
Version Hydrogen-20080302
April 24, 2008

Plugin Development Guide

Julien Signoles (with Virgile Prevosto)

CEA LIST, Software Reliability Lab.

This work has been supported by the ’CAT’ ANR project (ANR-05-RNTL-00301).

2

Frama-C Plugin Development Guide CAT RNTL project

Contents

1 Introduction 7

2 Tutorial 9

2.1 Setup . 9

2.2 Hello World . 10

2.3 Configuration and Compilation . 10

2.4 Connection with the Frama-C World . 12

2.5 Extension to the Command Line . 13

2.6 Testing . 15

2.7 Copyright your Work . 17

3 Advanced Plugin Development 19

3.1 File Tree . 19

3.1.1 Directory Cil . 20

3.1.2 Directory Src . 21

3.2 Configure.in . 22

3.2.1 Principle . 22

3.2.2 Addition of a simple plugin . 23

3.2.3 Addition of library/tool dependencies . 24

3.2.4 Addition of plugin dependencies . 25

3.2.5 Configuration of new libraries or tools . 25

3.3 Makefile.in . 26

3.3.1 Overview . 26

3.3.2 Addition of a new Plugin . 27

3.4 Testing . 30

3.4.1 Use of ptests . 30

3.4.2 Configuration . 31

3.5 Exporting Datatypes . 32

3.6 Project Management System . 33

4 CONTENTS

3.6.1 General Overview and Key Notions . 33

3.6.2 Use of project . 34

3.6.3 Internal State Registration: Principle . 35

3.6.4 Registering a new datatype . 36

3.6.5 Registering a new internal state . 38

3.6.6 Direct use of low-level functor Project.Computation.Register 40

3.6.7 Selections . 42

3.7 Initialisation Steps . 43

3.8 Command Line Options . 44

3.8.1 Storing new option values . 44

3.8.2 Registering new options . 45

3.9 Locations . 46

3.9.1 Representations . 46

3.9.2 Map indexed by locations . 47

3.10 Visitors . 47

3.10.1 Entry points . 47

3.10.2 Methods . 48

3.10.3 Action performed . 48

3.10.4 Visitors and Projects . 48

3.10.5 In-place and copy visitors . 48

3.10.6 Differences between the Cil and Frama-C visitors 49

3.10.7 Example . 50

3.11 GUI Extension . 51

3.12 Documentation . 53

3.12.1 General overview . 53

3.12.2 Plugin documentation . 54

3.13 License Policy . 54

Frama-C Plugin Development Guide CAT RNTL project

Foreword

This is a preliminary documentation of the Frama-C implementation which aims to help any
developer to integrate a new plugin inside this platform. It is a deliverable of the task 2.3 of the
ANR RNTL project CAT (http://www.rntl.org/projet/resume2005/cat.htm).

The content of this document corresponds to the version Hydrogen-20080302 (April 24, 2008) of
Frama-C. However the development of Frama-C is still ongoing: several features described here
may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Loïc Correnson for his
complete reading with excellent suggestions in order to improve the document, Yannick Moy for
his careful reading and great improvements of the document, especially the tutorial, and also
Patrick Baudin, Pascal Cuoq, and Benjamin Monate.

http://www.rntl.org/projet/resume2005/cat.htm

6 CONTENTS

Frama-C Plugin Development Guide CAT RNTL project

Chapter 1

Introduction

This guide aims at helping any developer to program within the Frama-C platfom, in particular
for developing a new analysis or a new source-to-source transformation through a new plugin.

It is organised in two parts. The first one, Chapter 2, is a step-by-step tutorial for developing a
new plugin within the Frama-C platform. At the end of this tutorial, a developer should be able
to extend Frama-C with a simple analysis available to both the Frama-C command line and other
plugin developements. The second part, Chapter 3, details how to use the services provided by
Frama-C in order to be fully operational with the development of Frama-C plugins. For better
understanding this last chapter, some knowledge of the software architecture of Frama-C [8] is
required.

Most important parts are displayed inside a gray box like this one. A plugin developer must
take them carefully.

8 Introduction

Frama-C Plugin Development Guide CAT RNTL project

Chapter 2

Tutorial

This chapter aims at helping a developer to write his first Frama-C plugin. At the end of this
tutorial, this developer should be able to extend Frama-C with a simple analysis available to
both the Frama-C command line and other plugin developements. With this goal in mind, this
chapter was written to explain step-by-step how to proceed. This tutorial mainly explains how
to integrate a plugin inside the Frama-C platform but does not focus on how to properly write a
whole analysis. In particular, some very important aspects for such a purpose are fully omited
here and are described in chapter 3.

2.1 Setup

If you have a CVS access to the Frama-C repository, it is possible to download the sources for
Frama-C with the CVS command below1 where login is your CVS login.

$ cvs -d :ext:login @eccvs-srv1.partenaires.cea.fr/ppc/ppc co

Once you have the sources, you are ready for compilation. Frama-C uses a makefile which
is generated by the script configure. This script checks your system to determine the most
appropriate Frama-C configuration, in particular the plugins that should be available. It is
generated itself by the autotool autoconf. So you have to execute the following commands:

$ autoconf
$./configure

This generates a proper makefile and lists the available plugins. Now you are able to compile
sources with make.

$ make -j

This compilation usually produces the following binaries (in a standard configuration):

• bin/toplevel.byte and bin/toplevel.opt (Frama-C toplevel);

• bin/viewer.byte and bin/viewer.opt (Frama-C GUI);

• bin/ptests.byte (Frama-C testing tool).

1Character ’$’ (dollar) represents a shell prompt in all commands.

10 Tutorial

Suffixes .byte and .opt above correspond respectively to the bytecode and native versions of
binaries. If you wish, and before having fun with Frama-C, you can:

• test the compiled platform with make tests;

• generate the source documentation with make doc;

• generate helping tags for emacs with make tags.

2.2 Hello World

In this Section, we explain how to write the core of a plugin Hello. This is a tiny plugin which
pretty-prints the names of the input files given to Frama-C if the option -hello is set on the
Frama-C command line. It is possible to program such an option just with the module Arg
provided by the Objective Caml standard library and without the addition of a Frama-C plugin,
but we use this example to introduce the bases of plugin development. This plugin is our running
example in this chapter.

First of all, we add a new sub-directory hello in directory src.

$ mkdir src/hello

This new directory is going to contain the source file of our new plugin2. If you want, you can
have a quick look at src which contains all the kernel and plugin directories. We only use a few
files of these directories in this tutorial.

Now we are able to edit the source file of hello, called src/hello/register.ml.

Recommendation 2.1 In Frama-C, the name of the “main” file of a plug-in plugin should
always be called either register.ml or plugin_register.ml.

File src/hello/register.ml

let run () =
Printf.printf "Hello Frama−C World.\nInput files are:\n";
List.iter (fun s → Printf.printf "\t%s\n" s) (Cmdline.Files.get ())

This file defines a function run. It uses the OCaml module Printf to pretty-print the list of
input filenames given by Cmdline.Files.get ().

More generally, the Frama-C module Cmdline provides information about the Frama-C command
line (options and files set by the user, see Section 2.5).

At this point, we have a compilable plugin containing its main function.

2.3 Configuration and Compilation

Here we explain how to compile the plugin hello. Section 3.2 and 3.3 provide more details about
configuration and compilation of plugins.

2As the plugin hello is tiny, it has only one source file.

Frama-C Plugin Development Guide CAT RNTL project

2.3 Configuration and Compilation 11

Configuration As explained in Section 2.1, Frama-C uses both autoconf and make in order to
compile. So we have to modify both files configure.in and Makefile.in in order to compile
our plugin within Frama-C. In both files, some predefined scripts help with plugin integration.

In order to compile plugin hello, first add the following lines into configure.in3. They indicate
how to configure hello, especially whether it has to be compiled or not.

File configure.in

· · · Add the following lines after other plugins configurations.
hello
#######
check_plugin(hello,src/hello,[support for hello plugin],yes)

These lines correspond to the standard scheme for configuring a new plugin. Function
check_plugin is defined in configure.in. Its first argument is the plugin name, the second
one is the plugin directory (the directory containing the plugin source files), the third one is an
help message and the fourth one indicates whether the plugin is available by default or not (here
yes says that the plugin is available by default and an user may use option –disable-hello to
disactivate the plugin).

Now we are ready to execute

$./configure

and to check that the new plugin hello is going to compile: you should have the line

checking for src/hello... yes
hello... yes

in the configuration summary.

Compilation Once configure.in is extended, we also have to modify Makefile.in with the
following lines.

File Makefile.in

· · · Add the following lines after other plugins compilation directives.
#########
Hello
#########
PLUGIN_ENABLE:=@ENABLE_HELLO@
PLUGIN_NAME:=Hello
PLUGIN_DIR:=src/hello
PLUGIN_CMO:= register
PLUGIN_NO_TEST:=yes
include Makefile.plugin

These lines use the predefined makefile Makefile.plugin which is a generic makefile dedicated to
plugin compilation. A plugin developer can set some variables before including Makefile.plugin

3In this document, a comment containing ... among lines of code represents an undisplayed piece of code
written either previously in the document or by someone else.

Frama-C Plugin Development Guide CAT RNTL project

12 Tutorial

in order to control its behaviour. Now we briefly explain the variables set for hello.

• PLUGIN_ENABLE says whether the plugin should be compiled or not. Here we use the variable
@ENABLE_HELLO@ set by configure.in.

• PLUGIN_NAME is the name of the plugin.

It must be a valid OCaml module name (in particular it must be capitalised).

• PLUGIN_DIR is the directory containing the source file(s) for the plugin.

• PLUGIN_CMO is the list of the .cmo files (without the extension .cmo or the plugin path)
required to compile the plugin.

• PLUGIN_NO_TEST is set to yes when there is no specific test directory for the plugin (see
Section 2.6 about plugin testing).

Now we are ready to compile Frama-C with the new plugin hello.

$ make -j

2.4 Connection with the Frama-C World

The plugin hello is now compiled but it is not strongly connected to the Frama-C framework.
In particular, our plugin should be added in the plugin database Db in order to be used by other
plugins (see the architecture document [8] for details).

Extension of the Plugin Database For this purpose, we have to extend Db with the new
plugin hello.

File src/kernel/db.mli

· · ·
(** Hello World plugin.

@see <../hello/index.html> internal documentation. *)
module Hello : sig
val run: (unit → unit) ref (** Print "hello world". *)

end
· · ·
File src/kernel/db.ml
· · ·
module Hello = struct let run = mk_fun "Hello_world.run" end
· · ·

The interface declares a new module Hello containing a single function run. Indeed run is
a reference to a function. This reference is not initialised in the implementation of Db: we
use mk_fun (declared in the opened module Extlib) in order to declare the reference without
instantiating it. This instantiation has to be done by the plugin itself. if not, a call to !Db.run
raises exception Extlib.NotYetImplemented. So we modify module Register in the following
way.

Frama-C Plugin Development Guide CAT RNTL project

2.5 Extension to the Command Line 13

File src/hello/register.ml

· · · definition of run
let () = Db.Hello.run := run

It is important to notice that the reference Db.Hello.run is set at the OCaml module initialisation
step. So the body of each Frama-C function can safely dereference it.

Documentation We have properly documented the interface of Db with ocamldoc through
special comments between (** and *). This documentation is generated by make doc. In
particular, this command also generate an internal documentation for hello which is accessible
in the directory doc/code/hello.

