Formal verification of controller implementation
our experience with Frama-C

Pierre-Loic Garoche, with the contributions from X. Thirioux (IRIT), P. Roux (Onera), T. Kahsai
(NASA/CMU), E. Feron (Georgia Tech), G. Davy (Onera), H. Herencia-Zapana (ex-NIA, now
GE), R. Jobredeaux (ex-GT), T. Wang (ex-GT, now UTRC) June 20th, 2016 — Frama-C days

CONTEXT: CRITICAL EMBEDDED CONTROLLERS

. inga lSat 5 .
» Core elements of runtime systems : St Triplex ino_d im_d
. . ingb : ||
» Designed with dataflow models 5 I i
. . . . moc at i

* validation through simulation/test ¥ % Controller |-
. ina o im |
+ code generation ‘ — :
5 s : inb —{Sat}—{ !
« Infinite behavior: endless loop n in :
injc Sat !

Designed by local composition: S < ,,,,,,,,
e a linear controller

» combined with safety constructs

5 L3

O R L S GO
L o pE

s
r--re-1 r

Most properties are analyzed locally.

DATAFLOW MODELS: E.G. LUSTRE NODES

» Map a set of (typed) input flows to output flows.
» Not purely functional: static memory through nested pre

node counter (reset: bool) returns (active: bool);
var a, b: bool;

let
a = false -> (not reset and not (pre b));
b = false -> (not reset and pre a);
active = a and b;

tel

» Node state characterized by its memories: pre aand pre b
e Similar construct in Matlab Simulink: Unit delay

1
z
un

TWO EXPERIENCES WITH FRAMA-C
GOAL: VALIDATE FUNCTIONAL PROPERTIES AT CODE LEVEL

Two settings:
1. linear controller: numerical core

* boundedness (no overflow)
* stability, robustness (control level properties)

2. safety constructs: voters, alarms, counters

* mainly integers and booleans, few serious numerical computation
* interested in functional soundness

Global approach

s proof at model level
« automatically validation at code level

e generating ACSL during autocoding

* for contracts: compile specification
* for proof artifacts: compile proofs

s WP/PVS/Coq to discharge the proofs

MODULAR COMPILATION OF MODELS!?

s Node state (memories) defined by a struct

struct counter_mem {

struct counter_reg { _Bool __ counter_1; // pre a
_Bool __ _counter_2; // pre b
} _reg;

bi

s One step execution by a step function

void counter_step
(_Bool reset, // input
_Bool (xactive), // output
struct counter_mem *self);// memory (side effect!)

s Reset function to initialize the struct

void counter_reset (struct counter_mem xself);

Open-source implementation for Lustre: LUSTRE-C

'D. Biernacki et al. “Clock-directed modular code generation for synchronous
data-flow languages”. In: LCTES. 2008, pp. 121-130.

EXPERIENCE 1: LINEAR CONTROLLERS

Main system

float in, =*out;

f_mem xmem;

f_reset (mem) :

while (true) {
in = receive_input () ;
f_step(in, out, mem);
send_output (xout) ;

}

e Boundedness: loop invariant eg. I(in, *out, mem) or I(mem)
s As function contracts

/*@ ensures I (mem); x/
void f_reset (...);

/*@ requires I (mem);
@ ensures I (mem); =*/
void f_step (...);

NEED FOR SUPER-LINEAR INVARIANTS
Let A be a square matrix. Define the linear system:

¥t = Axk k>0, a given x

0

A matrix P satisfies Lyapunov conditions for the system iff:

P-1d>~0,

s Id is the identity matrix;

P—ATPA >0

e« M > 0means M = MT and Vx # 0, xTMx > 0;
e M>0means M = MT and Vx, xTMx > 0.

P —Id = 0 implies bounded-
ness:

]2 < 8

P — ATPA = 0 guarantees the
strict decrease:
xTPx < «

NEED FOR SUPER-LINEAR INVARIANTS
Let A be a square matrix. Define the linear system:

¥t = Axk k>0, a given x

0

A matrix P satisfies Lyapunov conditions for the system iff:

P-1d>~0,

s Id is the identity matrix;

P—ATPA >0

e« M > 0means M = MT and Vx # 0, xTMx > 0;
e M>0means M = MT and Vx, xTMx > 0.

P —Id = 0 implies bounded-
ness:

]2 < 8

P — ATPA = 0 guarantees the
strict decrease:
xTPx < «

Need for quadratic invariant (at least)!

