
Formal verification of controller implementation
our experience with Frama-C

Pierre-Loïc Garoche, with the contributions from X. Thirioux (IRIT), P. Roux (Onera), T. Kahsai

(NASA/CMU), E. Feron (Georgia Tech), G. Davy (Onera), H. Herencia-Zapana (ex-NIA, now

GE), R. Jobredeaux (ex-GT), T. Wang (ex-GT, now UTRC) June 20th, 2016 – Frama-C days

CONTEXT: CRITICAL EMBEDDED CONTROLLERS

Core elements of runtime systems
Designed with dataflow models
∗ validation through simulation/test
∗ code generation

Infinite behavior: endless loop

Designed by local composition:
a linear controller
combined with safety constructs

Most properties are analyzed locally.

u
Controller

in0_d in1_d
Triplex

in0

Triplex
in1

System

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

DATAFLOW MODELS: E.G. LUSTRE NODES

Map a set of (typed) input flows to output flows.
Not purely functional: static memory through nested pre

node counter(reset: bool) returns (active: bool);
var a, b: bool;
let
a = false -> (not reset and not (pre b));
b = false -> (not reset and pre a);
active = a and b;

tel

Node state characterized by its memories: pre a and pre b
Similar construct in Matlab Simulink: Unit delay

TWO EXPERIENCES WITH FRAMA-C
GOAL: VALIDATE FUNCTIONAL PROPERTIES AT CODE LEVEL

Two settings:
1. linear controller: numerical core
∗ boundedness (no overflow)
∗ stability, robustness (control level properties)

2. safety constructs: voters, alarms, counters
∗ mainly integers and booleans, few serious numerical computation
∗ interested in functional soundness

Global approach

proof at model level
automatically validation at code level
generating ACSL during autocoding
∗ for contracts: compile specification
∗ for proof artifacts: compile proofs

WP/PVS/Coq to discharge the proofs

MODULAR COMPILATION OF MODELS1

Node state (memories) defined by a struct

struct counter_mem {
struct counter_reg { _Bool __counter_1; // pre a

_Bool __counter_2; // pre b
} _reg;

};

One step execution by a step function

void counter_step
(_Bool reset, // input
_Bool (*active), // output
struct counter_mem *self);// memory (side effect!)

Reset function to initialize the struct

void counter_reset (struct counter_mem *self);

Open-source implementation for Lustre: LUSTRE-C
1D. Biernacki et al. “Clock-directed modular code generation for synchronous

data-flow languages”. In: LCTES. 2008, pp. 121–130.

EXPERIENCE 1: LINEAR CONTROLLERS

Main system

float in, *out;
f_mem *mem;
f_reset(mem):
while (true) {
in = receive_input();
f_step(in, out, mem);
send_output(*out);

}

Boundedness: loop invariant eg. I(in, *out, mem) or I(mem)
As function contracts

/*@ ensures I(mem); */
void f_reset (...);

/*@ requires I(mem);
@ ensures I(mem); */

void f_step (...);

NEED FOR SUPER-LINEAR INVARIANTS

Let A be a square matrix. Define the linear system:

xk+1 = Axk, k ≥ 0, a given x0

A matrix P satisfies Lyapunov conditions for the system iff:

P− Id � 0 , P− AᵀPA � 0

Id is the identity matrix;
M � 0 means M = Mᵀ and ∀ x 6= 0, xᵀMx > 0;
M � 0 means M = Mᵀ and ∀ x, xᵀMx ≥ 0.

P − Id � 0 implies bounded-
ness:

||x||22 ≤ β

xᵀPx ≤ α

P − AᵀPA � 0 guarantees the
strict decrease:

xᵀPx ≤ α

xᵀAᵀPAx ≤ α

Need for quadratic invariant (at least)!