Hiding the Implementation Last but not least, we hide the implementation of hello to
other developers in order to enforce the architecture invariant which is that each plugin should
be used through Db. For this purpose we only add an empty interface to the plugin in the
following way.

File src/hello/Hello.mli

(** Hello World plugin.

No function is directly exported: they are registered in {!Db.Hello}. *)

Indeed, thanks to Makefile.plugin, each plugin is packed into a whole module $(PLUGIN_NAME)
(here Hello) and we simply export an empty interface for it.

We also have to explain to Makefile.plugin that we use our own interface for Hello. So, in
Makefile.in, we add the following line before including Makefile.plugin.

File Makefile.in

· · · Setting others variables for hello
PLUGIN_HAS_MLI:=yes
· · · include Makefile.plugin

2.5 Extension to the Command Line

Now, in order to complete our plugin, we have to add an option on the Frama-C command line
and to execute the function !Db.Hello.run when this option is set by a user. Section 3.8 provides
more details about extensions of the command line.

First we add a value in the module Cmdline which says whether the user sets the option -hello
on the command line or not (i.e. whether we have to print the input files via the execution of
!Db.Hello.run or not).

Frama-C Plugin Development Guide CAT RNTL project

14 Tutorial

File src/kernel/cmdline.mli

· · ·
(**
3 Hello
*)

module Hello: sig
module Print: BOOL (** Whether to run hello or not. *)

end
· · ·
File src/kernel/cmdline.ml
· · ·
module Hello = struct
module Print = False(struct let name = "Cmdline.Hello.Print" end)

end
· · ·

Cmdline contains all the options of Frama-C and its plugins. The above lines of codes add a
module Hello which contains all the options for hello. In fact we only have one option, called
print. In Frama-C, each option indeed looks like a module. The signature of the module indicates
the type of the option: it is a boolean option (whether to print the input files of Frama-C or not).
In order to implement this option, we use a functor, called False and defined in top of Cmdline,
which initialises it to false (i.e. the option is unset by default).

Once we introduce this value, we are able to add the option -hello to the toplevel command
line by extending the plugin hello.

File src/hello/register.ml

· · ·
let () =

Options.add_plugin
name:"hello" (* plugin name *)
descr:"Hello World plugin" (* plugin description *)

["−hello", (* plugin option *)
Arg.Unit Cmdline.Hello.Print.on,
": print input files of Frama−C"]

We use function Options.add_plugin which integrates the new option -hello and modifies the
value contained in Cmdline.Hello.Print as well. This function also adds information about the
plugin hello when the predefined option -help is set by the user.

Finally we modify the “main” of Frama-C (i.e. its entry point) in order to execute the new plugin
when its option is set.

File src/toplevel/main.ml

· · ·
if Cmdline.Hello.Print.get () then !Db.Hello.run ();
· · ·

Frama-C Plugin Development Guide CAT RNTL project

2.6 Testing 15

At this point, the plugin properly works: all the programming work is done and a Frama-C user
can run the plugin safely.

$ frama-c -hello foo.c bar.c baz.c
Parsing
Cleaning unused parts
Symbolic link
Starting semantical analysis
Hello Frama-C World.
Input files are:

foo.c
bar.c
baz.c

2.6 Testing

Frama-C provides a tool, called ptests, in order to perform non-regression and unit tests. This
tool is detailed in Section 3.4. We give here only some hints. First we have to create a test
directory for hello

$ mkdir tests/hello

and we can remove in Makefile.in the line which sets PLUGIN_NO_TEST.

File Makefile.in

· · · Place of variables of plugin hello
PLUGIN_NO_TEST:=yes # unset this variable

Now we can add the following test hello.c in directory tests/hello.

File tests/hello/hello.c

/* run.config
OPT: −hello

*/
/* A test of the plugin hello does not require C code anyway. */

Of course, it is possible to test the new plugin on this file with the command

$./bin/toplevel.byte -hello tests/hello/hello.c

which should display

Frama-C Plugin Development Guide CAT RNTL project

16 Tutorial

[preprocessing] running gcc -C -E -I. tests/hello.c
Parsing
Cleaning unused parts
Symbolic link
Starting semantical analysis
Analysed files are:

tests/hello/hello.c

The specific output of the plugin hello are the last two lines.

It is also possible to use ptests to automatically run tests.

$./bin/ptests.byte hello

The above command runs the Frama-C toplevel on each C file contained in the directory
tests/hello. For each of them, it also uses directives following run.config given at the top of
files. Here, for test tests/hello/hello.c, the directive says that the toplevel has to be executed
with the option -hello. Below is the output of this command.

% Dispatch finished, waiting for workers to complete
% System error while comparing. Maybe one of the files is missing...
tests/hello/result/hello.res.log or tests/hello/oracle/hello.res.oracle
% System error while comparing. Maybe one of the files is missing...
tests/hello/result/hello.err.log or tests/hello/oracle/hello.err.oracle
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 1
Ok = 0 of 2

This result says that testing fails because it is not possible to compare the execution results with
previously stored results (oracles). You have to execute:

$./bin/ptests.byte -update hello

Thus each time one executes ptests.byte, differences with the saved oracles are displayed.
Furthermore, you can easily check whether the changes in plugin hello are compliant or not
with all existing tests. For example, if we execute one more time:

$./bin/ptests.byte hello
% Diffs finished. Summary:
Run = 2
Ok = 2 of 2

This indicates that everything is alright.

Finally, you can also check if your changes break something else in the Frama-C kernel or in other
plugins by executing ptests on all default tests with make tests. It is also possible to add plugin
hello to the default test suite by editing the value of the variable default_suites at the top
of file ptests/ptests.ml.

Note to CVS users If you have got a write access to the CVS repository, you can commit your
changes into the archive. Before that, you have to perform non-regression tests in order to be

Frama-C Plugin Development Guide CAT RNTL project

2.7 Copyright your Work 17

sure that the modification does not break the archive.

So you must execute the following commands.

$ cvs add ... # Do not forget new oracles
$ cvs up
$ make tests
$ cvs commit -m "informative message"

The first line adds new files into the archive (if any) while the second one updates your local
version with the root repository. The third line performs non-regression tests. Finally, if and
only if you have no problem, you can commit your changes thanks to the last line.

2.7 Copyright your Work

If you want to redistribute plugin hello, you have to choose a licence policy for it (compatible
with Frama-C). Section 3.13 gives details about how to proceed in a general way. Here, suppose
we want to put the plugin hello under the Lesser General Public Licence (LGPL) and CEA
copyright, you simply have to edit the section “File headers: license policy” of Makefile.in with
the following line:

File Makefile.in

CEA_LGPL= src/hello/*.ml* # · · · others files

Now executing:

$ make headers

This adds an header on files of plugin hello in order to indicate that they are under the desired
licence.

Frama-C Plugin Development Guide CAT RNTL project

18 Tutorial

Frama-C Plugin Development Guide CAT RNTL project

Chapter 3

Advanced Plugin Development

This chapter details how to use services provided by Frama-C in order to be fully operational with
the development of plugins. Each section describes technical points which a developer should be
aware of. If you are not aware of, the result could be (from the better situation to the worse
one1):

1. reinventing the (Frama-C) whole;

2. being not able to do some specific things;

3. introducing bugs in some of your pieces of code;

4. introducing bugs in pieces of code which use your own code;

5. breaking the kernel consistency and so potentially breaking all the Frama-C plugins.

In this chapter, we suppose that the reader well knows the software architecture of Frama-
C [8] and is able to write a minimal plugin like hello described in chapter 2. Moreover plugin
development requires to handle with autoconf, make and some advanced features of OCaml
(module system, classes and objects, etc). Each section summarizes its own prerequisites at its
beginning.

A reader can obviously read this chapter from the beginning to the end. He can yet use it as a
reference manual and picks the wished information in any section in any order.

3.1 File Tree

This Section introduces main parts of Frama-C in order to quickly find useful information inside
sources. Our goal is not to introduce the Frama-C software architecture (that is the purpose
of the architecture document [8]) nor to detail each module (that is the purpose of the source
documentation generated by make doc). Directory containing Cil implementation is detailed
in Section 3.1.1 while directory containing the Frama-C implementation itself is presented in
Section 3.1.2.

Here are the main directories useful for a plugin developer:

1It is fortunately quite difficult (but not impossible) to fall into the worse situation by mistake if you are not
a kernel developer.

20 Advanced Plugin Development

• . is the Frama-C root directory. It contains the configuration files, makefiles and some
information files (in uppercase).

• bin contains binaries (mainly produced by Frama-C compilation).

• cil contains the Cil source files. See Section 3.1.1 for details.

• doc is the documentation directory. It contains plugin-specific documentations, source code
documentation, ACSL documentation and and some others.

• external contains source of external free libraries included in the Frama-C distribution.

• headers contains headers for Frama-C source files (see Section 3.13).

• lib contains compiled files (usually .cm[iox]) produced by Frama-C compilation. You
should never add directly any file in this directory. In particular lib/plugins receives the
compiled plugins.

• licenses contains licenses used by Frama-C plugins and kernel (see Section 3.13).

• ptests contains ptests implementation.

• share contains shared source files (e.g. Frama-C malloc in file share/malloc.c).

• src contains Frama-C implementation. See Section 3.1.2 for details.

• tests contains Frama-C test suites (see Section 3.4).

3.1.1 Directory Cil

The source files of Cil belong to five directories.

• ocamlutil contains some OCaml utilities useful for a plugin developer. Most important
modules are Inthash and Cilutil. The first one contains an implementation of hashta-
bles optimized for integer keys while the second one contains some useful functions (e.g.
out_some which extract a value from an option type) and datastructures (e.g. module
StmtHashtbl implements hashtables optimized for statement keys).

• src contains the main files of Cil. Most important modules are Cil_type and Cil. The
first one contains type declarations of the Cil AST while the second one contains very useful
operations over this AST.

• src/ext contains syntactic analyses provided by Cil. For example, module Cfg provides
control flow graph, module Callgraph provides a syntactic callgraph and module Dataflow
provides parameterised forward/backward data flow analysis.

• src/frontc is the C frontend which converts C code to the corresponding Cil AST. It
should not be used by a Frama-C plugin developer.

• src/logic is the ACSL frontend which converts logic code to the corresponding Cil AST.
The only useful modules for a Frama-C plugin developer are Logic_const which provides
some predefined logic constructs (terms, predicates, . . .) and Logic_typing which allows
to dynamically extend the logic type system.

Frama-C Plugin Development Guide CAT RNTL project

3.1 File Tree 21

3.1.2 Directory Src

The source files of Frama-C are split into different sub-directories inside src. Each sub-directory
contains either a plugin implementation or some parts of the Frama-C kernel.

Each plugin implementation can be split into two different sub-directories, one for exported type
declarations and related implementations visible from Db (see the architecture documentation [8]
and Section 3.5) and one-other for the implementation provided in Db.

Kernel directories are described below.

• ai is the abstract interpretation toolbox. In particular, module Abstract_interp defines
useful generic lattices and module Ival defines some pre-instantiated arithmetic lattices.

• gui2 contains the gui implementation part common to all plugins. See Section 3.11 for
more details.

• kernel contains the kernel toolbox over Cil. Main kernel modules are described below.

– Alarms manages alarms.

