
Frama-C and Why3:
going way back — and forward, too

Andrei Paskevich

LRI, Université Paris-Sud — Toccata, Inria

Frama-C day, June 20, 2015

1. What is Why3?

Why3 in a nutshell

WhyML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

Why3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WhyML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.

Why3 in a nutshell

WhyML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

Why3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WhyML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.

Why3 in a nutshell

WhyML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

Why3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WhyML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.

Why3 in a nutshell

WhyML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

Why3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WhyML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC4 Z3 etc.

Why3 out of a nutshell

three different ways of using Why3

as a logical language
• a front-end to many theorem provers: Frama-C/WP

as a programming language to prove algorithms
• 134 examples in our gallery
• AVL trees, binary heaps, a simple compiler,

a tableaux-based theorem prover, etc.

as an intermediate verification language

• Java programs: Krakatoa (Marché Paulin Urbain)

• C programs: Frama-C/Jessie (Marché Moy)

• Ada programs: SPARK 2014 (AdaCore)

• probabilistic programs: EasyCrypt (Barthe et al.)

http://toccata.lri.fr/gallery/why3.en.html

Example: maximum subarray problem

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

Kadane’s algorithm

(* | *)
(*|######## max ########|.............. *)
(*|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in

for i = 0 to length a - 1 do

cur += a[i];
if !cur < 0 then cur := 0;
if !cur > !max then max := !cur

done;
!max

Kadane’s algorithm

(* | *)
(*|######## max ########|.............. *)
(*|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in

for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }

cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then max := !cur

done;
!max

Kadane’s algorithm

(* | *)
(*|######## max ########|.............. *)
(*|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max

Kadane’s algorithm

use import ref.Refint
use import array.Array
use import array.ArraySum

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max

Why3 proof session

Family tree

A long time ago at CEA Saclay

CAVEAT a static analyzer for C (Baudin Pacalet Raguideau Schoen Williams, DSN 2002)

• Hoare-style memory model (no aliases)
• custom theorem prover

Meanwhile at LRI / Inria Futurs

Why a tool for deductive program verification (Filliâtre, 2002)

• handles a subset of ML and C, also Java (via Krakatoa)
• Hoare-style memory model (no aliases)
• multiple third-party theorem provers: Coq, PVS, Simplify, etc.

Caduceus a multi-prover verifier for C programs (Filliâtre Marché, ICFEM 2004)

• component-as-array memory model (no pointer cast)
• Why for VC generation
• Coq and Simplify as the back-end provers

Family tree

A long time ago at CEA Saclay

CAVEAT a static analyzer for C (Baudin Pacalet Raguideau Schoen Williams, DSN 2002)

• Hoare-style memory model (no aliases)
• custom theorem prover

Meanwhile at LRI / Inria Futurs

Why a tool for deductive program verification (Filliâtre, 2002)

• handles a subset of ML and C, also Java (via Krakatoa)
• Hoare-style memory model (no aliases)
• multiple third-party theorem provers: Coq, PVS, Simplify, etc.

Caduceus a multi-prover verifier for C programs (Filliâtre Marché, ICFEM 2004)

• component-as-array memory model (no pointer cast)
• Why for VC generation
• Coq and Simplify as the back-end provers

Family tree

A long time ago at CEA Saclay

CAVEAT a static analyzer for C (Baudin Pacalet Raguideau Schoen Williams, DSN 2002)

• Hoare-style memory model (no aliases)
• custom theorem prover

Meanwhile at LRI / Inria Futurs

Why a tool for deductive program verification (Filliâtre, 2002)

• handles a subset of ML and C, also Java (via Krakatoa)
• Hoare-style memory model (no aliases)
• multiple third-party theorem provers: Coq, PVS, Simplify, etc.

Caduceus a multi-prover verifier for C programs (Filliâtre Marché, ICFEM 2004)

• component-as-array memory model (no pointer cast)
• Why for VC generation
• Coq and Simplify as the back-end provers

Family tree, cont.

