
Evolving Frama-C Value Analysis

Frama-C Day 2016 — Boris Yakobowski, CEA Tech List

Evolving Frama-C Value Analysis

Frama-C Value Analysis:
a Brief Recap

Frama-C Value Analysis: a Brief Recap

The Value Analysis plugin

Abstract interpreter for C
Initially focused on embedded programs
Analyses of more generic code in the last years

Support for most of the gory details of C (+ some extensions)

bitfields, packing, type punning, FAM, etc

Currently not handled:
restrictions on dynamic allocation (alloca)
recursive functions (specification must be supplied and is used instead)
parts of the C standard library lack ACSL specifications

Frama-C Day 2016 — BY — p. 3

Frama-C Value Analysis: a Brief Recap

Current implementation

Abstractions:
Integers (reduced product of: intervals, congruence, discrete sets);
Precise representation of pointers;
Powerful memory domain (handles arrays, structs and unions);
Initialization/danglingness information.

Disjunctive propagation of states (-slevel option)
after conditionals
for different loop iterations of a loop

Datastructures highly optimized (hash-consing...) + cache

Excellent results on embedded code

Main limitation: the memory abstraction is non-relational
and hard-wired

Frama-C Day 2016 — BY — p. 4

Novelties in Frama-C
Aluminium and Silicium

for (i=7; i<50; i+=2) {
t[i] = v ? 0 : i;

}

-val-slevel-merge-after-loop main
-slevel-function main:84

void f() {
int t[90];
for (int i=0; i<=90; i++)

t[i] = i;
}

[nonterm] warning: unreachable
return statement for function f

Novelties in Frama-C Aluminium and Silicium

New auxiliary plugins (1/2)

Tuning-up slevel

loop plugin

per-function suggestions for the
amount of slevel to use

Flagging invalid instructions

nonterm plugin
detects instructions that never return

either non-terminating
functions, or guaranteed alarms

Both plugins are available in Aluminium

Frama-C Day 2016 — BY — p. 6

Novelties in Frama-C Aluminium and Silicium

New auxiliary plugins (2/2)

Handling variadic functions: variadic plugin

handles known (sprintf, scanf. . .) or unknown functions
specialized, non-variadic, prototype for each call-site
plus pre- and post-conditions

Initial code: int ∗p; scanf(”%d”, p);
Result: (behavior corresponding to a successful scan):
/∗@ requires valid read string (format);

requires \valid (param0);
ensures \ initialized (param0); [...]
assigns \ result \from ∗ fc stdin , ∗(format+(0 ..));
assigns ∗param0 \from ∗ fc stdin , ∗(format+(0 ..)); ∗/

int scanf 0(char const ∗format, int ∗param0);

Available in Aluminium. Activated by default in Silicium?

Frama-C Day 2016 — BY — p. 7

Novelties in Frama-C Aluminium and Silicium

Dynamic Allocation

Sound & precise modelization

builtins for malloc, realloc and free
one new variable by allocation site

allocation site = entire callstack
“normal” variable on first allocation
decays to summarized variable when needed

while (i <= 10) {
int ∗p = malloc(sizeof(int));
∗p = i; // same variable on each iteration, strong updates
free (p);
}

Will be available in Silicium

Frama-C Day 2016 — BY — p. 8

Novelties in Frama-C Aluminium and Silicium

Dynamic Allocation

Sound & precise modelization

builtins for malloc, realloc and free
one new variable by allocation site

allocation site = entire callstack
“normal” variable on first allocation
decays to summarized variable when needed

while (i <= 10) {
int ∗p = malloc(sizeof(int));
∗p = i; // variable may correspond to multiple allocations, weak updates
if (rand ()) free (p);
}

Will be available in Silicium

Frama-C Day 2016 — BY — p. 8

Values ...

Memory Eqs Oct ...

Exprs

Stmts

Slevel

Novelties in Frama-C Aluminium and Silicium

EVA: Evolved Value Analysis

Major rewrite of large parts of Value

By default: same abstractions
(memory and values)
Same iteration strategy
Everything else has changed

new analysis domains
better backward propagation
ability to add new domains!