– Annotations manages annotations associated with a Cil_types.kinstr.

– Ast_info provides useful operations over the Cil AST.

– Boot is the last modules linked with Frama-C (see Section 3.7).

– CilE contains some useful Cil extensions.

– Cil_state contains the Cil AST seen from the Frama-C world through
Cil_state.file ().

– Cmdline contains recognized options of the Frama-C command line (see Section 3.8).

– Db is the plugin database.

– Db_types contains some type declarations used in Db. In particular, type
kernel_function is the representation of C functions used everywhere in the Frama-C
world.

– File contains AST initialisers and accesses to C files corresponding to the AST.

– Globals defines operations on globals split into operations on (global) variables, on
functions and on entry points of analyses

– Kernel_computation contains high-level internal state builders for most useful Frama-
C datastructures (see Section 3.6.5).

– Kernel_datatype contains high-level datatype builders for most useful Frama-C
datatypes (see Section 3.6.4).

– Kernel_function provides useful operations on Db_types.kernel_function.

– Kui provides a high-level frontend of the Frama-C kernel.

– Loop provides useful operations on loops.

– Printer provides a class for pretty-print annotations.

– Stmts_graph provides accessibility checks using the control flow graph.

– Version provides general information on the Frama-C version.

– Visitor provides Frama-C visitors subsuming the Cil ones (see Section 3.10).
2From the outside, gui and toplevel may be seen as plugins with some exceptions because it has to be linked

at the end of the link process.

Frama-C Plugin Development Guide CAT RNTL project

22 Advanced Plugin Development

• lib contains datastructures and operations used in Frama-C. In particular, module Extlib
is the Frama-C extension of the OCaml standard library.

• memory_states is the memory-state toolbox (see section 3.9).

• misc provides some additional useful operations.

• project is the project library (see Section 3.6).

• toplevel2contains the Frama-C toplevel. In particular, module Main defines the main
Frama-C entry point (see Section 3.7) and module Options manages the Frama-C command
line (see Section 3.8).

3.2 Configure.in

In this Section, we detail how to modify the file configure.in in order to configure plugins
(Frama-C configuration has been introduced in Section 2.1 and 2.3).

First Section 3.2.1 introduces the general principle and organisation of configure.in. Then
Section 3.2.2 explains how to configure a new simple plugin without any dependency. Next we
show how to exhibit dependencies with external libraries and tools (Section 3.2.3) and with other
plugins (Section 3.2.4). Finally Section 3.2.5 presents the configuration of external libraries and
tools needed by a new plugin but not used anywhere else in Frama-C.

3.2.1 Principle

When you execute autoconf, file configure.in is used to generate script configure. Each
Frama-C user executes this script which checks his system to determine the most appropriate
Frama-C configuration: at the end of this configuration (if it is successful), the script summarizes
the status of each plugin which can be:

• available (all is fine with this plugin);

• partially available: either an optional dependency of the plugin is not fully available, or a
mandatory dependency of the plugin is only partially available; or

• not available: either the plugin itself is not provided by default by Frama-C, or a mandatory
dependency of the plugin is not available.

One important notion in the above definitions is dependency. A dependency of a plugin p is
either an external library/tool or another Frama-C plugin. It is either mandatory or optional.
A mandatory dependency must be present in order to build p, whereas an optional dependency
provides to p additional but not highly required features (especially pmust be compilable without
any optional dependency).

So, for the plugin developer, the major job of configure.in is to define the optional and manda-
tory dependencies of each plugin. Another standard job of configure.in is the addition of
options –-enable-p and –-disable-p to configure for a plugin p. These options respectively
forces p to be available and disables p (its status is automatically “not available”).

Indeed configure.in is organised in different sections specialised in different configuration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described below. Stars (characters ’?’) exhibit sec-
tions which may be modified by a plugin developer.

Frama-C Plugin Development Guide CAT RNTL project

3.2 Configure.in 23

1. Configuration of make : check if the version of make is correct. An useful feature is option
–enable-verbosemake (resp. –disable-verbosemake) which set (resp. unset) the verbose
mode for make. In verbose mode, right make commands are displayed on the user console:
it is useful for debugging the makefile. In non-verbose mode, only command shortcuts are
displayed for user readibility.

2. Configuration of OCaml : check if the version of OCaml is correct.

3. Configuration of other mandatory tools/libraries: check if all the external mandatory tools
and libraries required by the Frama-C kernel are present.

4. Configuration of other non-mandatory tools/libraries: check what external non-mandatory
tools and libraries used by the Frama-C kernel are present.

5. Platform Configuration: check some specific platform characteristics (operating system,
specific features of gcc, etc) which are important to know/have got in Frama-C.

6. Wished Frama-C Plugins?: check what Frama-C plugins the user wants to compile.

7. Configuration of Plugin Tools/Libraries?: check what external tools and libraries only
required by some plugins are available and so what plugins have to be disable (at least
partially).

8. Checking Plugin Dependencies?: check what plugins have to be disable (at least partially)
because they depend of others plugins which are not available (at least partially).

9. Makefile Creation?: create Makefile from Makefile.in including information provided by
this configuration.

10. Summary?: display on the user console the availability status of each plugin.

3.2.2 Addition of a simple plugin

In order to add a new plugin, there are three actions to perform:

1. add a new subsection for the new plugin to Section Plugin wished ;

2. add a new substitution in Section Substitutions to perform; and

3. add a new entry in Section Summary.

All these actions are very easy to perform by copy/paste from another existing plugin (e.g.
occurrence) and by replacing the plugin name (here occurrence) by the new plugin name in
the pasted part. In these sections, plugins are sorted in a lexicographic ordering. In order to well
understand what is defined by this copy/paste, we explain how occurrence is defined in these
sections.

First Section Wished Plugin introduces a new subsection for this plugin in the following way.

occurrence
############
check_plugin(occurrence,src/occurrence,[support for occurrence analysis], yes)

Frama-C Plugin Development Guide CAT RNTL project

24 Advanced Plugin Development

The first argument is the plugin name, the second one is the name of directory containing the
source files of the plugin, the third one is a help message for the –enable-occurence option of
configure and the last one indicates if the plugin is enabled by default.

The macro check_plugin sets the following variables: FORCE_OCCURRENCE, REQUIRE_OCCURRENCE,
USE_OCCURRENCE and ENABLE_OCCURRENCE.

The first one indicates if the user explicitly requires the availability of occurrence via setting
the option –-enable-occurrence. The second and third ones are used by others plugins in
order to handle their dependencies (see Section 3.2.4). Finally ENABLE_OCCURRENCE indicates the
plugin status (available, partially available or not available). At the end of these lines of code, it
says if the plugin should be compiled: if –-enable-occurrence is set, then ENABLE_OCCURRENCE
is yes (plugin available); if –-disable-occurrence, then its value is no (plugin not available).
If no option is specified on the command line of configure, its value is set to the default one
(according to $default).

Sections Substitutions to perform and Summary add respectively a new substitution in
Makefile.in thanks to the line

AC_SUBST(ENABLE_OCCURRENCE)

and a new entry in the summary thanks to the line

AC_MSG_NOTICE([occurrence : $ENABLE_OCCURRENCE$INFO_OCCURRENCE])

So the value @ENABLE_OCCURRENCE is usable in Makefile.in in order to know whether the plugin
has to be compiled or not (see Section 3.3) and a notification is displayed to the user which
indicates this value and an optional informative message (contained in $INFO_OCCURRENCE).

3.2.3 Addition of library/tool dependencies

Three different variables are set for each external library and tool used in Frama-C which are

• HAS_library

• REQUIRE_library

• USE_library

where library is the name of the considered library or tool (see Section 3.2.5 for explanations
about their initialisations and their uses).

HAS_library indicates whether the library is available on this platform (its value is yes) or not
(its value is no). This last value is accessible in Makefile.in through the variable @HAS_library@
(see Section 3.3). Actually we are not concerned by this value in this section.

REQUIRE_library (resp. USE_library) is a list of plugin names (separated by spaces). It contains
the plugins for which library is a mandatory (resp. an optional) dependency. So you have to
extend these lists in order to add some library/tool dependencies for a new plugin p.

Recommendation 3.1 The best place to perform such extensions is just after the addition of
p which sets the value of ENABLE_p.

Example 3.1 Plugin gui requires Lablgtk2 [4]. So, just after its declaration, there are the
following lines in configure.in.

Frama-C Plugin Development Guide CAT RNTL project

3.2 Configure.in 25

if test "$ENABLE_GUI" ≡ "yes"; then
REQUIRE_LABLGTK=${REQUIRE_LABLGTK}" gui"

fi

They say that Lablgtk2 must be available on the system if the user wants to compile gui.

3.2.4 Addition of plugin dependencies

Adding a dependency with another plugin is quite the same as adding a dependency with
an external library or tool (see Section 3.2.3). For this purpose, configure.in uses vari-
ables REQUIRE_plugin and USE_plugin (in the same way that variables REQUIRE_library and
USE_library: they are lists of plugin names for which plugin is respectively a mandatory depen-
dency or an optional dependency).

From a plugin developer point of view, the difference with libraries and tools is that the best
place to indicate such dependencies is not just after the addition of the plugin: needed variable
REQUIRE_plugin and USE_plugin could be undeclared at this point (in particular in the case of
mutually dependent plugins). So dependency indications are postponed at the top of Section
Plugin dependencies of configure.in.

Example 3.2 Plugin value requires plugin from and may use plugin gui (for ValViewer [1]).
So lists REQUIRE_FROM and USE_GUI contain value. Moreover, as many plugins require value,
list REQUIRE_VALUE is quite big. In particular, it contains plugin from: both plugins value and
from are indeed mutually dependent.

3.2.5 Configuration of new libraries or tools

Configuration of new libraries and configuration of new tools are the same: so, in this section,
we only focus on the configuration of new libraries.

Section 3.2.3 explains how to depend of an external library library. Nevertheless if library is
not used by Frama-C anywhere else, you have to configure it.

First, you have to declare the three variables set by each library: HAS_library, USE_library
and REQUIRE_library. This is performed in Section Configuration of Plugin Libraries of file
configure.in. You should not assign values to these variables (just declare them).

Next, you have to export HAS_library in Makefile.in through AC_SUBST(HAS_library) in Section
Makefile Creation of configure.in.

Last but not least, you have to check that the library is available on the user system. A predefined
script called configure_library helps the plugin developer in this task3. configure_library
takes three arguments. The first one is the (uppercase) name of the library, the second one is
a filename which is used by the script to check the availability of the library. In case there are
multiple locations possible for the library, this argument can be a list of filenames. Each name
is checked in turn. The first one which corresponds to an existing file is selected and put in the
variable SELECTED_$library$. If no name in the list corresponds to an existing file, the library is
considered to be unavailable. The last argument is a warning message to display if a configuration
problem appear (usually because the library does not exist). Using these arguments, the script
checks the availability of the library and, according to it, disables (resp. partially disables) the

3For tools, there is a script configure_tool which works in the same way as configure_library.

Frama-C Plugin Development Guide CAT RNTL project

26 Advanced Plugin Development

plugins requiring (resp. optionally using) it4.

