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1. What is Why3?



Why3 in a nutshell

WhyML, a programming language

• type polymorphism • variants

• limited support for higher order

• pattern matching • exceptions

• ghost code and ghost data (CAV 2014)

• mutable data with controlled aliasing

• contracts • loop and type invariants

Why3, a program verification tool

• VC generation using WP or fast WP

• 70+ VC transformations (≈ tactics)

• support for 25+ ATP and ITP systems
(Boogie 2011) (ESOP 2013) (VSTTE 2013)

WhyML, a specification language

• polymorphic & algebraic types

• limited support for higher order

• inductive predicates
(FroCos 2011) (CADE 2013)
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Why3 out of a nutshell

three different ways of using Why3

as a logical language
• a front-end to many theorem provers: Frama-C/WP

as a programming language to prove algorithms
• 134 examples in our gallery
• AVL trees, binary heaps, a simple compiler,

a tableaux-based theorem prover, etc.

as an intermediate verification language

• Java programs: Krakatoa (Marché Paulin Urbain)

• C programs: Frama-C/Jessie (Marché Moy)

• Ada programs: SPARK 2014 (AdaCore)

• probabilistic programs: EasyCrypt (Barthe et al.)

http://toccata.lri.fr/gallery/why3.en.html


Example: maximum subarray problem

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }



Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in

for i = 0 to length a - 1 do

cur += a[i];
if !cur < 0 then cur := 0;
if !cur > !max then max := !cur

done;
!max



Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in

for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }

cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then max := !cur

done;
!max



Kadane’s algorithm

(* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *)
(* ......|######## max ########|.............. *)
(* ..............................|### cur #### *)

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max



Kadane’s algorithm

use import ref.Refint
use import array.Array
use import array.ArraySum

let maximum_subarray (a: array int): int
ensures { forall l h: int. 0 <= l <= h <= length a -> sum a l h <= result }
ensures { exists l h: int. 0 <= l <= h <= length a /\ sum a l h = result }

=
let max = ref 0 in
let cur = ref 0 in
let ghost cl = ref 0 in
let ghost lo = ref 0 in
let ghost hi = ref 0 in
for i = 0 to length a - 1 do
invariant { forall l: int. 0 <= l <= i -> sum a l i <= !cur }
invariant { 0 <= !cl <= i /\ sum a !cl i = !cur }
invariant { forall l h: int. 0 <= l <= h <= i -> sum a l h <= !max }
invariant { 0 <= !lo <= !hi <= i /\ sum a !lo !hi = !max }
cur += a[i];
if !cur < 0 then begin cur := 0; cl := i+1 end;
if !cur > !max then begin max := !cur; lo := !cl; hi := i+1 end

done;
!max



Why3 proof session



Family tree

A long time ago at CEA Saclay

CAVEAT a static analyzer for C (Baudin Pacalet Raguideau Schoen Williams, DSN 2002)

• Hoare-style memory model (no aliases)
• custom theorem prover

Meanwhile at LRI / Inria Futurs

Why a tool for deductive program verification (Filliâtre, 2002)

• handles a subset of ML and C, also Java (via Krakatoa)
• Hoare-style memory model (no aliases)
• multiple third-party theorem provers: Coq, PVS, Simplify, etc.

Caduceus a multi-prover verifier for C programs (Filliâtre Marché, ICFEM 2004)

• component-as-array memory model (no pointer cast)
• Why for VC generation
• Coq and Simplify as the back-end provers
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Family tree, cont.

And then they have met

CAT ANR project, 2006–2009
• led by CEA List (B. Monate)
• academic partners: ProVal (Inria/LRI) and Lande (Inria)
• industrial partners: Airbus France, Dassault Aviation, Siemens

Frama-C a C Analysis Toolbox (2008)

• ACSL specification language (Baudin Filliâtre Marché Monate Moy Prevosto)

• inspired by Caduceus
• first-order logic with total functions and unbounded quantification

• various analyzers implemented as plug-ins
Value abstract interpretation

Jessie deductive verification via Why
WP deductive verification with dedicated VCgen (2010)

Meanwhile at LRI / Inria Saclay

Why3 full redesign of Why (Bobot Filliâtre Kanig Marché Melquiond Paskevich, 2010)
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2. A case for a rich(er) specification language



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

type seq 'a

function length (s: seq 'a) : int
function get (s: seq 'a) (i: int) : 'a
function cons (v: 'a) (s: seq 'a) : seq 'a

axiom cons_length : forall v: 'a, s: seq 'a.
length (cons v s) = 1 + length s

axiom cons_get : forall v: 'a, s: seq 'a, i: int.
0 <= i <= length s ->

get (cons x s) i = if i = 0 then x else get s (i-1)

• supported natively in Alt-Ergo, support in CVC4 may come soon
• requires non-trivial encoding for many-sorted / one-sorted provers



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

type tree 'a = Empty | Node (tree 'a) 'a (tree 'a)

function height (t: tree 'a) : int =
match t with
| Empty -> 0
| Node l _ r -> 1 + max (height l) (height r)
end

• type definitions supported in Alt-Ergo (non-recursive), Z3, CVC4
• pattern matching can be easily encoded