STEP 1: TEACH LINEAR ALGEBRA TO FRAMA-C

/*Q@ axiomatic matrix {
type LMat;

logic LMat transpose (LMat x0);
logic real dot (LMat x0, LMat x1);
logic LMat diag(LMat x0);

logic LMat inv (LMat x0);

logic real dot_inner (LMat x0, LMat x1, integer x2) =
(((x2==(-1)))2((0.0)) : (((mat_get (x0, x2, (0))*mat_get (x1,
x2, (0)))+dot_inner (x0, x1, (x2-(1))))));
axiom dot_def:
(\forall LMat A; (
(\forall LMat B; (((getM(A)==getN(A))==>(dot (A, B)
==dot_inner (A, B, (getM(A)-(1)))))
))
)) i
logic in_ellipsoid LMat (LMat P, LMat x);
axiom in_ellipsoid_def:

STEP 2: GENERATION OF FUNCTION CONTRACT / LOOP
INVARIANT

Using convex optimization tools, we synthesize the discrete

Lyapunov function at model level: P = (i Z)

And express it at code level:

#define P MatCst_2_2((a), (b), (c), (d))
struct mem { double x1, x2; /+ pre x1, pre x2 %/ };

/*@ requires in_ellipsoid (P, VectVar_2 (mem->x1, mem—->x2));
@ ensures in_ellipsoid(P, VectVar_2 (mem->x1, mem->x2)); */
void linctl (in, =*out, mem);
SMT solvers behind Why3 (z3, yices, alt-ergo, cvc4) do not succeed.
Our solution:
» generate simple intermediate proof objectives
« thanks to generation of local invariants

» prove them with a proof assistant (PVS)

STEP 3: LOCAL REASONING

Ellipsoids propagation in linear code: two mains theorems
1. linear transformation of an ellipsoid
We define &p as {x | xTPx < 1}

x€épNy=Ax = y € Eapar

2. combination of two ellipsoids (S-procedure)

dr,m €R+, |:—P O] — 93] |:_P1 0:| — T I:_PZ O:| =0

0 1 0 1 0 1

is a sufficient condition for
<xTP1x <1 /\xTPQx < 1) = xTPx <1

Used to generate local assert, propagating loop invariant:

/*Q@ requires in_ellipsoid(P,VectVar_2 (mem->x1, mem->x2));
@ ensures in_ellipsoid(Q,VectVat_3 (mem->x1, mem->x2,v));*/
@ (use_strategy (AffineEllipsoid));

{

// assignment of v

}

STEP 4: TEACH LINEAR ALGEBRA TO PVS

Development of an ellipsoid library in PVS
s basic datatypes: vector, matrices, ...
e specific predicates: in_ellipsoid
e two main theorems

ellipsoid_general: THEOREM
forall (n:posnat,m:posnat, Q:SquareMat (n),
M: Mat (m,n), x:Vector[n], y:Vector[m]):
in_ellipsoid_Q7?(n,Q,x) AND y = Mxx
IMPLIES
in_ellipsoid_Q7? (m,MxQ*transpose (M), V)

ellipsoid_combination: THEOREM ..

Local contract are proved thanks to
s computation of proof objective by Frama-C

» appropriate choice of proof strategies generated when
propagating ellipsoids.

AUTOMATIC FRAMEWORK

» Compute the Lyapunov function: (semi-)automatic
e In the code generator

* embedded C code
« function contracts with loop invariant
* statement-local annotations with

» propagated ellipsoid
> proof strategy annotation
e In Frama-C
* a plugin that
> declare the grammar extension
> calls WP/Why3/PVS with the appropriate strategy

Implemented in Geneauto+ by Tim Wang and Romain Jobredeaux.

LINEAR CONTROLLER ANALYSIS — SUMMARY

1. computation of a Lyapunov function, a quadratic invariant
2. compilation of the invariant along the code as ACSL contracts
3. inductiveness proof on the code using Frama-C WP/Why /PVS

We also check externally (outside Frama-C) that the floating point
errors generated in one loop iteration do not break inductiveness.

A'PA — P + |noise| < 0

Current extensions include
» analysis at model and code level of closed loop properties
* express the plant semantics in ACSL ghost code
* robustness through vector margins
* performance properties, eg. overshot, related to output H. norm
s more sophisticated systems and properties thanks to the
integration of SOS programming in Alt-Ergo.
= do not require PVS and the statement level annotations.

EXPERIENCE 2: SAFETY CONSTRUCTS

Node semantics expressed by another node: a synchronous observer

node counter_spec(reset, active: bool)
returns (safe: bool);
var cpt: int;

let
cpt = 0 -> if (pre cpt = 3) or reset then 0 else pre cpt+l;
safe = active = (cpt = 2);

tel

Annotate the node with observers:
-—@ ensures reset => not active;
—-—@ ensures counter_spec (reset, active);
node counter (reset: bool) returns (active: bool);

SMT-based model-checking proves these properties invariant:

» node and spec expressed as SMT predicates: I(s), T(s,s’) and P(s)
e Induction proof: I(s) = P(s) and P(s) A T(s,s’) = P(s')

ISSUE #1: EXPRESS SEMANTICS AT CODE LEVEL
SYNCHRONOUS OBSERVERS AS HOARE TRIPLES
Simple observers (no memory) directly expressed as ensures
statements
//Q@ ensures reset => not =*active;
void counter_step (_Bool reset,

_Bool =*active,
counter_mem *self) {

}

More complex observers may have their own memories: Stateful

observers.

