of such constructs, and to insert a corresponding logical annotation (a first-order property
over the variables of the construct) ensuring that, whenever this annotation is satisfied before
execution of the statement containing the construct, the potential runtime error associated
with the expression will not happen. Annotation checking can be performed (at least partially)
by Frama-C value analysis plug-in [6], while more complicated properties may involve other
plug-ins and more user interaction.

At this point it is necessary to define what one means by a “dangerous” construct. ISO C99
lists a number of undefined behaviors (the program construct can, at least in certain cases, be
erroneous), a number of unspecified behaviors (the program construct can be interpreted in at
least two ways), and a list of implementation-defined behaviors (different compilers and archi-
tectures implement different behaviors). Constructs leading to such behaviors are considered
dangerous, even if they do not systematically lead to runtime errors. In fact an undefined
behavior must be considered as potentially leading to a runtime error, while unspecified and
implementation-defined behaviors will most likely result in portability problems.

An example of an undefined behavior (for the C language) is signed integer overflow, which
occurs when the (exact) result of a signed integer arithmetic expression can not be represented
in the domain of the type of the expressions. For instance, supposing that an int is 32-bits
wide, and thus has domain [-2147483648,2147483647], and that x is an int , the expression
x+1 performs a signed integer overflow, and therefore has an undefined behavior, if and only if
x equals 2147483647. This is independent of the fact that for most (if not all) C compilers and
32-bits architectures, one will get x+1 = -2147483648 and no runtime error will happen. But
by strictly conforming to the C standard, one cannot assert that the C compiler will not in
fact generate code provoking a runtime error in this case, since it is allowed to do so. Also note
that from a security analysis point of view, an undefined behavior leading to a runtime error
classifies as a denial of service (since the program terminates), while a signed integer overflow
may very well lead to buffer overflows and execution of arbitrary code by an attacker. Thus
not getting a runtime error on an undefined behavior is not necessarily a desirable behavior.

On the other hand, note that a number of behaviors classified as implementation-defined by
the ISO standard are quite painful to deal with in full generality. In particular, ISO C99
allows either sign and magnitude, two’s complement or one’s complement for representing
signed integer values. Since most if not all “modern” architectures are based on a two’s
complement representation (and that compilers tend to use the hardware at their disposal),
it would be a waste of time not to build verification tools by making such wide-ranging and
easily checkable assumptions. Therefore RTE uses the hypothesis that signed integers
have a two’s complement representation.

8

1.3. OTHER ANNOTATIONS GENERATED

1.3 Other annotations generated

RTE may also generate annotations that are not related to runtime errors:

• absence of unsigned overflows checking. Although unsigned overflows are well-defined,
some plugins may wish to avoid them.

• generating call sites statement contracts, based on the called function’s contract. This
is useful for modular verification.

9

Chapter 2

Runtime error annotation generation

2.1 Integer operations

According to 6.2.5.9, operations on unsigned integers “can never overflow” (as long as the
result is defined, which excludes division by zero): they are reduced modulo a value which
is one greater than the largest value of their unsigned integer type (typically 2n for n-bit
integers). So in fact, arithmetic operations on unsigned integers should really be understood
as modular arithmetic operations (the modulus being the largest value plus one).

On the other hand, an operation on signed integers might overflow and this would pro-
duce an undefined behavior. Hence, a signed integer operation is only defined if its result
(as a mathematical integer) falls into the interval of values corresponding to its type (e.g.
[INT_MIN,INT_MAX] for int type, where the bounds INT_MIN and INT_MAX are defined in the
standard header limits.h). Therefore, signed arithmetic is true integer arithmetic as long as
intermediate results are within certain bounds, and becomes undefined as soon as a compu-
tation falls outside the scope of representable values of its type.

The full list of arithmetic and logic operations which might overflow is presented hereafter.
Most of these overflows produce undefined behaviors, but some of them are implementation
defined and indicated as such.