NEED FOR SUPER-LINEAR INVARIANTS

Let A be a square matrix. Define the linear system:

xk+1 = Axk, k ≥ 0, a given x0

A matrix P satisfies Lyapunov conditions for the system iff:

P− Id � 0 , P− AᵀPA � 0

Id is the identity matrix;
M � 0 means M = Mᵀ and ∀ x 6= 0, xᵀMx > 0;
M � 0 means M = Mᵀ and ∀ x, xᵀMx ≥ 0.

P − Id � 0 implies bounded-
ness:

||x||22 ≤ β

xᵀPx ≤ α

P − AᵀPA � 0 guarantees the
strict decrease:

xᵀPx ≤ α

xᵀAᵀPAx ≤ α

Need for quadratic invariant (at least)!

STEP 1: TEACH LINEAR ALGEBRA TO FRAMA-C

/*@ axiomatic matrix {
type LMat;
...
logic LMat transpose(LMat x0);
logic real dot(LMat x0, LMat x1);
logic LMat diag(LMat x0);
logic LMat inv(LMat x0);
...
logic real dot_inner(LMat x0, LMat x1, integer x2) =
(((x2==(-1)))?((0.0)):(((mat_get(x0, x2, (0))*mat_get(x1,

x2, (0)))+dot_inner(x0, x1, (x2-(1))))));
axiom dot_def:
(\forall LMat A; (
(\forall LMat B; (((getM(A)==getN(A))==>(dot(A, B)

==dot_inner(A, B, (getM(A)-(1)))))
))

));
logic in_ellipsoid LMat (LMat P, LMat x);
axiom in_ellipsoid_def: ...

STEP 2: GENERATION OF FUNCTION CONTRACT / LOOP
INVARIANT

Using convex optimization tools, we synthesize the discrete

Lyapunov function at model level: P =

(
a b
c d

)
And express it at code level:

#define P MatCst_2_2((a), (b), (c), (d))

struct mem { double x1, x2; /* pre x1, pre x2 */ };

/*@ requires in_ellipsoid(P, VectVar_2(mem->x1, mem->x2));
@ ensures in_ellipsoid(P, VectVar_2(mem->x1, mem->x2)); */

void linctl (in, *out, mem);

SMT solvers behind Why3 (z3, yices, alt-ergo, cvc4) do not succeed.
Our solution:

generate simple intermediate proof objectives
∗ thanks to generation of local invariants

prove them with a proof assistant (PVS)

STEP 3: LOCAL REASONING

Ellipsoids propagation in linear code: two mains theorems
1. linear transformation of an ellipsoid

We define ξP as {x | xᵀPx ≤ 1}

x ∈ ξP ∧ y = Ax =⇒ y ∈ ξAPAᵀ

2. combination of two ellipsoids (S-procedure)

∃τ1, τ2 ∈ R+,

[
−P 0
0 1

]
− τ1

[
−P1 0

0 1

]
− τ2

[
−P2 0

0 1

]
� 0

is a sufficient condition for(
xTP1 x ≤ 1 ∧ xTP2 x ≤ 1

)
⇒ xTP x ≤ 1

Used to generate local assert, propagating loop invariant:
/*@ requires in_ellipsoid(P,VectVar_2(mem->x1, mem->x2));

@ ensures in_ellipsoid(Q,VectVat_3(mem->x1, mem->x2,v));*/
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));

{
// assignment of v
}

STEP 4: TEACH LINEAR ALGEBRA TO PVS

Development of an ellipsoid library in PVS
basic datatypes: vector, matrices, . . .
specific predicates: in_ellipsoid
two main theorems

ellipsoid_general: THEOREM
forall (n:posnat,m:posnat, Q:SquareMat(n),

M: Mat(m,n), x:Vector[n], y:Vector[m]):
in_ellipsoid_Q?(n,Q,x) AND y = M*x
IMPLIES
in_ellipsoid_Q?(m,M*Q*transpose(M),y)

ellipsoid_combination: THEOREM ..

Local contract are proved thanks to
computation of proof objective by Frama-C
appropriate choice of proof strategies generated when
propagating ellipsoids.