Stateful observers are expressed as code level through:

1. observer memory, attached to the node memory definition

2. computation of the observer output using node signals and
observer memory

3. side-effect update of the observer memory, performed at each
node step execution

STATEFUL OBERVERS: EXPRESSING MEMORY
For the following contracts ,

—-—@ ensures counter_spec(reset, active);
——@ ensures reset or pre(reset) => not active
node counter (reset: bool) returns (active: bool);

need of additional memories:
s pre cpt for counter_spec and

® pre reset for reset or pre (reset) => not active

Additional ghost fields:

struct counter_mem {
struct counter_reg {
_Bool __ counter_1;
_Bool _ counter_2;
/*@ ghost int cpt; int cpt_s; // pre cpt
_Bool initl; _Bool initl_s; // initial state of cpt
_Bool reset; _Bool reset_s; // pre reset
_Bool init2; _Bool init2_s; // initial state of reset
*/
} _reg;

bi

STATEFUL OBERVERS AS ACSL PREDICATES

ACSL expression of the Lustre node counter_spec semantics.

/+Q@ predicate counter_spec
(int reset, int active, struct counter_mem xself)=

\let cond = ((self->_reg.cpt_s == 3) || reset);
\let cpt = (self->_reg.initl_s?(0):

((cond?(0) : ((self->_reg.cpt_s + 1)))));
(active == (cpt == 2)); =*/

ACSL expression of the second ensures.

/*@ predicate prop
(int reset, int active, struct counter_mem xself)=
(self->_reg.init2_s? (1) :
(((reset || self->_reg.reset_s) ==> (lactive)))); =/

Only reads memory. No update yet.

STATEFUL OBERVERS SEMANTICS: UPDATE OF GHOST FIELDS
GHOST CODE TO UPDATE GHOST FIELDS

void counter_step (_Bool reset, _Bool (xactive),
struct counter_mem *xself) {

counter_reg _pre = self->_reg;

_Bool a = _pre.__counter_2;

_Bool b = !_pre.__counter_1;

xactive = (a && b);

self->_reg.__counter_2 = a;

self->_reg._ _counter_1 = Db;

/*@ ghost _Bool cond; int cpt;

cond = ((self->_reg.cpt == 3) || reset);

if (self->_reg.initl || cond) { cpt = 0; } else {

cpt = (self->_reg.cpt + 1);

}
self->_reg.initl_s = self->_reg.initl;
self->_reg.initl = 0;

self-> reg.reset_s = self->_reg.reset;
self->_reg.reset = reset;
*/

return;

}

STATEFUL OBERVERS: SUMMARY

s New memory fields:

struct node_mem { struct node_reg {
existing fields
/*@ ghost ghost_fields x/
} _reg;

}i

» Predicates to denote specification

/+@ predicate node_spec (input, output, ext_memory) =

» Function body: side effects in observer memories

void node_step (input, xoutput , xext_memory) ({
existing code
/*@ ghost ghost_fields update x/
return; }

e Function contract

/+@ ensures node_spec (input, *output, *ext_memory) ;
void node_step (input, =*output , xext_memory) {

*/
}

*/

ISSUE #2: VERIFICATION WITH FRAMA-C
ACSL used to verify the code with respect to specification

Runtime evaluation: dynamic analysis
C code instrumented to evaluate the annotations at runtime.
When applied to a test bench it evaluates that all tests satisfy the

property.
— E-ACSL plugin of Frama-C*

“Julien Signoles. E-ACSL: Executable ANSI/ISO C Specification Language.

Formal verification using weakest precondition (WP analysis)

Proofs performed at model levels using model-checking can be
replayed at code/ACSL level.
k-induction” proofs in Lustre = expression as WP objectives

“T. Kahsai and C. Tinelli. “PKIND: A parallel k-induction based model
checker”. In: PDMC. vol. 72. EPTCS. 2011, pp. 55-62.