Active by default in Aluminium

Frama-C Day 2016 — BY — p. 9

Novelties in Frama-C Aluminium and Silicium

Better backward propagation

Goal: learning from conditionals and alarms

e.g. if (x+3 <= c+y) or assert x∗4 <= 13
Before: selected syntactic patterns
Now: systematic approach through atomic transformers

one transformer per operator
old patterns backported
new transformers (integer and floating-point +/−, |, &)

Available in Aluminium; more transformers in Silicium

Frama-C Day 2016 — BY — p. 10

Novelties in Frama-C Aluminium and Silicium

Symbolic equalities and locations

Symbolic equalities
Store equalities between arbitrary expressions

Already used in Astrée and Verasco
Undo temporaries introduced by parsing
if (x >= 0) tmp = x; else tmp = −x;
if (tmp < 0.01) /∗ must use eq. on x and tmp ∗/ { y = 1/x; }

Symbolic locations
Store abstract value for e.g. t[i] in if (t [i]−3 >= k).
Complimentary to symbolic equations.
/∗ ‘‘Grail’’ when

i is imprecise ∗/
if (t[i] >= 2) {

f(&t[i]);
}

void f(int ∗p) {
int x = ∗p+1;
/∗@ assert x >= 3; ∗/
}

Symbolic equalities in Aluminium, locations in Silicium
Frama-C Day 2016 — BY — p. 11

Novelties in Frama-C Aluminium and Silicium

Gauge domain [Venet 2012]

Affine relation with the loop counter(s)

Phantom variable λ corresponding to the current iteration
All variables are in relation only with λ

good scalability

Good domain for the extremely frequent idiom
int ∗p = &t;
for (int i=0; i<N; i++) {
∗p++ = k;
}

Will be available in Silicium

Frama-C Day 2016 — BY — p. 12

Novelties in Frama-C Aluminium and Silicium

Bitwise values

Represent constraints on some bits of a value
if (x & 0xf0) { /* x? */ ... }
numeric domains not sufficient in general

Memory domain can represent sequences of values
e.g. {&x}bits 16−31 ; [10..1024]3%4bits 8−15; 08 bits
write abstract bitwise transformers on such values

BDDs: more expressive – but more complex – possibility

Available in Aluminium
Next steps:

information in the least significant bits of a pointer
sign/exponent/mantissa of floating-point values

Frama-C Day 2016 — BY — p. 13

/∗@ requires 0 < len <= 1024;
requires 0 < n < 64; ∗/

void main(size t len, size t n) {
if (len >= 64 || len + n >= 64)
{

n = 64 − n;
len −= n;
}
//@ assert len <= 1023;
}

Novelties in Frama-C Aluminium and Silicium

Relational numerical domains

Binding to the Apron library

Relational numerical domains
(polyhedra, octagon, etc...)
Currently: integer variables

BTS-supplied example: ⇐
The assertion gets proven!
unprovable without WP or a
massive disjunction before

Proof-of-concept in Aluminium
Numerous improvements in Silicium:

aggregates
better handling of expressions that overflow

Frama-C Day 2016 — BY — p. 14

Next Steps

Next Steps

Consolidating it all

Behind the scenes
add sound support of option -memexec-all in new domains

required for scalability

collaborative evaluation of logical assertions
including calling functions with only a specification

even simpler APIs for new domains

User feedback
saving the inferred abstract domains on disk
displaying the new results in the GUI

Frama-C Day 2016 — BY — p. 16

Next Steps

Relational domains

New domains for pointers/dynamic allocation:
int ∗p = &x+i; p+=k;
Relations with the size of an allocated base
char ∗p = malloc(S); while(i<S) p[i]=...;

Numerical domains
Handle aggregates: arrays and structs (Silicium)
Handle float/double (Phosphorus?)
Limit the number of variables in relation: “packing”

- “Semantic” heuristics to choose the variables?
Binding to the Verified Polyhedra Library (Verimag)

Mature all currently implemented domains
Goals: scalability & expressiveness

Frama-C Day 2016 — BY — p. 17

Conclusion and
Perspectives

Conclusion and Perspectives

From Magnesium to Silicium

Major reimplementation of the legacy analyzer
Finally extensible!
Without new domains: comparable/better results
but cleaner implementation!

Stable Open API, hopefully in Frama-C Phosphorus (mid-2017)
Beta-testers welcome :-)

Many other additions

Many challenges for the next months!
mature the new domains
implement other complementary domains

Further news on the blog: http://blog.frama-c.com/

Frama-C Day 2016 — BY — p. 19

http://blog.frama-c.com/

Conclusion and Perspectives

Brought to you by

EDF/AREVA/CEA collaborative project QLCC
ANR Vecolib project
TrustInSoft/CEA joint lab
DGA Rapid Aurochs project

The Frama-C/Value team, past and present
P. Cuoq, B. Monate, B. Yakobowski, M. Lemerre, A. Maroneze, V. Perrelle,
D. Bühler, and all our colleagues of the Frama-C team

Contact us!
if you are interested in a collaboration on new analysis domains

Frama-C Day 2016 — BY — p. 20

Commissariat à l’énergie atomique et aux énergies alternatives
CEA Tech List
Centre de Saclay — 91191 Gif-sur-Yvette Cedex
www- list.cea.fr

Etablissement public à caractère industriel et commercial — RCS Paris B 775 685 019

www-list.cea.fr