2.1.1 Addition, subtraction, multiplication

These arithmetic operations may not overflow when performed on signed operands, in the
sense that the result must fall in an interval which is given by the type of the corresponding
expression and the macro-values defined in the standard header limits.h. A definition of this
file can be found in the share directory of Frama-C.

type representable interval
signed char [SCHAR_MIN, SCHAR_MAX]
signed short [SHRT_MIN,SHRT_MAX]
signed int [INT_MIN,INT_MAX]
signed long int [LONG_MIN,LONG_MAX]
signed long long int [LLONG_MIN,LLONG_MAX]

Since RTE makes the assumption that signed integers are represented in 2’s complement, the
interval of representable values also corresponds to [−2n−1, 2n−1 − 1] where n is the number

11

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

of bits used for the type (sign bit included, but not the padding bits if there are any). The
size in bits of a type is obtained through Cil.bitsSizeOf: typ -> int, which bases itself on
the machine dependency option of Frama-C. For instance by using -machdep x86_32, we have
the following:

type size in bits representable interval
signed char 8 [-128,127]
signed short 16 [-32768,32767]
signed int 32 [-2147483648,2147483647]
signed long int 32 [-2147483648,2147483647]
signed long long int 64 [-9223372036854775808,9223372036854775807]

Frama-C annotations added by plugins such as RTE may not contain macros since pre-
processing is supposed to take place beforehand (user annotations at the source level can
be taken into account by using the -pp-annot option). As a consequence, annotations are
displayed with big constants such as those appearing in this table.

Example 2.1 Here is a RTE-like output in a program involving signed long int with an
x86_32 machine dependency:

1

2 i n t main(vo i d)
3 {
4 s i g n ed long i n t lx, ly , lz;
5

6 /*@ a s s e r t
7 ((lx*ly <= 2147483647) &&
8 (lx*ly >= -2147483648));
9 */

10 lz = lx * ly;
11

12 r e t u r n 1;
13 }

The same program, but now annotated with an x86_64 machine dependency:
1

2 i n t main(vo i d)
3 {
4 s i g n ed long i n t lx, ly , lz;
5

6 /*@ a s s e r t
7 ((lx*ly <= 9223372036854775807) &&
8 (lx*ly >= -9223372036854775808));
9 */

10 lz = lx * ly;
11

12 r e t u r n 1;
13 }

The difference comes from the fact that signed long int is 32-bit wide for x86_32, and 64-bit
wide for x86_64.

2.1.2 Signed downcasting

Note that arithmetic operations usually involve arithmetic conversions. For instance, integer
expressions with rank lower than int are promoted, thus the following program:

12

2.1. INTEGER OPERATIONS

1 i n t main(vo i d)
2 {
3 s i g n ed char cx, cy , cz;
4

5 cz = cx + cy;
6 r e t u r n 1;
7 }

is in fact equivalent to:

1 i n t main(vo i d)
2 {
3 s i g n ed char cx, cy , cz;
4

5 cz = (s i g n ed char)((i n t)cx + (i n t)cy);
6 r e t u r n 1;
7 }

Since a signed overflow can occur on expression (int)cx + (int)cy, the following annotation
is generated by the RTE plugin:

a s s e r t (((i n t)cx+(i n t)cy <= 2147483647) && ((i n t)cx+(i n t)cy >= -2147483648))

This is much less constraining than what one would want to infer, namely:
a s s e r t (((i n t)cx+(i n t)cy <= 127) && ((i n t)cx+(i n t)cy >= -128))

Actually the RTE plugin infers this second (stronger) assertion when treating the cast of the
expression to a signed char. Since the value represented by the expression cannot in general be
represented as a signed char, and following ISO C99 paragraph 6.3.1.3.3 (on downcasting to a
signed type), an implementation-defined behavior happens whenever the result falls outside the
range [-128,127]. Thus, with a single annotation, the RTE plugin prevents both an undefined
behavior (signed overflow) and an implementation defined behavior (signed downcasting).

Note that the annotation for signed downcasting always entails the annotation for signed
overflow. The RTE plugin makes the choice of generating an annotation only for the strongest
one. The selection of options -rte-no-all -rte-signed can be used in order to prevent signed
downcasting annotation while keeping signed overflow annotation. In that case, the signed
overflow annotation is generated.

2.1.3 Unary minus

The only case when a (signed) unary minus integer expression -expr overflows is when expr
is equal to the minimum value of the integer type. Thus the generated assertion is as follows:

1 i n t ix;
2 // some code
3 //@ a s s e r t (ix != -2147483648);
4 ix = - ix;

2.1.4 Division and modulo

As of ISO C99 paragraph 6.5.5, an undefined behavior occurs whenever the value of the second
operand of operators / and % is zero. The corresponding runtime error is usually referred to
as “division by zero”. This may happen for both signed and unsigned operations.