AUTOMATIC FRAMEWORK

Compute the Lyapunov function: (semi-)automatic
In the code generator
∗ embedded C code
∗ function contracts with loop invariant
∗ statement-local annotations with

I propagated ellipsoid
I proof strategy annotation

In Frama-C
∗ a plugin that

I declare the grammar extension
I calls WP/Why3/PVS with the appropriate strategy

Implemented in Geneauto+ by Tim Wang and Romain Jobredeaux.

LINEAR CONTROLLER ANALYSIS – SUMMARY

1. computation of a Lyapunov function, a quadratic invariant
2. compilation of the invariant along the code as ACSL contracts
3. inductiveness proof on the code using Frama-C WP/Why /PVS

We also check externally (outside Frama-C) that the floating point
errors generated in one loop iteration do not break inductiveness.

AtPA− P + |noise| � 0

Current extensions include
analysis at model and code level of closed loop properties
∗ express the plant semantics in ACSL ghost code
∗ robustness through vector margins
∗ performance properties, eg. overshot, related to output H∞ norm

more sophisticated systems and properties thanks to the
integration of SOS programming in Alt-Ergo.
⇒ do not require PVS and the statement level annotations.

EXPERIENCE 2: SAFETY CONSTRUCTS

Node semantics expressed by another node: a synchronous observer

node counter_spec(reset, active: bool)
returns (safe: bool);

var cpt: int;
let
cpt = 0 -> if (pre cpt = 3) or reset then 0 else pre cpt+1;
safe = active = (cpt = 2);

tel

Annotate the node with observers:

--@ ensures reset => not active;
--@ ensures counter_spec(reset, active);
node counter(reset: bool) returns (active: bool);

SMT-based model-checking proves these properties invariant:

node and spec expressed as SMT predicates: I(s), T(s, s′) and P(s)
Induction proof: I(s) |= P(s) and P(s) ∧ T(s, s′) |= P(s′)

ISSUE #1: EXPRESS SEMANTICS AT CODE LEVEL
SYNCHRONOUS OBSERVERS AS HOARE TRIPLES

Simple observers (no memory) directly expressed as ensures
statements

//@ ensures reset => not *active;
void counter_step (_Bool reset,

_Bool *active,
counter_mem *self) {

...
}

More complex observers may have their own memories: Stateful
observers.
Stateful observers are expressed as code level through:
1. observer memory, attached to the node memory definition
2. computation of the observer output using node signals and

observer memory
3. side-effect update of the observer memory, performed at each

node step execution

STATEFUL OBERVERS: EXPRESSING MEMORY

For the following contracts ,
--@ ensures counter_spec(reset, active);
--@ ensures reset or pre(reset) => not active
node counter(reset: bool) returns (active: bool);

need of additional memories:
pre cpt for counter_spec and
pre reset for reset or pre(reset) => not active

Additional ghost fields:
struct counter_mem {
struct counter_reg {
_Bool __counter_1;
_Bool __counter_2;
/*@ ghost int cpt; int cpt_s; // pre cpt

_Bool init1; _Bool init1_s; // initial state of cpt
_Bool reset; _Bool reset_s; // pre reset
_Bool init2; _Bool init2_s; // initial state of reset

*/
} _reg;

};

STATEFUL OBERVERS AS ACSL PREDICATES

ACSL expression of the Lustre node counter_spec semantics.

/*@ predicate counter_spec
(int reset, int active, struct counter_mem *self)=
\let cond = ((self->_reg.cpt_s == 3) || reset);
\let cpt = (self->_reg.init1_s?(0):
((cond?(0):((self->_reg.cpt_s + 1)))));

(active == (cpt == 2)); */

ACSL expression of the second ensures.

/*@ predicate prop
(int reset, int active, struct counter_mem *self)=
(self->_reg.init2_s?(1):
(((reset || self->_reg.reset_s) ==> (!active)))); */

Only reads memory. No update yet.