Example 3.3 The library gtksourceview (used to have a better rendering of C sources in the
GUI) can be found either as part of lablgtk or as an independent library. This is checked through
the following command:

configure_library \
GTKSOURCEVIEW \
"$OCAMLLIB/lablgtk2/lablgtksourceview.cma \
$OCAMLLIB/lablgtksourceview/lablgtksourceview.cma" \

"lablgtksourceview not found"

Moreover, we want to distinguish the two cases, as the independent library denotes a legacy
version of lablgtksourceview, which has been merged with lablgtk since. This is done by
pattern-matching on the variable SELECTED_GTKSOURCEVIEW as shown below:

case $SELECTED_GTKSOURCEVIEW in
$OCAMLLIB/lablgtksourceview/lablgtksourceview.cma)

HAS_LEGACY_GTKSOURCEVIEW=yes
;;

esac

3.3 Makefile.in

In this section, we detail the use of Makefile.in dedicated to Frama-C compilation. First
Section 3.3.1 introduces a general overview of architecture of Makefile.in. Next Section 3.3.2
details how to add a new plugin.

3.3.1 Overview

Here we present a general overview of Makefile.in. This file is split in several sections. Below
we introduce each of them. So a plugin developer can easily search in the right section its required
features (variable and rule declarations).

• Global variables from configure contains variable declarations from variables defined
in configure.in (see Section 3.2). In particular, set variable VERBOSEMAKE to yes in order
to see the right make commands in the user console. The typical use is

$ make VERBOSEMAKE=yes

• Shell commands defines shortcuts which should be used in the makefile.

• Command names defines command names displayed on the console in the non-verbose
mode.

• Global plugin variables declares some plugin-specific variables used throughout the
makefile.

4As plugin dependencies are checked after this check, plugins are not recursively disabled here.

Frama-C Plugin Development Guide CAT RNTL project

3.3 Makefile.in 27

• Additional global variables declares some other variables used throughout the make-
file. In particular, it declares UNPACKED_DIRS which should be extended by a plugin de-
veloper if he uses files which do not belong to the plugin directory (that is if variable
PLUGIN_TYPES_CMO is set, see Section 3.3.2).

• Main targets defines the main rules of the makefile. The most important ones are
top, byte and opt which respectively build the Frama-C interactive, bytecode and native
toplevels.

• External libraries to compile provides variables and rules for external libraries required
by Frama-C. Each library is in a specific sub-section.

• Internal miscellaneous libraries provides variables and rules for Frama-C internal li-
braries (Cil and Project), each described in a specific sub-section.

• Kernel provides variables and rules for the Frama-C kernel. Each part is described in
specific sub-sections.

• After Section “Kernel”, there are several sections corresponding to plugins (see Sec-
tion 3.3.2).

• After plugin sections, there are sections corresponding to different Frama-C frontends (in
particular, Sections toplevel, gui and obfuscator).

• Generic rules contains rules in order to automatically produces different kinds of files
(e.g. .cm[iox] from .ml or .mli for Objective Caml files)

• Tests provides rules to execute tests (see Section 3.4).

• Emacs tags provides rules which generate emacs tags (useful for a quick search of OCaml
definitions).

• Documentation provides rules generating Frama-C source documentation (see Sec-
tion 3.12).

• Distribution provides rules which install the Frama-C distribution.

• File headers: license policy provides variables and rules to manage the Frama-C license
policy (see Section 3.13).

• Makefile rebuilting provides rules in order to automatically rebuild Makefile and
configure when required.

• Cleaning provides rules in order to remove files generated by makefile rules.

• Depend provides rules which compute Frama-C source dependencies.

• Ptests provides rules in order to build ptests (see Section 3.4).

3.3.2 Addition of a new Plugin

In order to add a new plugin, you have to include Makefile.plugin in Makefile.in among
other plugins. Makefile.plugin is a generic makefile dedicated to plugin compilation. A plugin
developer can set some variables before including it in order to control its behaviour. Below is
the list of variables which can be set.

Frama-C Plugin Development Guide CAT RNTL project

28 Advanced Plugin Development

• PLUGIN_NAME: Module name of the plugin.

So must be capitalised (as each OCaml module name).

• PLUGIN_ENABLE: Set it to yes if the plugin has to be compiled. It is usually set to
@plugin_ENABLE@ provided by configure.in (where plugin is the plugin name).

• PLUGIN_DIR: Directory containing plugin source files (usually src/plugin where plugin is
the plugin name).

• PLUGIN_CMO: Plugin .cmo files. Do not write its file path (which is $(PLUGIN_DIR)) nor its
file extension (which is .cmo): they are automatically added.

• PLUGIN_CMI: Plugin .cmi files for which there is no corresponding .cmo. Do not write
its file path (which is $(PLUGIN_DIR)) nor its file extension (which is .cmi): they are
automatically added.

• PLUGIN_TYPES_CMO: Plugin .cmo files which do not belong to $(PLUGIN_DIR) (they usually
belong to src/plugin_types where plugin is the plugin name, see Section 3.5). Do not
write file extension (which is .cmo): it is automatically added.

• PLUGIN_GUI_CMO: Plugin .cmo files which have to be linked with the GUI. Must be a subset
of $(PLUGIN_CMO).

• PLUGIN_HAS_MLI: Set it to yes if plugin plugin gets a file .mli (which must be capitalised:
Plugin.mli, see Section 3.12) describing its API. Note that this API should be empty in
order to enforce the architecture invariant which is that each plugin is used through Db
(see the architecture document [8]).

• PLUGIN_BFLAGS: Specific plugin flags for ocamlc.

• PLUGIN_OFLAGS: Specific plugin flags for ocamlopt.

• PLUGIN_DEPFLAGS: Specific plugin flags for ocamldep.

• PLUGIN_GENERATED: Files which must be generated before computing plugin dependencies.
In particular, this is where .ml files generated by ocamlyacc and ocamllex must be placed
if needed.

• PLUGIN_DOCFLAGS: Specific plugin flags for ocamldoc.

• PLUGIN_UNDOC: Source files for which no documentation is provided. Do not write its file
path (which is $(PLUGIN_DIR)).

• PLUGIN_TYPES_TODOC: Additional source files to document with the plugin (they usually
belong to src/plugin_types where plugin is the plugin name, see Section 3.5).

• PLUGIN_INTRO: Text file to add at the end of the plugin documentation introduction. Usu-
ally this file is doc/code/intro_plugin.txt for a plugin plugin. It can contain any text
understood by ocamldoc.

• PLUGIN_NO_TEST: Set it to yes if there is no specific test directory for the plugin.

• PLUGIN_TESTS_DIRS: Directories containing plugin tests (default value is tests/$(notdir
$(PLUGIN_DIR))).

Frama-C Plugin Development Guide CAT RNTL project

3.3 Makefile.in 29

• PLUGIN_TESTS_LIB Specific .cmo files used by plugin tests. Do not write its file path (which
is $(PLUGIN_TESTS_DIRS)) nor its file extension (which is .cmo).

• PLUGIN_DEPENDS: Other plugins which must be compiled before the considered plugin.

For setting variables, you must use := and not =.

Example 3.4 For compiling the plugin Value, the following lines are added into Makefile.in.

##################
Value analysis
##################
PLUGIN_ENABLE:=@ENABLE_VALUE@
PLUGIN_NAME:=Value
PLUGIN_DIR:=src/value
PLUGIN_CMO:= state_set kf_state eval kinstr register
PLUGIN_GUI_CMO:=value_gui
PLUGIN_HAS_MLI:=yes
PLUGIN_NO_TEST:=yes
PLUGIN_UNDOC:=value_gui.ml
include Makefile.plugin

Moreover the above variables must not be used anywhere else in Makefile.in.

For each plugin plugin, you can yet use the following variables once Makefile.plugin has been
included for it.

• plugin_DIR

• plugin_CMO

• plugin_CMX

• plugin_CMI

• plugin_TYPES_CMO

• plugin_TYPES_CMX

• plugin_TYPES_TODOC

• plugin_BFLAGS

• plugin_OFLAGS

• plugin_DEPFLAGS

• plugin_DOCFLAGS

• plugin_GENERATED

• plugin_TESTS_DIRS

• plugin_TESTS_LIB

Frama-C Plugin Development Guide CAT RNTL project

30 Advanced Plugin Development

Semantics of each variable plugin_variable is the same as semantics of PLUGIN_variable.

One other variable has to be modified by a plugin developer if he uses files which do not belong to
the plugin directory (that is if variable PLUGIN_TYPES_CMO is set). This variable is UNPACKED_DIRS
and corresponds to the list of non-plugin directories containing source files.

A plugin developer should not modify any other part of Makefile.in or Makefile.plugin.

3.4 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-regression
and unit tests.

ptests runs the Frama-C toplevel on each specified test (which are usually C files). Specific
directives can be used for each test. Each result of the execution is compared from the previously
saved result (called the oracle). Test is successful if and only if there is no difference. Actually
the number of results is twice that the number of tests because standard and error outputs are
compared separately.

First Section 3.4.1 shows how to use ptests. Next Section 3.4.2 explains how to configure tests
through directives.

3.4.1 Use of ptests

The simplest way of using ptests is through make tests which is roughly equivalent to

$ time ./bin/ptests.byte

This command runs all the tests belonging to a sub-directory of directory tests. ptests also
accepts specific test suites in arguments. A test suite is either a name of a sub-directory in
directory tests or a filename (with its complete path).

Example 3.5 If you want to test plugin sparecode and specific test tests/pdg/variadic.c,
just run

$./bin/ptests.byte sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)

% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 8
Ok = 16 of 16

Below we detail options of ptests.

• -add-options opts: Add additional options opts to be passed to the toplevels that will
be launched.

• -byte: Use bytecode toplevel bin/toplevel.byte.

Frama-C Plugin Development Guide CAT RNTL project

3.4 Testing 31

• -diff cmd: Use command cmd in order to compare results and oracles (default is diff
-u).

• -examine: Only examine the current results that are different from oracles (do not run
tests).

• -j n: Use non-negative integer n for level of parallelism (default is 4).

• -opt: Use native toplevel bin/toplevel.opt. This option is set by default.

• -run: Delete the current results, then run the tests and finally examine the results that
are different from the oracles. This option is set by default.

• -show: Run the tests and show their results. Also automatically set option -byte.

• -update: Take the current results as oracles. Do not run tests.

• -v: increase verbosity (up to twice) (default is 0).

Example 3.6 If code of plugin plugin has changed, a typical sequence of tests is the following
one.

$./bin/ptests.byte plugin
$./bin/ptests.byte -update plugin
$ make tests

So we first run the tests suite corresponding to plugin in order to display what tests have been
modified by the changes. After checking the displayed differences, we validate the changes by
updating the oracles. Finally we run all the test suites in order to ensure that the changes do not
break anything else in Frama-C.

3.4.2 Configuration

In order to exactly perform the test that you wish, some directives can be set in three different
places. We indicate first these places and next the possible directives.

The places are:

• inside file tests/test_config;

• inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test file, in a special comment of the form

/* run.config
... directives ...

*/

In each of the above case, the configuration is done by a list of directives. Each directive has to
be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The different directives (i.e. possibilities for
CONFIG_OPTION) are:

Frama-C Plugin Development Guide CAT RNTL project

32 Advanced Plugin Development

• COMMENT: Comment in the configuration.

• CMD: Program name to run (default is ./bin/toplevel.opt and default directory is the
parent one of tests).

• DONTRUN: Do no execute this test (or test suite).

• EXECNOW: Run a command before running the test itself. The syntax is the following.