1 uns i gned i n t ux;
2 // some code
3 //@ a s s e r t (ux != 0);
4 ux = 1 / ux;

13

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

In 2’s complement representation and for signed division, dividing the minimum value of an
integer type by −1 overflows , since it would give the maximum value plus one. There is no
such rule for signed modulo, since the result would be zero, which does not overflow.

1 i n t x,y,z;
2 // some code
3 //@ a s s e r t (x != 0);
4 //@ a s s e r t !(((x = -1) && (y = -2147483648)));
5 z = y / x;

2.1.5 Bitwise shift operators

ISO C99 paragraph 6.5.7 defines undefined and implementation defined behaviors for bitwise
shift operators. The type of the result is the type of the promoted left operand.

The undefined behaviors are the following:

• the value of the right operand is negative or is greater than or equal to the width of the
promoted left operand:

1 i n t x,y,z;
2

3 //@ a s s e r t ((y >= 0) && (y < 32));
4 z = x << y; // same annotation for z = x >> y;

• in E1 << E2, E1 has signed type and negative value:
1 i n t x,y,z;
2

3 //@ a s s e r t (x >= 0);
4 z = x << y;

• in E1 << E2, E1 has signed type and nonnegative value, but the value of the result
E1× 2E2 is not representable in the result type:

1 i n t x,y,z;
2

3 //@ a s s e r t (x << y <= 2147483647);
4 z = x << y;

There is also an implementation defined behavior if in E1 >> E2, E1 has signed type and
negative value. This case corresponds to the arithmetic right-shift, usually defined as signed
division by a power of two, with two possible implementations: either by rounding the result
towards minus infinity (which is standard) or by rounding towards zero. RTE generates an
annotation for this implementation defined behavior.

1 i n t x,y,z;
2

3 //@ a s s e r t (x >= 0);
4 z = x << y;

Example 2.2 The following example summarizes RTE generated annotations for bitwise
shift operations, with -machdep x86_64:

1 l ong x,y,z;
2

3 //@ a s s e r t ((y >= 0) && (y < 64));
4 //@ a s s e r t (x<<y <= 9223372036854775807);
5 //@ a s s e r t (x >= 0);
6 z = x << y;
7

8 //@ a s s e r t ((y >= 0) && (y < 64));
9 //@ a s s e r t (x >= 0);

10 z = x >> y;

14

2.2. LEFT-VALUES ACCESS

2.2 Left-values access

Dereferencing a pointer is an undefined behavior if:

• the pointer has an invalid value: null pointer, misaligned address for the type of object
pointed to, address of an object after the end of its lifetime (see ISO C99 paragraph
6.5.3.2.4) ;

• the pointer points one past the last element of an array object: such a pointer has a
valid value, but should not be dereferenced (ISO C99 paragraph 6.5.6.8).

Since an array subscripting E1[E2] is identical to (*((E1) + (E2))) (ISO C99 paragraph
6.5.2.1.2), this “invalid access” undefined behavior naturally extends to array indexing.

The RTE plugin generates annotations to prevent this type of undefined behavior in a system-
atic way. It does so by deferring the check to the ACSL built-in predicate valid(p): valid(s)
(where s is a set of terms) holds if and only if dereferencing any p ∈ s is safe (i.e. points to a
safely allocated memory location).

Pointers to functions are not treated by RTE since, as of the time this manual was written,
there is no predicate in ACSL expressing that such a pointer actually points to an existing
function.

Example 2.3 An example of RTE annotation generation for checking the validity of each
memory access:

1 e x t e r n vo i d f(i n t * p);
2

3 i n t main(vo i d)
4 {
5 i n t *p ;
6 i n t tab [10] ;
7

8 //@ a s s e r t (\ v a l i d (p));
9 *p = 3;

10

11 //@ a s s e r t (\ v a l i d (&tab [3]));
12 //@ a s s e r t (\ v a l i d (p));
13 tab [3] = *p;
14

15 //@ a s s e r t (rte: \ v a l i d (p+1));
16 //@ a s s e r t (rte: \ v a l i d ((i n t *)tab));
17 *(p + 1) = tab [0];
18

19 //@ a s s e r t (\ v a l i d ((i n t *)tab));
20 f(tab); // equivalent to f(&tab [0])
21

22 r e t u r n 0;

Note that in the call f(tab), the implicit conversion from array tab to a pointer to the
beginning of the array &tab[0] introduces a pointer dereferencing and thus the annotation
\valid ((int*) tab), which is equivalent to \valid (&tab[0]).

Example 2.4 An example of memory access validity annotation generation for structured
types.