And then they have met

CAT ANR project, 2006–2009
• led by CEA List (B. Monate)
• academic partners: ProVal (Inria/LRI) and Lande (Inria)
• industrial partners: Airbus France, Dassault Aviation, Siemens

Frama-C a C Analysis Toolbox (2008)

• ACSL specification language (Baudin Filliâtre Marché Monate Moy Prevosto)

• inspired by Caduceus
• first-order logic with total functions and unbounded quantification

• various analyzers implemented as plug-ins
Value abstract interpretation

Jessie deductive verification via Why
WP deductive verification with dedicated VCgen (2010)

Meanwhile at LRI / Inria Saclay

Why3 full redesign of Why (Bobot Filliâtre Kanig Marché Melquiond Paskevich, 2010)

Family tree, cont.

And then they have met

CAT ANR project, 2006–2009
• led by CEA List (B. Monate)
• academic partners: ProVal (Inria/LRI) and Lande (Inria)
• industrial partners: Airbus France, Dassault Aviation, Siemens

Frama-C a C Analysis Toolbox (2008)

• ACSL specification language (Baudin Filliâtre Marché Monate Moy Prevosto)

• inspired by Caduceus
• first-order logic with total functions and unbounded quantification

• various analyzers implemented as plug-ins
Value abstract interpretation

Jessie deductive verification via Why
WP deductive verification with dedicated VCgen (2010)

Meanwhile at LRI / Inria Saclay

Why3 full redesign of Why (Bobot Filliâtre Kanig Marché Melquiond Paskevich, 2010)

Family tree, cont.

And then they have met

CAT ANR project, 2006–2009
• led by CEA List (B. Monate)
• academic partners: ProVal (Inria/LRI) and Lande (Inria)
• industrial partners: Airbus France, Dassault Aviation, Siemens

Frama-C a C Analysis Toolbox (2008)

• ACSL specification language (Baudin Filliâtre Marché Monate Moy Prevosto)

• inspired by Caduceus
• first-order logic with total functions and unbounded quantification

• various analyzers implemented as plug-ins
Value abstract interpretation

Jessie deductive verification via Why
WP deductive verification with dedicated VCgen (2010)

Meanwhile at LRI / Inria Saclay

Why3 full redesign of Why (Bobot Filliâtre Kanig Marché Melquiond Paskevich, 2010)

2. A case for a rich(er) specification language

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

type seq 'a

function length (s: seq 'a) : int
function get (s: seq 'a) (i: int) : 'a
function cons (v: 'a) (s: seq 'a) : seq 'a

axiom cons_length : forall v: 'a, s: seq 'a.
length (cons v s) = 1 + length s

axiom cons_get : forall v: 'a, s: seq 'a, i: int.
0 <= i <= length s ->

get (cons x s) i = if i = 0 then x else get s (i-1)

• supported natively in Alt-Ergo, support in CVC4 may come soon
• requires non-trivial encoding for many-sorted / one-sorted provers

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

type tree 'a = Empty | Node (tree 'a) 'a (tree 'a)

function height (t: tree 'a) : int =
match t with
| Empty -> 0
| Node l _ r -> 1 + max (height l) (height r)
end

• type definitions supported in Alt-Ergo (non-recursive), Z3, CVC4
• pattern matching can be easily encoded

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

type vertex
predicate edge vertex vertex

inductive path vertex (list vertex) vertex =
| Path_empty: forall x: vertex. path x Nil x
| Path_cons: forall x y z: vertex, l: list vertex.

edge x y -> path y l z -> path x (Cons x l) z

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

• higher-order constructions

function create (len: int) (f: int -> 'a) : seq 'a

axiom create_length: forall len: int, f: int -> 'a.
0 <= len -> length (create len f) = len

axiom create_get: forall len: int, f: int -> 'a, i: int.
0 <= i < len -> get (create len f) i = f i

constant square_seq : seq int = create 42 (fun i -> i * i)

Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

• higher-order constructions

All these extensions are supported in ACSL and WhyML

Modularity considered useful

WhyML declarations are organized in modules

module

end

module

end

module

end

Modularity considered useful

WhyML declarations are organized in modules

a module M1 can be

• used (use) in a module M2

• symbols of M1 are shared
• axioms of M1 remain axioms
• lemmas of M1 become axioms
• goals of M1 are ignored

module

end

module

end

module

end

Modularity considered useful

WhyML declarations are organized in modules

a module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

• declarations of M1 are copied or instantiated
• axioms of M1 remain axioms or become lemmas
• lemmas of M1 become axioms
• goals of M1 are ignored

module

end

module

end

module

end

Modularity considered useful

WhyML declarations are organized in modules

a module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

cloning can instantiate

• an abstract type with a defined type

• an uninterpreted function with a defined function

module

end

module

end

module

end

Modularity considered useful

WhyML declarations are organized in modules

a module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

cloning can instantiate

• an abstract type with a defined type

• an uninterpreted function with a defined function

one missing piece to come soon to Why3:

• instantiate a used module with another module

module

end

module

end

module

end

Module instantiation

module SortedList
use import List

type t
predicate le t t
clone relations.PartialOrder with type t = t, predicate rel = le

inductive sorted (l: list t) =
| Sorted_Nil: sorted Nil
| Sorted_One: forall x: t. sorted (Cons x Nil)
| Sorted_Two: forall x y: t, l: list t.

le x y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))
end

module SortedListInt
clone export SortedList with type t = int, predicate le = (<=)

end

• a functor-style alternative to polymorphism, often more convenient

• used to describe algebraic structures, parametrized theories, etc.

• a possible addition to ACSL specification modules?

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics.

In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq.

Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.

Coq realizations

Finite sequences in Why3

type seq 'a
function length (s: seq 'a) : int
function create (len: int) (f: int -> 'a) : seq 'a
axiom create_length: forall len: int, f: int -> 'a.
0 <= len -> length (create len f) = len

realized in Coq

Definition seq : forall (a:Type), Type.
intro a. exact (list a). Defined.

Global Instance seq_WhyType :
forall (a:Type) {a_WT:WhyType a}, WhyType (seq a). . . . Qed.

Definition length:
forall {a:Type} {a_WT:WhyType a}, (seq a) → Z. . . . Defined.

Definition create:
forall {a:Type} {a_WT:WhyType a}, Z → (Z → a) → (seq a). . . . Defined.

Lemma create_length :
forall {a:Type} {a_WT:WhyType a}, forall (len:Z) (f:(Z → a)),

(0%Z <= len)%Z → ((length (create len f)) = len). . . . Qed.

Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs

Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs

Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs

Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs

Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs

Programs for specification

Automated provers usually do not handle proofs by induction

let rec function fib (n: int) : int
requires { n >= 0 }
variant { n }

= if n = 0 then 0 else
if n = 1 then 1 else
fib (n-1) + fib (n-2)

lemma fib_nonneg: forall n: int. 0 <= n -> 0 <= fib n

Lemma functions — let us take advantage of the VC generator!

let rec lemma fib_nonneg (n: int) : unit
requires { 0 <= n }
ensures { 0 <= fib n }
variant { n }

= if n > 1 then begin fib_nonneg (n-2); fib_nonneg (n-1) end

Easier than running Coq and uses familiar program constructions.

Programs for specification

Automated provers usually do not handle proofs by induction

let rec function fib (n: int) : int
requires { n >= 0 }
variant { n }

= if n = 0 then 0 else
if n = 1 then 1 else
fib (n-1) + fib (n-2)

lemma fib_nonneg: forall n: int. 0 <= n -> 0 <= fib n

Lemma functions — let us take advantage of the VC generator!

let rec lemma fib_nonneg (n: int) : unit
requires { 0 <= n }
ensures { 0 <= fib n }
variant { n }

= if n > 1 then begin fib_nonneg (n-2); fib_nonneg (n-1) end

Easier than running Coq and uses familiar program constructions.

Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”
• could that be a direct transparent interface instead?

Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.

Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”
• could that be a direct transparent interface instead?

Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.

Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”

• could that be a direct transparent interface instead?
Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.

Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”
• could that be a direct transparent interface instead?

Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.

Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”
• could that be a direct transparent interface instead?

Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.