EXECNOW: [[LOG file | BIN file] ...] cmd

Files after LOG are log files generated by command cmd and compared from oracles, whereas
files after BIN are binary files also generated by cmd but not compared from oracles. Full
access path to these files have to be specified only in cmd.

• FILEREG: Should be used only in a configuration file test_config. It is a regular expression
indicating which files have to be tested (default is .*\.\(c|i\)).

• FILTER: Set the command name used to filter results before their comparison from oracles
(default is no filter).

• GCC: Unused (only present for compatibility reasons).

• OPT: Options to be used by command specified through CMD (default is -val -out -input
-deps). If there are several directives OPT in the same configuration, they correspond to
different test cases.

Example 3.7 Test tests/sparecode/calls.c declares the following directives.

/* run.config
OPT: −sparecode−analysis
OPT: −slicing−level 2 −slice−return main −slice−print

*/

They say that we want to test sparecode and slicing analyses on this file. So

$./bin/ptests.byte tests/sparecode/calls.c

executes two test cases and displays the following output.

% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 2
Ok = 4 of 4

3.5 Exporting Datatypes

If a plugin has to export some datatypes usable by other plugins, they have to be visible by Db.
So they cannot be declared in the plugin implementation itself like any other plugin declaration
because postponed declarations are not possible for types.

Frama-C Plugin Development Guide CAT RNTL project

3.6 Project Management System 33

The solution is to put these datatype declarations in files linked before Db and hence you have to
put them in another directory than the plugin directory. The best way is to create a directory
dedicated to types even if it is possible to put a single file in another directory or to put a single
type in an existing file (like src/kernel/db_types.mli).

Recommendation 3.2 The suggested name for this directory is p_types for a plugin p.

If you add such a directory, you also have to modify Makefile.in by extending variable
UNPACKED_DIRS (see Section 3.3.2).

Example 3.8 Suppose you are writing a plugin plugin which exports a specific type t corre-
sponding to the result of the plugin analysis. The standard way to proceed is the following.

File src/plugin_types/plugin_types.mli

type t = · · ·
File src/kernel/db.mli
module Plugin : sig
val run_and_get: (unit → Plugin_types.t) ref

(** Run plugin analysis (if it was never launched before).
@return result of the analysis. *)

end

File Makefile.in

UNPACKED_DIRS= · · · plugin_types
extend this variable with the new directory

A sad side effect of this design choice is that export types are not hidden. If you want to hide
them, you have to encapsulate them in modules providing required getters and setters. So you
have now plugin code outside plugin implementation which should be linked before Db5. Files
containing this code has to be known by the makefile: set make variable PLUGIN_TYPES_CMO for
this purpose (see Section 3.3.2).

3.6 Project Management System

In Frama-C, a key notion detailed in this Section is project. Section 3.6.1 first introduces its
general principle. Next Section 3.6.2 explains how to simply use them. Then Section 3.6.3 intro-
duces the principle of so-called internal states registration which is detailed in Sections 3.6.4, 3.6.5
and 3.6.6. The first one is dedicated to so-called datatypes. The second one is dedicated to the
internal states themselves. The third one is dedicated to low-level registration. Finally Sec-
tion 3.6.7 shows how to shrewdly handle projects and internal states.

3.6.1 General Overview and Key Notions

In Frama-C, many (mostly global) data are attached to an AST. For example, there are the AST
itself, options of the command line (see Section 3.8) and tables containing results of analyses

5A direct consequence is that you cannot use the whole Frama-C functionalities inside this code.

Frama-C Plugin Development Guide CAT RNTL project

34 Advanced Plugin Development

(Frama-C extensively uses memoisation [6, 7] in order to avoid re-computation of analyses). The
set of all these data is called a project.

Several ASTs can exist at the same time in Frama-C and so several projects as well: the number
of ASTs is exactly the same than the number of projects. Besides a data has one value by AST:
usually the table containing results of one particular analysis is different but always exists for
two different ASTs.

The set of all the projects stands for the internal state of Frama-C : that is all the ASTs defined
in Frama-C and, for each of them, the corresponding value of all the attached data. So it contains
all the important data of Frama-C. Hence it is the only value saved on the disk and restored by
loading.

A related notion is internal state of a data d. That is the set of all the values of d: so, for each
data, the cardinal of this set is equal to the cardinal of the internal state of Frama-C (i.e. the
number of existing projects).

These notions are resumed in Figure 3.1.
hhhhhhhhhhhhhhhhhInternal states

Projects Project p1 Project p2 . . . Project pn

AST a value of a in p1 value of a in p2 . . . value of a in pn

data d1 value of d1 in p1 value of d1 in p2 . . . value of d1 in pn

.
data dm value of dm in p1 value of dm in p2 . . . value of dm in pn

Figure 3.1: Matricial Representation of the Frama-C Internal State

3.6.2 Use of project

Actually projects are mostly unshown in Frama-C: there is a default project Project.current ()
and a default AST Cil_state.file () which all operations are performed on. But sometimes a
plugin developer have to explicitly use them. That is when the AST is modified (usually through
the use of a copy visitor, see Section 3.10) or replaced (e.g. if a new one is loaded from disk).

An AST must never be modified inside a project. If such an operation is required, you must
create a new project with a new AST (usually by using File.init_project_from_cil_file or
File.init_project_from_visitor).

Operations on projects are grouped together in module Project. Each project has got type
Project.t. Among other operations described in the interface of Project, an important function
is Project.set_current which sets the current project and hence switches the Frama-C context:
after its application, all operations are implicitly performed on the new current project.

Example 3.9 Suppose that you do not perform the value analysis and save the current project
into file foo.sav in a previous Frama-C session6 thanks to the following instruction.

Project.save "foo.sav"

So, in a new Frama-C session, executing the following lines of code (assuming the value analysis
is not computed)

6A session is one execution of Frama-C (through toplevel.[byte|opt] or viewer.[byte|opt]).

Frama-C Plugin Development Guide CAT RNTL project

3.6 Project Management System 35

let print_computed () = Format.printf "
print_computed (); (* false *)
let old = Project.current () in
try
let foo = Project.load name:"foo" "foo.sav" in
Project.set_current foo;
!Db.Value.compute ();
print_computed (); (* true *)
Project.set_current old;
print_computed () (* false *)

with Project.IOError _ →
exit 1

displays

false
true
false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An alternative to the use of Project.set_current is the use of Project.on which applies an
operation on a given project without changing the current project (i.e. locally switch the current
project in order to apply the given operation and, after, restore the initial context).

Example 3.10 The following code is equivalent to the one given in Example 3.9.

let print_computed () = Format.printf "
print_computed (); (* false *)
try
let foo = Project.load name:"foo" "foo.sav" in
Project.on foo

(fun () → !Db.Value.compute (); print_computed () (* true *)) ();
print_computed () (* false *)

with Project.IOError _ →
exit 1

So it displays

false
true
false

3.6.3 Internal State Registration: Principle

If a data should be part of the internal state of Frama-C (e.g. it should be saved on the disk), you
must register it as an internal state (aka a computation because it is often related to memoisation).

For this purpose, functor Project.Computation.Register is provided. Actually it is quite a low-
level functor and higher-level functors inside modules Computation and Kernel_computation

Frama-C Plugin Development Guide CAT RNTL project

36 Advanced Plugin Development

register internal states in a simpler way by wrapping the low-level functor: there is no direct
use of the low-level functor in the Frama-C kernel. Module Computation provides internal state
builders for standard OCaml datastructures (like hashtables) whereas Kernel_computation does
the same for standard Frama-C datastructures (like hashtables index by statements of the AST)7.

The registration of a data of type τ requires to register the type τ itself as a datatype us-
ing functor Project.Datatype.Register. A datatype is a type aware of projects. As for
computations, module Datatype (resp. Kernel_datatype) provides pre-defined datatypes and
datatypes-builder for OCaml (resp. Frama-C) datatypes like hashtables (resp. hashtables index
by statements of the AST)8.

3.6.4 Registering a new datatype

In order to register a new datatype, you have to apply functor Project.Datatype.Register
which is a quite low-level functor. In mostly cases, applying this functor is actually not required.
We explain here the three different possible situations.

Simple registration If the datatype to register is not hash-consed9 or does not contain hash-
consed ones (i.e. it is not itself hash-consed or composed of Cil_types.fundec, or any Frama-C
abstract interpretation type), the easiest way of registering a new datatype d is to apply one
of functors Persistent or Imperative of module Project.Datatype, depending on the nature
of d (whether it is persistent). The only difference between both functors is that you have to
provide a copy function for imperative (i.e. mutable) datatypes. This copy function is only used
by Project.copy.

Example 3.11 For registering a couple composed of an integer and a boolean, just apply

Project.Datatype.Persistent(struct type t = int × bool end)

For registering a type t containing a mutable field a, just do

type t =
mutable a : int

Project.Datatype.Imperative
(struct

type tt = t
type t = tt
let copy x =

a = x.a

end)

7These datastructures are only mutable datastructures (like hashtables, arrays and references) because global
states are always mutable.

8On the contrary to computations, these types are either mutable or persistent because the registration of a
type may require the registration of its subtypes (in the sense of syntactically contained in).

9Hash-consing is a programming technique saving memory blocks and speeds up operations on datastructures
when sharing is maximal [3, 5, 2].

Frama-C Plugin Development Guide CAT RNTL project

3.6 Project Management System 37

Using predefined datatypes or datatype builders For most useful types, the corre-
sponding datatypes are already provided in modules Datatype (e.g. Datatype.Int for type
int) and Kernel_datatype (e.g. Kernel_datatype.Stmt for type Cil_types.stmt). More-
over both modules provides a bunch of functors which help to build complex datatypes when
Project.Datatype.Persistent and Project.Datatype.Imperative cannot be used.

Example 3.12 For registering the type of an hashtable associating varinfo to list of kernel func-
tions, it is not possible to apply functor Project.Datatype.Imperative because a kernel function
is composed of Cil_types.fundec. But it is still easy to perform the registration thanks to pre-
defined functors:

Kernel_datatype.VarinfoHashtbl(Datatype.List(Kernel_datatype.KernelFunction))

Sad cases In some cases (e.g. registering a new variant type composed of a kernel function),
applying functor Project.Datatype.Register is required. As input, one has to provide:

• The type itself.

• How to copy and to rehash it (usually just rebuild the structure by applying the right copy
and rehash functions on subterms).

• Functions before_load and after_load which are applied at load time (when function
Project.load or Project.load_all is applied). If there is no action to apply, just include
module Datatype.Nop instead.

• A name for the datatype. The type of this value is Project.Datatype.Name.t which is
isomorphic to string. The only difference is name unicity: if the same name is used for
two different registrations, an exception is occurring at the module initialisation time of
Frama-C (i.e. at runtime, but before mostly anything else, see Section 3.7).

• A list of dependencies which should be the list of datatypes used by the datatype under
registration. Datatypes are build by functor applications which provide a value self in
the output module. This value is called the kind of the datatype and can be used for this
purpose. Roughly speaking, it represents the type itself.

Example 3.13 Plugin value registers a complex tuple in the following way (see file
src/value/eval.ml).