1 s t r u c t S {
2 i n t val;
3 s t r u c t S *next;
4 };

15

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

5

6 s t r u c t C {
7 s t r u c t S cell [5];
8 i n t (*f)(i n t);
9 };

10

11 s t r u c t ArrayStruct {
12 s t r u c t C data [10];
13 };
14

15 i n t main()
16 {
17 i n t a;
18 s t r u c t ArrayStruct buff;
19 // some code
20

21 //@ a s s e r t (\ v a l i d (buff. data [1]. cell [2]. next));
22 //@ a s s e r t (\ v a l i d (&buff. data [1]));
23 //@ a s s e r t (\ v a l i d (&buff. data [1]. cell [2]));
24 a = (buff. data [1]. cell [2]. next)->val;
25

26 //@ a s s e r t (\ v a l i d (&buff. data [0]));
27 (*(buff. data [0].f))(a);
28

29 r e t u r n 0;
30 }

There is no annotation generated for the validity of the field buff.data[0].f because it is a
function pointer. RTE emits a warning in such a case.

2.3 Unsigned overflow annotations

ISO C99 states that unsigned integer arithmetic is modular: overflows do not occur (paragraph
6.2.5.9 of ISO C99). On the other hand, most first-order solvers used in deductive verification
(excluding dedicated bit-vector solvers such as [2]) either provide only non-modular arithmetic
operators, or are much more efficient when no modulo operation is used besides classic full-
precision arithmetic operators. Therefore RTE offers a way to generate assertions preventing
unsigned arithmetic operations to overflow (i.e. involving computation of a modulo).

Operations which are considered by RTE regarding unsigned overflows are addition, subtrac-
tion, multiplication, and left shift. Negation (unary minus) and right shift are not considered.
The generated assertion requires the result of the operation (in non-modular arithmetic) to
be less than the maximal representable value of its type, and nonnegative (for subtraction).

Proviso: assertion generation for unsigned overflows is only available for unsigned integer
types whose bit size is at most 32. In particular, in order to be able to treat 64 bits integers,
it would be necessary to use big constants such as 264 − 1 in generated assertions, which is a
problem for Cil [1] at the time of writing this manual.

Example 2.5

The following file only contains unsigned arithmetic operations: no assertion is generated by
RTE by using options -rte -rte-all.

1 uns i gned i n t f(uns i gned i n t a, uns i gned i n t b)
2 {
3 uns i gned i n t x, y, z;
4 x = a << 3;
5 y = b * (uns i gned i n t)2;
6 z = x - y;
7 r e t u r n (z);
8 }

16

2.4. EXPRESSIONS NOT CONSIDERED BY RTE

To generate assertions w.r.t. unsigned overflows, options -rte -rte-unsigned-ov must be used.
Here is the resulting file on a 32 bits target architecture (-machdep x86_32):

1

2 uns i gned i n t f(uns i gned i n t a, uns i gned i n t b)
3 {
4 uns i gned i n t x, y, z;
5 /*@ a s s e r t rte: (a<<3 <= 4294967295); */
6 x = a << 3;
7 /*@ a s s e r t rte: (b*(uns i gned i n t)2 <= 4294967295); */
8 y = b * (uns i gned i n t)2;
9 /*@ a s s e r t rte: (x-y >= 0); */

10 z = x - y;
11 r e t u r n (z);
12 }

2.4 Expressions not considered by RTE

An expression which is the operand of a sizeof (or __alignof, a GCC operator parsed by Cil)
is ignored by RTE, as are all its sub-expressions. This is an approximation, since the operand
of sizeof may sometimes be evaluated at runtime, for instance on variable sized arrays: see
the example in ISO C99 paragraph 6.5.3.4.7. Still, the transformation performed by Cil on
the source code actually ends up with a statically evaluated sizeof (see the example below).
Thus the approximation performed by RTE seems to be on the safe side.