STATEFUL OBERVERS SEMANTICS: UPDATE OF GHOST FIELDS
GHOST CODE TO UPDATE GHOST FIELDS

void counter_step (_Bool reset, _Bool (*active),
struct counter_mem *self) {

counter_reg _pre = self->_reg;
_Bool a = _pre.__counter_2;
_Bool b = !_pre.__counter_1;

*active = (a && b);
self->_reg.__counter_2 = a;
self->_reg.__counter_1 = b;
/*@ ghost _Bool cond; int cpt;
cond = ((self->_reg.cpt == 3) || reset);
if (self->_reg.init1 || cond) { cpt = 0; } else {

cpt = (self->_reg.cpt + 1);
}
self->_reg.init1_s = self->_reg.init1;
self->_reg.init1 = 0;
...
self->_reg.reset_s = self->_reg.reset;
self->_reg.reset = reset;

*/
return;
}

STATEFUL OBERVERS: SUMMARY

New memory fields:
struct node_mem { struct node_reg {

... existing fields ...
/*@ ghost ghost_fields */

} _reg;
};

Predicates to denote specification
/*@ predicate node_spec(input, output, ext_memory) = ... */

Function body: side effects in observer memories
void node_step (input, *output , *ext_memory) {
... existing code ...
/*@ ghost ghost_fields update */

return; }

Function contract
/*@ ensures node_spec(input, *output, *ext_memory); */
void node_step (input, *output , *ext_memory) { ... }

ISSUE #2: VERIFICATION WITH FRAMA-C
ACSL used to verify the code with respect to specification

Runtime evaluation: dynamic analysis

C code instrumented to evaluate the annotations at runtime.
When applied to a test bench it evaluates that all tests satisfy the
property.
=⇒ E-ACSL plugin of Frama-Ca

aJulien Signoles. E-ACSL: Executable ANSI/ISO C Specification Language.

Formal verification using weakest precondition (WP analysis)

Proofs performed at model levels using model-checking can be
replayed at code/ACSL level.
k-inductiona proofs in Lustre =⇒ expression as WP objectives

aT. Kahsai and C. Tinelli. “PKIND: A parallel k-induction based model
checker”. In: PDMC. vol. 72. EPTCS. 2011, pp. 55–62.

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE

Frama-C/WP is not able to discharge the PO:
1. P is not inductive over T

(eg. k-induction, or need of additional invariants)
2. function N_step was optimized or too complex

Solution #2: we generate ACSL encoding of function semantics
predicates Init for counter_init and

Step for counter_step
We define the two additional ensure statements:

(i) //@ensures Init(mem)
void N_init (mem*)

(ii) /*@ensures Step(s1,s2, in ,out)
ensures node_spec(input, *output, *ext_memory); */

void N_step (mem1, mem2, in , out)

Two main proof objectives:
1. Prove node_spec wrt Init and Spec

Was done with similar predicates at model level with the same
SMT solvers

2. Prove that N_step refines Spec

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE

Frama-C/WP is not able to discharge the PO:
1. P is not inductive over T

(eg. k-induction, or need of additional invariants)
2. function N_step was optimized or too complex
Solution #2: we generate ACSL encoding of function semantics

predicates Init for counter_init and
Step for counter_step

We define the two additional ensure statements:
(i) //@ensures Init(mem)

void N_init (mem*)

(ii) /*@ensures Step(s1,s2, in ,out)
ensures node_spec(input, *output, *ext_memory); */

void N_step (mem1, mem2, in , out)

Two main proof objectives:
1. Prove node_spec wrt Init and Spec

Was done with similar predicates at model level with the same
SMT solvers

2. Prove that N_step refines Spec

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE

Frama-C/WP is not able to discharge the PO:
1. P is not inductive over T

(eg. k-induction, or need of additional invariants)
2. function N_step was optimized or too complex
Solution #2: we generate ACSL encoding of function semantics

predicates Init for counter_init and
Step for counter_step

We define the two additional ensure statements:
(i) //@ensures Init(mem)

void N_init (mem*)