Frama-C Plugin Development Guide CAT RNTL project

38 Advanced Plugin Development

Project.Datatype.Register
(struct

module V_Offsetmap_option = Datatype.Option(V_Offsetmap.Datatype)
type t =

Relations_type.Model.t
× (V_Offsetmap_option.t × Relations_type.Model.t)
× Locations.Zone.t (* in *)
× Locations.Zone.t (* out *)

let copy _ = assert false (* TODO: deep copy *)
let rehash (generic_state, (result, result_state), ins, outs) =

Relations_type.Model.Datatype.rehash generic_state,
(V_Offsetmap_option.rehash result,
Relations_type.Model.Datatype.rehash result_state),

Locations.Zone.Datatype.rehash ins,
Locations.Zone.Datatype.rehash outs
include Datatype.Nop
let name = Project.Datatype.Name.make "Mem_Exec_tuple"
let dependencies =

[Relations_type.Model.Datatype.self;
Cvalue_type.V.Datatype.self;
V_Offsetmap_option.self;
Locations.Zone.Datatype.self]

end)

3.6.5 Registering a new internal state

Here we explain how to register and use an internal state in Frama-C. Registration through the
use of low-level functor Project.Computation.Register is postponed in Section 3.6.6 because
it is more tricky and rarely useful.

In most non-Frama-C applications, a state is a (usually global) mutable value. One can use it in
order to stock results. For example, inside Frama-C, the following piece of code would use value
state in order to memoise some information attached to statements.

open CilUtil
type info = Kernel_function.t × Cil_types.varinfo
let state : info StmtHashtbl.t = StmtHashtbl.create 97
let compute_info s = · · ·
let memoise s =
try StmtHashtbl.find state s
with Not_found → StmtHashtbl.add state s (compute_info s)

let run () = · · · !Db.Value.compute (); · · · memoise s · · ·

However, if one puts this code inside Frama-C, it does not work because this state is not registered
as a Frama-C internal state. A direct consequence is that it is not saved on the disk. For this
purpose, one has to transform the above code into the following one.

Frama-C Plugin Development Guide CAT RNTL project

3.6 Project Management System 39

module State =
Kernel_computation.StmtHashtbl

(Datatype.Couple(Kernel_datatype.KernelFunction)(Kernel_datatype.Varinfo))
(struct
let size = 97
let name = Project.Computation.Name.make "state"
let dependencies = [Db.Value.self]
end)

let compute_info s = · · ·
let memoise = State.memo compute_info
let run () = · · · !Db.Value.compute (); · · · memoise s · · ·

A quick look on this code shows that the declaration of the state itself is much more complicated
(it uses a functor application) but the use of state is simpler. Actually what has changed?

1. To declare a new internal state, apply one of the predefined functors in modules
Computation or Kernel_computation. Here we use StmtHashtbl which provides an
hashtable indexed by statements. The type of values associated to statements is a cou-
ple of kernel_function and varinfo. The first argument of the functor is the datatype
corresponding to this type (see Section 3.6.4). The second argument provides some ad-
ditional information: the initial size of the hashtable (an integer similar to the argument
of Hashtbl.create), a name for the resulting state and its dependencies. Name and de-
pendencies managements are similar to those for datatypes (see Section 3.6.4). The only
difference concerning dependencies is that one has to provide each state requiring by the
state computation: here that is the state of the value analysis.

2. From outside, a state actually hides its internal representation in order to ensure some
invariants. So operations on states implementing hashtable does not take an hashtable in
argument. Here, a predefined memo function is used in order to memoise the computation
of compute_info. This function implicitly operates on an hashtable hidden in the internal
representation of State.

Postponed dependencies A plugin p may want to export the kind of its internal state (in
the previous example, that is value State.self). This exportation offers the possibility to other
plugins to depend on this state. It is a bit tricky because the state kind has to be accessible
through Db.

There is two ways to achieve such a goal. First, the internal state has to be compiled before Db:
usually the internal state has to be somewhere in directory p_types (see Section 3.5). Actually
it is quite difficult because the computation of the internal state may be complex and so should
not be in p_types.

The second way is to put a delayed reference to self (i.e. the state kind) in Db thanks to
Project.Computation.dummy which provides a dummy kind. This reference is going to be ini-
tialised at the plugin initialisation time (see Section 3.7). Now if another plugin has an internal
state which depends on !Db.My_plugin.self, it cannot put the dependence when the functor
creating the state is applied because the order of plugin initialisation is not specified (also see
Section 3.7). So you have to postpone the addition of this dependency (usually by using function
Options.register_plugin_init, see Section 3.8).

Example 3.14 Plugin from postpones its internal state in the following way.

Frama-C Plugin Development Guide CAT RNTL project

40 Advanced Plugin Development

File src/kernel/db.mli

module From = struct
· · ·
val self: Project.Computation.t ref

end
File src/kernel/db.ml
module From = struct
· · ·
val self = ref Project.Computation.dummy (* postponed *)

end
File src/from/register.ml
module Functionwise_Dependencies =

Kernel_function.Make_Table
(Function_Froms.Datatype)
(struct

let name = Project.Computation.Name.make "functionwise_from"
let size = 97
let dependencies = [Value.self]

end)
let () = Db.From.self := Functionwise_Dependencies.self

(* performed at module initialisation runtime. *)

Besides plugin pdg uses from for computing its own internal state. So it declares this dependency
as follow.

File src/pdg/register.ml

module Tbl =
Kernel_function.Make_Table

(PdgTypes.Pdg.Datatype)
(struct

let name = Project.Computation.Name.make "Pdg.State"
let dependencies = [] (* postponed *)
let size = 97

end)
let () =

Options.register_plugin_init
(fun () → Project.Computation.add_dependency Tbl.self !Db.From.self)

3.6.6 Direct use of low-level functor Project.Computation.Register

Functor Project.Computation.Register is the only functor which really registers an internal
state. All the others internally use it. In some cases (e.g.. if you define your own mutable record
used as a state), you have to use it. Actually, in the Frama-C kernel, there is no direct use of this
functor.

This functor takes three arguments. The first and the third ones respectively correspond to the
datatype and to information (name and dependencies) of the internal states: they are similar to

Frama-C Plugin Development Guide CAT RNTL project

3.6 Project Management System 41

the corresponding arguments of the high-level functors (see Section 3.6.5).

The second argument explains how to handle the local version of the value of the internal state
(under registration). Indeed here is the key point: from the outside, only this local version is used
for efficiency purpose. It would work if projects do not exist. Each project knows a global version:
the set of this global versions is the so-called internal states. The project management system
automatically switches the local version when the current project changes in order to conserve
a physical equality between local version and current global version. So, for this purpose, the
second argument provides a type t (type of values of the state) and four functions create
(creation of a new fresh state), clear (cleaning a state), get (getting a state) and set (setting
a state).

The following invariants must hold:10

create () != create () (3.1)
∀p of type t, create () = (clear p; set p; get ()) (3.2)
∀p of type t, set p; p == get () (3.3)

∀p1, p2 of type t, set p1; let p = get () in set p2; p != get () (3.4)

The first invariant ensures that there is no sharing between fresh values of a same internal state:
so each new project has got its own fresh internal state. The second invariant ensures that
cleaning a state resets it to its initial value. The third invariant ensures that the version of the
global project remains physically equal to the local version when the current project changes.
Last the fourth invariant is a local independence criteria which ensures that modifying a local
version does not affect any other version (different of the global current one) by side-effect. The
two last invariants usually require an additional indirection in order to be safely (and efficiently)
implemented.

Example 3.15 To illustrate this, we show how functor Computation.Ref (registering a state
corresponding to a reference) is implemented.

module Ref(Data:REF_INPUT)(Info:Signature.NAME_DPDS) = struct
type data = Data.t
let create () = ref Data.default
let state = ref (create ())

Here we use an additional reference: our local version is a reference on the right state. We can
use it in order to safely and easily implement get and set required by the registration.

10As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

Frama-C Plugin Development Guide CAT RNTL project

42 Advanced Plugin Development

include Project.Computation.Register
(Datatype.Ref(Data))
(struct
type t = data ref (* we register a reference on the given type *)
let create = create
let clear tbl = tbl := Data.default
let get () = !state
let set x = state := x

end)
(Info)

For users of this module, we export “standard” operations which hide the local indirection required
by the project management system.

let set v = !state := v
let get () = !(!state)
let clear () = !state := Data.default

end

3.6.7 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have two
optional parameters only and except of type Project.Selection.t. These parameters allow
to specify what internal states the operation applies on:

• If only is specified, the operation is only applied on the selected states.

• If except is specified, the operation is applied on all states, except the selected ones.

• If both only and except are specified, the operation only applied on the only states, except
the except ones.

A selection is roughly speaking a set of internal states. Moreover it handles states dependencies
(that is the specificity of selections).

Example 3.16 The following statement clears all the results of the value analysis and all its
dependencies in the current project.

Project.clear
only:(Selection.singleton Db.Value.self Kind.Select_Dependencies)

()

The argument Kind.Select_Dependencies says that we also wants to clear all the states which
depend of the value analysis.

In some cases, using selection may be quite dangerous because the Frama-C state may become
lost and inconsistent. So use it carefully.

Example 3.17 The following statement applies a function f in the project p (which is not the
current one). For efficiency purpose, we restrict the considered states to the command line options
(see Section 3.8).

Frama-C Plugin Development Guide CAT RNTL project

3.7 Initialisation Steps 43

Project.on only:(Cmdline.get_selection ()) p f ()

This statement only works if f gets only values of the command line options. If it tries to get
the value of another state, the result is unspecified and all actions using any state of the current
project and of project p also become unspecified.

3.7 Initialisation Steps

In a standard way, Frama-C modules are initialised in the link order. Mostly the link order
remains unspecified, so you have to use side effects at module initialisation time carefully.

As side effects are sometimes useful, Frama-C provides some ways to put it at different initial-
isation times. For this purpose, function Options.register_plugin_init allows to register a
function executed before parsing the Frama-C command line (see Section 3.6.5) while function
Options.add_plugin has three optional arguments plugin_init, init and toplevel_init us-
able in order to control Frama-C initialisation (see Section 3.8). Actually, the whole Frama-C
initialisation process is enclosed in module Boot (the last linked module) which is the main entry
point of Frama-C.

In order to clear what is done when Frama-C is booting, we better specify the Frama-C initiali-
sation order below.

1. Running each Frama-C compilation unit in a mostly unspecified order. The only assumption
is that the link order respects the below partial order:

(a) external libraries

(b) project files (in src/project)

(c) cil files (in cil/src and sub-directories)

(d) kernel files

(e) non-gui plugin files

(f) gui non-plugin files (in src/gui)11

(g) gui plugin files11

(h) src/kernel/boot.ml;

2. Running each function registered through Options.register_plugin_init (in an unspec-
ified order). Usually these functions initialise postponed internal-state dependencies (see
Section 3.6.5).

3. Running each function registered through argument plugin_init (in an unspecified order).
Usually these functions are used for plugin initialisations.

4. Parsing the Frama-C command line.

5. Running each function registered through argument init (in an unspecified order). Usually
these functions are used for initialisations depending of command line options.

6. Initialising a bunch of Cil attributes.
11If the graphical user interface is compiled.

Frama-C Plugin Development Guide CAT RNTL project

44 Advanced Plugin Development

7. Running each function registered through argument toplevel_init of
Options.add_plugin. Usually these functions are used in order to launch the right
Frama-C entry point (e.g. usually defined in Main for a non-graphical Frama-C applica-
tion).