Example 2.6 Initial source code:
1 #i n c l u d e <stddef.h>
2

3 size_t fsize3(i n t n)
4 {
5 cha r b[n + 3]; // variable length array
6 r e t u r n s i z e o f b; // execution time sizeof
7 }
8

9 i n t main()
10 {
11 r e t u r n fsize3 (5);
12 }

Output obtained with frama-c -print with gcc preprocessing:
1 t y p ed e f uns i gned i n t size_t;
2 /* compiler builtin:
3 void *__builtin_alloca(unsigned int) ; */
4 size_t fsize3(i n t n)
5 {
6 cha r *b ;
7 uns i gned i n t __lengthofb ;
8 size_t __retres ;
9 { /* undefined sequence */

10 __lengthofb = (uns i gned i n t)(n + 3);
11 b = (cha r *) __builtin_alloca(s i z e o f (*b) * __lengthofb);
12 }
13 __retres = s i z e o f (*b) * __lengthofb;
14 r e t u r n (__retres);
15 }
16

17 i n t main(vo i d)
18 {
19 i n t tmp ;
20 tmp = (i n t)fsize3 (5);
21 r e t u r n (tmp);
22 }

17

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

2.5 Undefined behaviors not covered by RTE

One should be aware that RTE only covers a small subset of all possible undefined behaviors
(see annex J.2 of [3] for a complete list).

In particular, undefined behaviors related to the following operations are not considered:

• Use of relational operators for the comparison of pointers that do not point to the same
aggregate or union (ISO C99 6.5.8)

• Demotion of a real floating type to another type producing a value outside of the rep-
resentable range (ISO C99 6.3.1.5)

• Conversion between two pointer types produces a result that is incorrectly aligned
(ISO C99 6.3.2.3)

• Use of a pointer to call a function whose type is not compatible with the pointed-to
type (ISO C99 6.3.2.3)

18

Chapter 3

Precondition annotation generation

Using ACSL, the Frama-C frameworks allows the user to write contracts for C functions.
These contracts contain in particular:

• requires clauses R1, R2, . . . (preconditions),

• ensures clauses E1, E2, . . . (postconditions),

• assigns clauses A1, A2, . . . (set of locations assigned by the function).

The intended behavior is that any caller must make sure that the function is called in a state
where the required property R1 && R2 && . . . holds, to ensure that E1 && E2 && . . . holds in
the state returned by the function call. Contracts may contain several named behaviors as
well, see the ACSL manual.

For a function having a contract, the RTE plugin can generate a statement annotation corre-
sponding to the contract at each call site. It does so by substituting formal parameters of the
contract with actual parameters at the call site. The generated statement annotation ensures
that the function is called in the proper state and specifies its return state.

Example 3.1

Consider function f with the following contract:
1 /*@ e n s u r e s (\ r e s u l t == -\at (x,Old));
2 b eha v i o r pos:
3 assumes (x >= 0);
4 e n s u r e s (\ r e s u l t <= 0);
5 a s s i g n s *y;
6 b eha v i o r neg:
7 assumes (x < 0);
8 e n s u r e s (\ r e s u l t > 0);
9 a s s i g n s \noth ing ;

10 */
11 i n t f(i n t x , i n t *y)
12 {
13 i n t __retres ;
14 i f (x >= 0) { *y = x; }
15 __retres = - x;
16 r e t u r n (__retres);
17 }

Here is an example of a statement behavior generated by RTE on a call to f:

19

CHAPTER 3. PRECONDITION ANNOTATION GENERATION

1 i n t main(vo i d)
2 {
3 i n t a, b ,c;
4 a = 5;
5 /*@ b eha v i o r rte_0:
6 e n s u r e s (b == -\at (a,Old));
7 a s s i g n s b;
8 b eha v i o r rte_1:
9 assumes (a >= 0);

10 e n s u r e s (b <= 0);
11 a s s i g n s b, *(&c);
12 b eha v i o r rte_2:
13 assumes (a < 0);
14 e n s u r e s (b > 0);
15 a s s i g n s b;
16 */
17 b = f(a,& c);
18 r e t u r n (b + c);
19 }

The generated behaviors names are rte_0, rte_1, rte_2). Notice that assigns clauses are
also taken into account, and that the formal \result is substituted with the assigned left-value.

The main restriction is that the RTE plugin only performs syntactic detection of function
calls: functions called through pointers are warned about but no statement annotation is
generated. This is unlikely to change until ACSL introduces contracts on function pointers.

20

Chapter 4

Plugin options

Enabling RTE plugin is done by adding -rte on the command-line of Frama-C. The plugin
then selects every C function which is in the set defined by the -rte-select: if no explicit
set of functions is provided by the user, all C functions defined in the program are selected.
Selecting the kind of annotations which will be generated is performed by using other RTE
options (see fig. 4.1 for a summary).