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

type vertex
predicate edge vertex vertex

inductive path vertex (list vertex) vertex =
| Path_empty: forall x: vertex. path x Nil x
| Path_cons: forall x y z: vertex, l: list vertex.

edge x y -> path y l z -> path x (Cons x l) z



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

• higher-order constructions

function create (len: int) (f: int -> 'a) : seq 'a

axiom create_length: forall len: int, f: int -> 'a.
0 <= len -> length (create len f) = len

axiom create_get: forall len: int, f: int -> 'a, i: int.
0 <= i < len -> get (create len f) i = f i

constant square_seq : seq int = create 42 (fun i -> i * i)



Logical foundations

First-order logic offers a good compromise

• expressive enough to describe abstract models of our code

• tractable enough to allow for proof search automation

Admits many useful extensions without sacrificing tractability

• polymorphic types

• algebraic types and pattern matching

• inductive predicates

• higher-order constructions

All these extensions are supported in ACSL and WhyML
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Modularity considered useful

WhyML declarations are organized in modules

a module M1 can be

• used (use) in a module M2

• cloned (clone) in a module M2

cloning can instantiate

• an abstract type with a defined type

• an uninterpreted function with a defined function

one missing piece to come soon to Why3:

• instantiate a used module with another module

module

end

module

end

module

end



Module instantiation

module SortedList
use import List

type t
predicate le t t
clone relations.PartialOrder with type t = t, predicate rel = le

inductive sorted (l: list t) =
| Sorted_Nil: sorted Nil
| Sorted_One: forall x: t. sorted (Cons x Nil)
| Sorted_Two: forall x y: t, l: list t.

le x y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))
end

module SortedListInt
clone export SortedList with type t = int, predicate le = (<=)

end

• a functor-style alternative to polymorphism, often more convenient

• used to describe algebraic structures, parametrized theories, etc.

• a possible addition to ACSL specification modules?



Do you trust your axioms?

You should not.

Why3 library, seq.Seq module, 21.03.15 — 12.04.15

axiom create_length: forall len: int, f: int -> 'a.
length (create len f) = len

Solution: exhibit a model of your axiomatics. In Coq. Or Isabelle, or PVS.

Caveat: the type system of Coq is different

• we must ensure that every type we consider
• is inhabited (otherwise ∃x : τ.> may be false)
• has decidable equality

• Coq type classes come to rescue

Class WhyType T := {
why_inhabitant : T;
why_decidable_eq : forall x y : T, { x = y } + { x <> y } }.
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Coq realizations

Finite sequences in Why3

type seq 'a
function length (s: seq 'a) : int
function create (len: int) (f: int -> 'a) : seq 'a
axiom create_length: forall len: int, f: int -> 'a.
0 <= len -> length (create len f) = len

realized in Coq

Definition seq : forall (a:Type), Type.
intro a. exact (list a). Defined.

Global Instance seq_WhyType :
forall (a:Type) {a_WT:WhyType a}, WhyType (seq a). . . . Qed.

Definition length:
forall {a:Type} {a_WT:WhyType a}, (seq a) → Z. . . . Defined.

Definition create:
forall {a:Type} {a_WT:WhyType a}, Z → (Z → a) → (seq a). . . . Defined.

Lemma create_length :
forall {a:Type} {a_WT:WhyType a}, forall (len:Z) (f:(Z → a)),

(0%Z <= len)%Z → ((length (create len f)) = len). . . . Qed.



Programs as specification

A common idea with multiple facets

1. executable specifications — JML, E-ACSL, SPARK
runtime checking, test generation

2. ghost code: local variables, function parameters, datatype fields
invaluable for specification: property witnesses, data models, etc.

type t 'a = { mutable size: int; (* total number of elements *)
mutable data: array (list (key, 'a)); (* buckets *)

ghost mutable view: map key (option 'a); (* pure model *) }
invariant { 0 < length data }
invariant { forall i: int. 0 <= i < length data -> good_hash data i }
invariant { forall k: key, v: 'a. good_data k v view data }

3. pure methods — why write the same code twice?
in Why3, all logic types can be used in programs
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Programs for specification

Automated provers usually do not handle proofs by induction

let rec function fib (n: int) : int
requires { n >= 0 }
variant { n }

= if n = 0 then 0 else
if n = 1 then 1 else
fib (n-1) + fib (n-2)

lemma fib_nonneg: forall n: int. 0 <= n -> 0 <= fib n

Lemma functions — let us take advantage of the VC generator!

let rec lemma fib_nonneg (n: int) : unit
requires { 0 <= n }
ensures { 0 <= fib n }
variant { n }

= if n > 1 then begin fib_nonneg (n-2); fib_nonneg (n-1) end

Easier than running Coq and uses familiar program constructions.
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Conclusion

• A rich specification language saves a lot of time for users
• ACSL and WhyML agree

• Some features of ACSL are not yet fully implemented in Frama-C
• Hope to see them sooner rather than later!

• (Un)surprisingly, ACSL and WhyML have a lot in common
• polymorphism, pattern matching, modules, ghost code, etc.
• Frama-C/WP can refer to existing WhyML libraries using “drivers”
• could that be a direct transparent interface instead?

Why3 plugin for Frama-C?
ACSL parser for Why3?
Let’s discuss it.
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