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE
e Frama-C/WP is not able to discharge the PO:
1. Pisnotinductive over T

(eg. k-induction, or need of additional invariants)
2. function N_step was optimized or too complex

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE

e Frama-C/WP is not able to discharge the PO:

1. Pisnot inductive over T'

(eg. k-induction, or need of additional invariants)

2. function N_step was optimized or too complex

s Solution #2: we generate ACSL encoding of function semantics
predicates Init for counter_init and
Step for counter_step
We define the two additional ensure statements:
(ﬂ //Rensures Init (mem)

void N_init (memx)

ﬁﬂ /*@ensures Step(sl,s2, in ,out)
ensures node_spec (input, =*output, =*ext_memory); x/
void N_step (meml, mem2, in , out)

PROVING CODE, ATTACH ACSL SEMANTICS TO CODE
e Frama-C/WP is not able to discharge the PO:

1. Pisnotinductive over T
(eg. k-induction, or need of additional invariants)
2. function N_step was optimized or too complex

s Solution #2: we generate ACSL encoding of function semantics
predicates Init for counter_init and
Step for counter_step
We define the two additional ensure statements:

(ﬂ //Rensures Init (mem)
void N_init (memx)

ﬁﬂ /*@ensures Step(sl,s2, in ,out)
ensures node_spec (input, =*output, *ext_memory); =/
void N_step (meml, mem2, in , out)

Two main proof objectives:

1. Prove node_spec wrt Init and Spec
Was done with similar predicates at model level with the same
SMT solvers

2. Prove that N_step refines Spec

OPTIMIZED CODE AND REFINEMENT PROOF

In case of optimized code, difficulties to prove

//R@ensures Step(sl,s2, in ,out)
void N_step (meml, mem2, in , out)

Eg. limit the number of stack allocation through variable reuse
= makes the WP relationship less tractable.
e variable liveness analysis
* minimize the memory footprint wrt a given instruction scheduling
* maintain shared sub-expressions
Additional statement local asserts are introduced to keep track of
relationships
s (automatic) generation of supporting ACSL annotations

* introduce simpler pointer-less struct
* maintain relationship between live variables
 ease the automatic proof of (i) and (ii)

SAFETY CONSTRUCTS ANALYSIS — SUMMARY

1. compilation of specifications (synchronous observers) as
* ACSL predicates
« ghost fields (stateful observers)
* ghost code (side effects on observers memory)
2. compilation of models as ACSL predicates
3. additional statement level annotations for optimized code
4. proof with Frama-C/WP of

 (k-)inductiveness on model and specification ACSL predicates
* refinement between code and ACSL predicates

Current extensions include
» complete implementation of the approach

e extension to stateflow (hierarchical states automata)
e adapt the proof strategy at code level to the ones performed at
model level
« PDR proof as induction proof
* k-induction
« export of additional invariants

VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

....................

High level properties
(stability/robustness)
Synchronous observers
Counter-example traces

&

CocoSim
Lustre | - Zustre/PKind/Riny/SMT-A]
iR Test generation
LUSTRE-C .
.ﬂ@@

E ACSL ¢

Large use of Frama-C at C level:
s generation of ACSL (predicates, axioms)
s development of plugins
e grammar extensions

s proof strategies for PVS

VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

....................

(stability/robustness)
Synchronous observers
Counter-example traces

&

{ High level properties

CocoSim
Lustre | - Zustre/PKind/Riny/SMT-A]
iR Test generation
LUSTRE-C .
o6 aw»»ma
E ACSL ¢

Large use of Frama-C at C level:
s generation of ACSL (predicates, axioms)

Thank you.

e development of plugins .
P e Any question?

s grammar extensions

s proof strategies for PVS

OPTIMIZED CODE 1/2

Pointer-less structs

/* Struct definitions =/

struct f_mem {struct f_reg {int __f 2; } _reg; struct
_arrow_mem *ni_2; };
//@ ghost struct f_mem_pack {struct f_reg _reg;

_arrow_mem_pack ni_2;

struct

}i

OPTIMIZED CODE 2/2

Keeping track of live variables

//Q assert \forall struct f_mem_pack meml; \forall struct

f_mem_pack mem2; \at (f_pack2 (meml, self), Pre) ==> f_packO
(mem2, self) ==> trans_fA(x, meml, mem2, =*y);

*y = (x + 1);

//Q assert \forall struct f_mem_pack meml; \forall struct
f_mem_pack mem2; \at (f_pack2 (meml, self), Pre) ==> f_packO
(mem2, self) ==> trans_fB(x, meml, mem2, *Vy);

with

/+Q@ predicate trans_fy(int x_in, struct f_mem pack mem_in,
struct f_mem pack mem_out, int y_out) = (y_out == x_in +
1);*/

/+Q@ predicate trans_fB(int x_in, struct f_mem_pack mem_in,

struct f_mem pack mem_out, int y_out) = trans_fA(x_in,

mem_in, mem_out, y_out) && (clock_fy(x_in, mem_in,
mem_out) ==> trans_fy(x_in, mem_in, mem_out, y_out));

*/

	Appendix