Pretty-printing the output of RTE and relaunching the plugin on the resulting file will generate
duplicated annotations, since the plugin does not check existing annotations before generation.
This behaviour does not happen if RTE is used in the context of a Frama-C project [4]: in that
case, the set of RTE options used for each C function will be recorded in internal states. Thus
a function selected for annotation will only be annotated by RTE if at least one generation
option has changed. If the function is to be annotated with a different set of options, it occurs
after discarding existing annotations generated by RTE. This ensures that, for a given C
function and in the context of a Frama-C project, the generated annotations only depend
on the set of options that have been used the last time RTE has been launched with this C
function selected. It is possible to annotate each C function with a different set of options.

Option -rte-all has a special behavior: if selected (which is the default case), the options
-rte-signed, -rte-downcast, -rte-div, -rte-mem and -rte-precond are also selected, irrespec-
tive of the corresponding command-line option. For instance, annotations for division by zero
will be generated even if the user explicitly specifies -rte-no-div, unless -rte-no-all is also
selected.

The special behavior of -rte-all implies that RTE generates by default all runtime-errors
(more precisely, undefined and implementation-defined behaviors) and precondition annota-
tions it handles. The user should explicitly add -rte-unsigned-ov (not entailed by -rte-all)
to generated unsigned overflows annotations, which are valid as of ISO C99.

On the other hand, to generate only a subset of possible annotations, one has to use -rte-no-all
in conjunction with other positive options. For instance, used in conjunction with -rte-precond
alone, only precondition annotations would be generated. Adding -rte-mem, annotations for
the validity of memory access would also be generated.

Some examples:

• frama-c -rte -rte-select f,g -rte-no-all -rte-precond: only generate precondition
annotations, and only for call-sites found in functions f and g.

• frama-c -rte -rte-no-all -rte-unsigned-ov: only generated annotations for unsigned
overflows, for the whole C program.

21

CHAPTER 4. PLUGIN OPTIONS

Option Type (Default) Description
-rte boolean (false) Enable RTE plugin
-rte-all boolean (true) Enable all runtime-errors annotations, except for

unsigned overflows (supersedes all -rte-no)
-rte-print boolean (false) Pretty print the annotated code
-rte-unsigned-ov boolean (false) Generate annotations for unsigned overflows

(not entailed by -rte-all)
-rte-signed boolean (false) Generate annotations for signed overflows
-rte-downcast boolean (false) Generate annotations for signed integer down-

cast
-rte-div boolean (false) Generate annotations for division by zero
-rte-mem boolean (false) Generate annotations for validity of left-values

access
-rte-const boolean (true) Generate status for annotation through constant

folding
-rte-precond boolean (false) Generate contract-based statement behaviors

based at call sites
-rte-warn boolean (true) Emit warning on broken annotations
-rte-select set of function (all) Run plugin on a subset of C functions

Table 4.1: RTE options

• frama-c -rte -rte-unsigned-ov -rte-no-const: generate all possible annotations (un-
signed overflows included), but do not try to evaluate their status through constant
folding.

Note that -rte-print is almost equivalent to -print: the only difference is that in the former
case, the resulting C code is pretty printed only if -rte is enabled.

22

BIBLIOGRAPHY

Bibliography

[1] Berkeley University. The C Intermediate Language (CIL) library. http://manju.cs.
berkeley.edu/cil/.

[2] Armin Biere. Boolector. http://fmv.jku.at/boolector/.

[3] International Organization for Standardization (ISO). The ANSI C standard (C99). http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[4] Julien Signoles with Loïc Correnson and Virgile Prevosto. Plug-in Development Guide.
CEA List, Software Reliability Laboratory.

[5] Loïc Correnson, Zaynah Dargaye, Anne Pacalet. WP plug-in Manual. CEA List, Software
Reliability Laboratory.

[6] Pascal Cuoq with Virgile Prevosto. Frama-C’s value analysis plug-in. CEA List, Software
Reliability Laboratory. http://frama-c.com/download/frama-c-value-analysis.pdf.

23

http://manju.cs.berkeley.edu/cil/
http://manju.cs.berkeley.edu/cil/
http://fmv.jku.at/boolector/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf

	Introduction
	RTE plugin
	Runtime errors
	Other annotations generated

	Runtime error annotation generation
	Integer operations
	Addition, subtraction, multiplication
	Signed downcasting
	Unary minus
	Division and modulo
	Bitwise shift operators

	Left-values access
	Unsigned overflow annotations
	Expressions not considered by RTE
	Undefined behaviors not covered by RTE

	Precondition annotation generation
	Plugin options
	Bibliography