3.8 Command Line Options

Values associated with command line options are stored in module Cmdline while command line
options themselves are registered through module Options. First Section 3.8.1 introduces how
to store new option values. Second Section 3.8.2 presents how to register new options.

3.8.1 Storing new option values

In Frama-C, an option value is actually a structure implementing signature Cmdline.S in order
to handle projects: each option value is indeed an internal state (see Section 3.6.5). This struc-
ture should be stored in module Cmdline. Actually a bunch of signatures extended Cmdline.S
are provided in order to deal with the usual option types. For example, there are signatures
Cmdline.INT and Cmdline.BOOL for integer and boolean options. Mostly, these signatures pro-
vide getters and setters for options.

Implementing such an interface is very easy thanks to internal functors provided in module
Cmdline. Indeed, you have just to choose the right functor according to your option type and
eventually the wished default value. Below is a list of most useful functors.

1. False (resp. True) builds a boolean option initialised to false (resp. true).

2. Int (resp. Zero) builds an integer option initialised to a specified value (resp. to 0).

3. String (resp. EmptyString) builds a string option initialised to a specified value (resp. to
the empty string "").

4. IndexedVal builds an option for any datatype τ as soon as you provides a partial function
from strings to value of type τ .

Each functor takes (at least) a name as argument which corresponds to the name of the internal
states for this option (see Section 3.6.5).

Example 3.18 Value for option -slevel is module SemanticUnrollingLevel of Cmdline and
is implemented as follow.

module SemanticUnrollingLevel =
Zero(struct let name = "Cmdline.SemanticUnrollingLevel" end)

So it is an integer option initialised by default to 0. Interface for this module is simply

module SemanticUnrollingLevel: INT

Value for option -general-font (viewer only) is module GeneralFontName and is implemented
as follow.

Frama-C Plugin Development Guide CAT RNTL project

3.8 Command Line Options 45

module GeneralFontName =
String(struct

let default = "Helvetica 10"
let name = "Cmdline.GeneralFontName"

end)

So it is a string option initialised by default to Helvetica 10. Interface for this module is simply

module GeneralFontName: STRING

Recommendation 3.3 Options of a same plugin plugin should belong to a same module
PluginOptions inside Cmdline.

3.8.2 Registering new options

You have to use function Options.add_plugin for registering all options of a plugin. For
example, this function automatically displays help messages on the command line in the
Frama-C standard form. Moreover it takes optional arguments which allow to customize
the plugin initialisation process (see Section 3.7). See documentation attached to it in file
src/toplevel/options.mli for more details.

Usually function Options.add_plugin is called at module initialisation time: so options are
registered when the Frama-C command line is parsed (see Section 3.7).

Example 3.19 For illustrating the use of this function, we show how two plugins use it. First
consider plugin users (see file src/users/users_register.ml).

let call_for_users = · · ·
let init () =

if Cmdline.ForceUsers.get () then
Db.Value.Call_Value_Callbacks.extend call_for_users

let () =
Options.add_plugin

name:"users" descr:"users of functions" init
["−users", Arg.Unit Cmdline.ForceUsers.on,

": compute users (through value analysis)";]

The call to Options.add_plugin adds a single option -users which sets the value
Cmdline.ForceUsers when it is set. Arguments name and descr are used by option –help
of Frama-C. Argument init is performed right after the parsing of the command line (see Sec-
tion 3.7) and here extends the value analysis in order to execute the users analysis when this is
required by the user.

The second example is plugin pdg (see file src/pdg/register.ml).

Frama-C Plugin Development Guide CAT RNTL project

46 Advanced Plugin Development

let () =
Options.add_plugin name:"Program Dependence Graph (experimental)"

descr:""
shortname: "pdg"
debug:[
"−verbose", Arg.Unit Cmdline.Pdg.Verbosity.incr,
": increase verbosity level for the pdg plugin (can be repeated).";

"−pdg",
Arg.Unit Cmdline.Pdg.BuildAll.on,
": build the dependence graph of each function for the slicing tool";

"−fct−pdg",
Arg.String Cmdline.Pdg.BuildFct.add,
"f : build the dependence graph for the specified function f";

"−dot−pdg",
Arg.String Cmdline.Pdg.DotBasename.set,
"basename : put the PDG of function f in basename.f.dot";

"−dot−postdom",
Arg.String Cmdline.Pdg.DotPostdomBasename.set,
"basename : put the postdominators of function f in basename.f.dot";

]
[]

This code adds some debugging options for plugin pdg. This option are usable right after
-pdg-debug option which is specified thanks to argument shortname. Actually there is no true
option for this plugin: all options are debugging ones.

3.9 Locations

In Frama-C, different representations of C locations exist. Section 3.9.1 presents them. Moreover,
maps indexed by locations are also provided. Section 3.9.2 introduces them.

3.9.1 Representations

There are four different representations of C locations. Actually only three are really relevant. All
of them are defined in module Locations. They are introduced below. See the documentation
of src/memory_state/locations.mli for details about the provided operations on these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int) &a)
+ 13. With this representation, there is no way to know the size of a value while it is still
possible to join two values. Roughly speaking it is represented by a mapping between C
variable and offsets in bytes.

• Type location is used to represent the right part of a C affectation (including bitfields).
It is represented by a Location_Bits.t (see below) attached to a size. It is possible to
join two locations if and only if they have the same sizes.

Frama-C Plugin Development Guide CAT RNTL project

3.10 Visitors 47

• Type Location_Bits.t is similar to location_Byte.t with offsets in bits instead of bytes.
Actually it should only be used inside a location.

• Type Zone.t is a set of bits (without any specific order). It is possible to join two zones
even if they have different sizes.

Recommendation 3.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of different sizes. If you
require to convert locations to zones, use function Locations.valid_enumerate_bits.

As join operators are provided for these types, they can be easily used in abstract interpretation
analyses (which can themselves be implemented thanks to one of functors of module Dataflow,
see Section 3.1.1).

3.9.2 Map indexed by locations

Module Lmap and Lmap_bitwise provide functors implementing maps indexed by locations and
zones (respectively). The argument of these functors have to implement values attached to
indices (locations or zones).

These implementations are quite more complex than simple maps because they automati-
cally handle overlaps of locations (or zones). So such implementations actually require that
structures implementing values attached to indices are lattices (i.e. implement signature
Abstract_interp.Lattice). For this purpose, functors of the abstract interpretation toolbox
can help (see in particular module Abstract_interp).

3.10 Visitors

Cil offers a visitor, Cil.cilVisitor that allows to traverse (parts of) an AST. It is a class
with one method per type of the AST, whose default behavior is simply to call the method
corresponding to its children. This is a convenient way to perform local transformations over a
whole Cil_types.file by inheriting from it and redefining a few methods. However, the original
Cil visitor is of course not aware of the internal state of Frama-C itself. Hence, there exists another
visitor, Visitor.generic_frama_c_visitor, which deals with that in a transparent way for the
user. There are very few cases where the plain Cil visitor should be used.

Basically, as soon as the initial project has been built from the C source files (i.e. one of the
functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few differences between the two (the Frama-C visitor inherits from the Cil one). These
differences are summarized in Section 3.10.6, which the reader already familiar with Cil is invited
to read carefully.

3.10.1 Entry points

Cil offers a certain number of entry points for the visitor. They are functions called
Cil.visitCilAstType where astType is a type of Cil’s AST. Such a function takes as argument
an instance of a cilVisitor and an astType and gives back an astType transformed according
to the visitor. The entry points for visiting a whole Cil_types.file (Cil.visitCilFileCopy,

Frama-C Plugin Development Guide CAT RNTL project

48 Advanced Plugin Development

Cil.visitCilFile and visitCilFileSameGlobals) are slightly different and do not support all
kinds of visitors. See the documentation attached to them in cil.mli for more details.

3.10.2 Methods

As said above, there is a method for each type in the Cil AST (including for logic an-
notation). For a given type astType, the method is called vastType12, and has type
astType→astType’ visitAction, where astType’ is either astType or astType list (for instance,
one can transform a global into several ones). visitAction describes what should be done for
the children of the resulting AST node, and is presented in the next section. In addition, there
are two modes for visiting a varinfo: vvdec to visit its declaration, and vvrbl to visit its uses.
More detailed information can be found in cil.mli.

For the Frama-C visitor, three methods, vstmt, vfile, and vglob take care of maintaining the
coherence between the transformed AST and the internal state of Frama-C. Thus they must not
be redefined. One should redefine vstmt_aux and vglob_aux instead.

3.10.3 Action performed

The return value of visiting methods indicates what should be done next. There are four possi-
bilities:

• SkipChildren the visitor do not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• DoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the children of
v, and when it is finished, f is applied to the result.

3.10.4 Visitors and Projects

The visitors takes an additional argument, which is the project in which the transformed AST
should be put in. Note that an in-place visitor (see next section) should operate on the current
project (otherwise, two projects would share the same AST). If this is not the case, it is up to
the developer to ensure that the copy is done by other means, so that there is no sharing.

Note that the tables of the new project are not filled immediately. Instead, actions are queued,
and performed when a whole Cil_types.file has been visited. One can access the queue with
the get_filling_actions method, and perform the associated actions on the new project with
the fill_global_tables method.

3.10.5 In-place and copy visitors

The visitors take as argument a behavior, which comes in two flavors: inplace_behavior and
copy_behavior. In the in-place mode, nodes are visited in place, while in the copy mode, nodes
are copied and the visit is done on the copy. For the nodes shared across the AST (varinfo,
compinfo, enuminfo, typeinfo, stmt, logic_info, predicate_info and fieldinfo), sharing is

12This naming convention is not strictly enforced. For instance the method corresponding to offset is voffs

Frama-C Plugin Development Guide CAT RNTL project

3.10 Visitors 49

of course preserved, and the mapping between the old nodes and their copy can be manipulated
explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as the
identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known, it
behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the old
value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original AST
nodes. Its result must not be modified in place (this would defeat the purpose of operating on
a copy to leave the original AST untouched). Moreover, note that whenever the index used
for name is modified in the copy, the internal state of the visitor behavior must be updated
accordingly (via the set_name function) for get_original_name to give correct results.

The list of such indices is as follows:

Type Index
varinfo vid
compinfo ckey
enuminfo ename
typeinfo tname
stmt sid
logic_info l_name
predicate_info p_name
logic_var lv_id
fieldinfo fname and fcomp.ckey

Last, when using a copy visitor, the actions (see previous section) SkipChildren and ChangeTo
must be used with care, i.e one has to ensure that the children are fresh. Otherwise, the new
AST will share some nodes with the old one.

3.10.6 Differences between the Cil and Frama-C visitors

As said in Section 3.10.2, vstmt and vglob should not be redefined. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in Frama-
C tables are considered more or less as children of the node. In particular, if the method returns
ChangeTo action (see Section 3.10.3), it is assumed that it has taken care of updating the tables
accordingly, which can be a little tricky when copying a file from a project to another one.
Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren action implies that the
visit will stop, but the information associated to the old value will be associated to the new one.
If the children are to be visited, it is undefined whether the table entries are visited before or
after the children in the AST.