(ii) /*@ensures Step(s1,s2, in ,out)
ensures node_spec(input, *output, *ext_memory); */

void N_step (mem1, mem2, in , out)

Two main proof objectives:
1. Prove node_spec wrt Init and Spec

Was done with similar predicates at model level with the same
SMT solvers

2. Prove that N_step refines Spec

OPTIMIZED CODE AND REFINEMENT PROOF

In case of optimized code, difficulties to prove

//@ensures Step(s1,s2, in ,out)
void N_step (mem1, mem2, in , out)

Eg. limit the number of stack allocation through variable reuse
⇒makes the WP relationship less tractable.

variable liveness analysis
∗ minimize the memory footprint wrt a given instruction scheduling
∗ maintain shared sub-expressions

Additional statement local asserts are introduced to keep track of
relationships

(automatic) generation of supporting ACSL annotations
∗ introduce simpler pointer-less struct
∗ maintain relationship between live variables
∗ ease the automatic proof of (i) and (ii)

SAFETY CONSTRUCTS ANALYSIS – SUMMARY

1. compilation of specifications (synchronous observers) as
∗ ACSL predicates
∗ ghost fields (stateful observers)
∗ ghost code (side effects on observers memory)

2. compilation of models as ACSL predicates
3. additional statement level annotations for optimized code
4. proof with Frama-C/WP of
∗ (k-)inductiveness on model and specification ACSL predicates
∗ refinement between code and ACSL predicates

Current extensions include
complete implementation of the approach
extension to stateflow (hierarchical states automata)
adapt the proof strategy at code level to the ones performed at
model level
∗ PDR proof as induction proof
∗ k-induction
∗ export of additional invariants

VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

Simulink

Lustre

C code

LUSTRE-C

CocoSim

{
Zustre/PKind/Riny/SMT-AI
Test generation


High level properties
(stability/robustness)
Synchronous observers
Counter-example traces

{
WP
E-ACSL

Large use of Frama-C at C level:
generation of ACSL (predicates, axioms)
development of plugins
grammar extensions
proof strategies for PVS

Thank you.
Any question?

VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

Simulink

Lustre

C code

LUSTRE-C

CocoSim

{
Zustre/PKind/Riny/SMT-AI
Test generation


High level properties
(stability/robustness)
Synchronous observers
Counter-example traces

{
WP
E-ACSL

Large use of Frama-C at C level:
generation of ACSL (predicates, axioms)
development of plugins
grammar extensions
proof strategies for PVS

Thank you.
Any question?

OPTIMIZED CODE 1/2

Pointer-less structs

/* Struct definitions */
struct f_mem {struct f_reg {int __f_2; } _reg; struct

_arrow_mem *ni_2; };
//@ ghost struct f_mem_pack {struct f_reg _reg; struct

_arrow_mem_pack ni_2;
};

OPTIMIZED CODE 2/2

Keeping track of live variables

//@ assert \forall struct f_mem_pack mem1; \forall struct
f_mem_pack mem2; \at(f_pack2(mem1, self), Pre) ==> f_pack0
(mem2, self) ==> trans_fA(x, mem1, mem2, *y);

*y = (x + 1);
//@ assert \forall struct f_mem_pack mem1; \forall struct

f_mem_pack mem2; \at(f_pack2(mem1, self), Pre) ==> f_pack0
(mem2, self) ==> trans_fB(x, mem1, mem2, *y);

with

/*@ predicate trans_fy(int x_in, struct f_mem_pack mem_in,
struct f_mem_pack mem_out, int y_out) = (y_out == x_in +
1);*/

/*@ predicate trans_fB(int x_in, struct f_mem_pack mem_in,
struct f_mem_pack mem_out, int y_out) = trans_fA(x_in,
mem_in, mem_out, y_out) && (clock_fy(x_in, mem_in,
mem_out) ==> trans_fy(x_in, mem_in, mem_out, y_out));

*/

	Appendix