Frama-C Plugin Development Guide CAT RNTL project

50 Advanced Plugin Development

3.10.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating that
the divisor is not zero:

open Cil_types
open Cil

class non_zero_divisor prj = object(self)
inherit Visitor.generic_frama_c_visitor (Cil.copy_visit()) prj

(* A division is an expression: we override the vexpr method *)
method vexpr = function

BinOp((Div|Mod),_,e2,_) →
let t = Cil.typeOf e2 in
let logic_e2 =

Logic_const.mk_dummy_term
(TCastE(t,Logic_const.expr_to_term e2)) t

in
let assertion = Logic_const.prel (Rneq,logic_e2,Cil.lzero()) in
(* At this point, we have built the assertion we want to insert.

It remains to attach it to the correct statement. The cil visitor
maintains the information of which statement is currently visited
in the current_stmt method, which returns None when outside
of a statement, e.g. when visiting a global declaration. Here, it
necessarily returns Some. *)
let stmt = Extlib.the (self#current_stmt) in
(* Since we are copying the file in a new project, we can’t insert

the annotation into the current table, but in the table of the new
project. To avoid the cost of switching projects back and forth,
all operations on the new project are queued until the end of the
visit, as mentioned above. This is done in the following
statement. *)

Queue.add
(fun () → Annotations.add_assert stmt before:true assertion)
self#get_filling_actions;

(* Do not forget to recurse on the children of the
division. *)
DoChildren

| _ → DoChildren (* do not do anything on other expressions
(except visiting their children)*)

end

(* This function returns a new project initialized with the current file plus
the annotations related to division. *)

let create_syntactic_check_project =
let prj = Project.create "syntactic check" in
File.init_project_from_visitor prj (new Syntactic_check.non_zero_divisor);
prj

Frama-C Plugin Development Guide CAT RNTL project

3.11 GUI Extension 51

3.11 GUI Extension

Each plugin can extend the Frama-C graphical user interface (aka gui) in order to sup-
port its own functionalities in the Frama-C viewer. For this purpose, a plugin developer
has to register a function of type Design.main_window_extension_points -> unit thanks to
Design.register_extension. Design.main_window_extension_points is a class type properly
documented providing access to main widgets of a Frama-C gui.

Such a code has to be put in separate files into the plugin directory. Moreover, in Makefile.in,
variable PLUGIN_GUI_CMO has to be set in order to compile the gui plugin code (see Section 3.3.2).

Mainly that’s all! The gui implementation uses Lablgtk2 [4]: so you can use any Lablgtk2-
compatible code in your gui extension.

Example 3.20 We illustrate the principle with plugin occurrence. This plugin computes all
the places where a variable declaration is used: for a variable v, function !Db.Occurrence.get
provides a list of occurrences of v which are couples containing a statement s and a left-value in
s which uses some part of the memory location corresponding to v.

In the gui, this plugin adds item “Occurrence” in the menu displayed when an user clicks with
the right mouse button on a variable declaration v. The selection of this item highlights each
occurrence corresponding to v. Below is the annotated code implementing this feature13.

First we open some useful modules.

open Pretty_source (* coming with the Frama-C GUI *)
open Gtk_helper (* coming with the Frama-C GUI *)
open Db
open Cil_types

Next we extend the Frama-C gui with function main below.

let main main_ui = main_ui#register_source_selector occurrence_selector
let () = Design.register_extension main

This function takes the main Frama-C gui as parameter, using it in order to register an action
performed when a button is released on some predefined place.

This action is provided by function occurrence_selector below.

13File src/occurrence/occurrence_gui.ml contains the original source.

Frama-C Plugin Development Guide CAT RNTL project

52 Advanced Plugin Development

let occurrence_selector
(popup_factory:GMenu.menu GMenu.factory) main_ui button localizable =

if button = 3 then
(* right mouse button pressed *)
match localizable with
| PVDecl (_,vi) → (* variable declaration selected *)

(* ignore variables which are functions *)
if not (Cil.isFunctionType vi.vtype) then
let callback () =

(* compute occurrences of the selected variable *)
let lvals = !Db.Occurrence.get vi in
(* next highlight them (in yellow) *)
apply_tag main_ui "occurrence" "yellow" lvals

in
(* add item “Occurrence” associated to callback in the popup *)
ignore (popup_factory#add_item "_Occurrence" callback)

| _ → ()

This function takes four arguments. The first one is the factory corresponding to the popup
displayed when an user clicks with the right mouse button, the second one is the main Frama-C
gui, the third one is the pressed mouse button and the four one is the selected localizable. The
localizable is a Frama-C variant indicating which piece of code in the viewer the user has selected
(e.g. a statement or a left value).

Here the function body adds item “Occurrence” if the right mouse button is pressed on a variable
declaration (which is not a function). The action associated to this new item computes the
occurrences of the selected variables and highlights them in yellow.

Function apply_tag implements this highlighting. Its code is below.

exception Highlight of Db_types.kernel_function × stmt
let apply_tag main_ui name color occurrences =

(* create a new tag for the highlighting (if not previously built) *)
let view = main_ui#source_viewer in
let tag = make_tag view#buffer name [‘BACKGROUND color] in
(* erase previous tags in the buffer if any *)
cleanup_tag view#buffer tag;
(* highlight each occurrences *)
List.iter (fun (ki, lv) → highlighting) occurrences

Badly the highlighting itself is a quite ugly because we try different solutions to convert an occur-
rence to a proper highlightable localizable. The code is below.

Frama-C Plugin Development Guide CAT RNTL project

3.12 Documentation 53

(* first compute the statement and the kernel function of the localizable *)
let skf, kf = match ki with

| Kglobal → None, None
| Kstmt s →

let s, kf = Kernel_function.find_from_sid s.sid in
Some (s, kf), Some kf

in
(* next try different highlighting solutions *)
let highlight = main_ui#highlight scroll:true tag in
let try_and_highlight loc =

match Pretty_source.locate_localizable loc, skf with
| None, None → invalid_arg "some occurrence cannot be highlighted"
| None, Some (s, kf) → raise (Highlight(kf, s))
| Some _, _ → highlight loc

in
(* try to highlight as a lval *)
try try_and_highlight (PLval (kf, ki, lv))
with Invalid_argument _ | Highlight _ →

(* if that doesn’t work, try to highlight as a term_lval *)
try

try_and_highlight
(PTermLval (kf, ki, Logic_const.lval_to_term_lval lv))

with
| Highlight(kf, s) →

(* possible to highlight the whole stmt *)
highlight (PStmt (kf, s))

| Invalid_argument msg →
(* cannot highlight *)
Format.printf "

Potential problems All the gui plugin extensions share the same window and same widgets.
So conflicts can occur, especially if you specify some attributes on a predefined object. For
example, if a plugin wants to highlight a statement s in yellow and another one wants to highlight
s in red at the same time, the behaviour is not specified but it could be quite difficult to
understand for an user.

3.12 Documentation

Here we present some hints on the way to document your plugin. First Section 3.12.1 introduces
a quick general overview about the documentation process. Next Section 3.12.2 focus on the
plugin documentation.

3.12.1 General overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index file is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).

Frama-C Plugin Development Guide CAT RNTL project

54 Advanced Plugin Development

The previous command takes some times. So command make html only generates the kernel doc-
umentation (i.e. Frama-C without any plugin) while make $(PLUGIN_NAME)_DOC (by substituting
the right value for $(PLUGIN_NAME)) generates the documentation for a single plugin.

3.12.2 Plugin documentation

Each plugin should be properly documented. Frama-C uses ocamldoc and so you can write any
valid ocamldoc comments.

First of all, a plugin should export itself no function: the only visible plugin interface should be
in Db.

Recommendation 3.5 To ensure this invariant, the best way is to provide an empty interface
for the plugin.

The interface name of a plugin plugin must be Plugin.mli. Be careful to capitalisation of the
filename which is unusual in OCaml but here required for compilation purpose.

Besides, the documentation generator also produces an internal plugin documentation which
may be useful for the plugin developer itself. This internal documentation is available via file
doc/code/plugin/index.html for each plugin plugin. You can add an introduction to this
documentation into a file. This file has to be assigned into variable PLUGIN_INTRO of Makefile.in
(see Section 3.3.2).

In order to ease the access to this internal documentation, you have to manually edit file
doc/index.html in order to add an entry for your plugin in the plugin list.

3.13 License Policy

If you want to redistribute a plugin inside Frama-C, you have to define a proper license policy. For
this purpose, some stuffs are provide in Makefile.in. Mainly we distinguish two cases.described
below.

• If the wished license is already used inside Frama-C , just extend the variable cor-
responding to the wished license in order to include files of your plugin. Next run make
headers.

Example 3.21 Plugin slicing is released under LGPL and is proprietary of both CEA
and INRIA. So, in the makefile, there is the following line.

CEA_INRIA_LGPL= ... \
src/slicing_types/*.ml* src/slicing/*.ml*

• If the wished licence is unknown inside Frama-C , you have to:

1. Add a new variable v corresponding to it and assign files of your plugin;

2. Extend variable LICENSES with this variable;

3. Add a text file in directory licenses containing your licenses

Frama-C Plugin Development Guide CAT RNTL project

3.13 License Policy 55

4. Add a text file in directory headers containing the headers to add into files of your
plugin (those assigned by v).

The filename must be the same than the variable name v. Moreover this file should
contain a reference to the file containing the whole license text.

5. Run make headers.

Frama-C Plugin Development Guide CAT RNTL project

56 Advanced Plugin Development

Frama-C Plugin Development Guide CAT RNTL project

Bibliography

[1] CEA LIST, Laboratoire pour la Sûreté du Logiciel. Documentation de l’outil d’analyse
ValViewer, February 2008. In French.

[2] Sylvain Conchon and Jean-Christophe Filliâtre. Type-Safe Modular Hash-Consing. In ACM
SIGPLAN Workshop on ML, Portland, Oregon, September 2006.

[3] A. P. Ershov. On programming of arithmetic operations. Communication of the ACM,
1(8):3–6, 1958.

[4] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2. http:
//wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[5] Eiichi Goto. Monocopy and Associative Algorithms in Extended Lisp. Technical Report
TR-74-03, University of Toyko, 1974.

[6] Donald Michie. Memo functions: a language feature with "rote-learning" properties. Re-
search Memorandum MIP-R-29, Department of Machine Intelligence & Perception, Edin-
burgh, 1967.

[7] Donald Michie. Memo functions and machine learning. Nature, 218:19–22, 1968.

[8] Julien Signoles. Frama-C Software Architecture, February 2008.

http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html

	Introduction
	Tutorial
	Setup
	Hello World
	Configuration and Compilation
	Connection with the Frama-C World
	Extension to the Command Line
	Testing
	Copyright your Work

	Advanced Plugin Development
	File Tree
	Directory Cil
	Directory Src

	Configure.in
	Principle
	Addition of a simple plugin
	Addition of library/tool dependencies
	Addition of plugin dependencies
	Configuration of new libraries or tools

	Makefile.in
	Overview
	Addition of a new Plugin

	Testing
	Use of ptests
	Configuration

	Exporting Datatypes
	Project Management System
	General Overview and Key Notions
	Use of project
	Internal State Registration: Principle
	Registering a new datatype
	Registering a new internal state
	Direct use of low-level functor Project.Computation.Register
	Selections

	Initialisation Steps
	Command Line Options
	Storing new option values
	Registering new options

	Locations
	Representations
	Map indexed by locations

	Visitors
	Entry points
	Methods
	Action performed
	Visitors and Projects
	In-place and copy visitors
	Differences between the Cil and Frama-C visitors
	Example

	GUI Extension
	Documentation
	General overview
	Plugin documentation

	License Policy

