
Frama-Clang, a C++ front-end for Frama-C
Frama-C Day

Virgile Prevosto

joint work with Franck Védrine

June 20th, 2016



Introduction

Context

Stance Project
I http://stance-project.eu/

I Security analyzes with (among others) Frama-C

I C++ case studies and need for a C++ front-end

Others
I Developments with Trust-in-Soft inside the common lab

I Some industrial case studies (Bureau Veritas)

I Quite widespread interest for C++ analyzes with Frama-C

http://stance-project.eu/


Introduction

Summary

Introduction

Frama-Clang Basics

Evolved Features

C++ Standard Library

Conclusion



Introduction

A Clang-based parser

Clang
I C/C++/Objective-C front-end to LLVM

I http://clang.llvm.org/

I Very good C++11 coverage

I Very good API (they even have comments)

I Quite easy to extend (especially for introducing ACSL++)

http://clang.llvm.org/


Introduction

Ideal Toolchain Overview

Clang elaboration

ACSL++ elaboration

Simplification

C++-C TranslationFrama-C elaborationAnalyses

Generate data structures,
helper and output functions

Generate data structures,
helper and input functions

C++ world

OCaml world

temp file AST description

class C {
int x;
/*@ requires P(x);

ensures
Q(this,
\result); */

int f() { ... }
}

Clang AST Intermediate AST

Frama-C normalized AST Frama-C raw AST Intermediate AST



Frama-Clang Basics

Expressions and Statements

Done by Clang
I Overloading resolution

I As well as auto pointers

Translation
I Translation mostly identity

I References are pointers (valid by constructions)

I Insertion of temporary variables with their default
constructor...

I ... and destructor (still TODO)

I Explicit notion of constexpr



Frama-Clang Basics

Base classes

Done by Clang
I checks for visibility (private, deleted)

Translation
I struct with a set of functions

I Generation of special methods (default constructor, copy,
destructor)

I Accounting for this pointer in non-static methods



Frama-Clang Basics

Inheritance

Single inheritance
I Base class is simply another field of the enclosing struct

I field access must take that into account

I cast/call of method of base class must use the appropriate
field

I generate base constructor calls as needed.

Multiple Inheritance
I multiple sub-structures

I choose appropriate field depending on the context



Frama-Clang Basics

Templates

Instantiation
I instantiations and specializations are done by Clang

I Frama-Clang translates only instantiations

I Similar to normal C++ code

Reordering
I Instantiated nodes are visited at template declaration

I Potentially before actual arguments

I Need to reorder intermediate AST nodes to obtain
well-formed AST



Frama-Clang Basics

Templates

Instantiation
I instantiations and specializations are done by Clang

I Frama-Clang translates only instantiations

I Similar to normal C++ code

Reordering
I Instantiated nodes are visited at template declaration

I Potentially before actual arguments

I Need to reorder intermediate AST nodes to obtain
well-formed AST



Frama-Clang Basics

ACSL++ Specifications

Main constructions
I Function contracts

I Assertions and loop annotations

I Definition of predicate and logic functions

I Same namespace rules as for C++ definitions

Terms
I Same as in ACSL

I symbols are qualified in the same way as C++ symbols

I no private/public distinction



Frama-Clang Basics

Expanding Macros in annotations

I Access to Clang preprocessor’s internal structures

I Expansion done during lexing phase of ACSL++ annotations
I Same restrictions as with expansion of macros in ACSL:

I Only last value of a macro is used
I “Clever” sequences of #define and #undef might not

work as intended



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Frama-Clang Basics

Name mangling

I A unambiguous and valid C name for any global C++ symbol

I Use Itanium ABI

I Example: assignment operator of class A: _ZN1AEaSO1A

I frama-c -print: operator=

I frama-c -cxx-demangling-full: A::operator=

I frama-c -cxx-keep-mangling: _ZN1AEaSO1A

I Demangling also occurs in messages

I Also works for giving function names as options:
frama-c -slevel-function A::f:10 -main A::g



Evolved Features

Virtual functions

I Represented as function pointer

I Virtual method table for each class

I Corresponding field in the struct

I Possibly need to shift the this pointer

Dyn info Fields of A Dyn info Fields of B Fields of C

shift to start of C



Evolved Features

Dynamic Casts

I

dynamic_cast<A*>(b)

I Find a path in the
inheritance graph
between dynamic
type of b and A

I Notion of distance in
case multiple choices
are possible

I Keeping runtime type
information

I Graph traversal
algorithm

B

C

D

A E

F

A GH



Evolved Features

Virtual Base Classes

I Only one copy of each
virtual class in a given
object

I Put after the non-virtual
fields

I Again, some shifts are
required

Dyn Info B Fields Dyn Info C Fields D Fields A Fields

shift information



Evolved Features

Exceptions at C Level

I Introduction of new nodes Throw and TryCatch in Cil
AST

I Code transformation in Frama-C kernel to generate pristine C
AST

I Translation from C++ to C straightforward

I Except for a whole-program pass to deal with inheritance



C++ Standard Library

Library Usage

#include <iostream>

I C++ Standard Library is large (700 pages in C++11
standard)

I Widely used by programs, including embedded ones

I Heavily templated
I Contains many non-trivial constructions

I #include <memory>
I #include <functional>



C++ Standard Library

Using System library

Pros and Cons
4 Readily available and complete

8 Often contains compiler-specific features

8 Using another -machdep amounts to cross-compilation

8 No ACSL++ annotation in the library

Current situation
I primary target: GNU libc++

I Supports <iostream> (including dependencies)

I Supports <vector> and <map> (including dependencies)

I Other components to be considered depending on case
studies



C++ Standard Library

Frama-Clang’s specific headers

Why reinventing the (squared) wheel?
I No need to handle compiler built-ins or other non-standard

features

I Make Frama-C’s own built-ins accessible

I Better interaction with Frama-C C library (machdep.h)

I Provide ACSL++ annotations

Current status
I Adaptations required at C std lib level

I 10 wrappers over C headers (and their ACSL annotations)

I 15 pure C++ header files (sometimes incomplete)

I Support for iostream and dependencies



Conclusion

Real Toolchain

Clang elaboration

ACSL++ elaboration

Simplification + Reordering

Generation of Implicit Code

Generation of Implicit Code

C++-C TranslationFrama-C elaborationAnalyses

Generate data structures,
helper and output functions

Generate data structures,
helper and input functions

Exn elimination

Exn and Inheritance

C++ world

OCaml world

temp file AST description

class C {
int x;
/*@ requires P(x);

ensures
Q(this,
\result); */

int f() { ... }
}

#include <iostream>

#include <string.h>

Clang AST Intermediate AST

Frama-C normalized AST Frama-C raw AST Intermediate AST



Conclusion

Current State

Development size
Intermediate AST generator 1000
Generated C code 18000
Generated OCaml code 7500

C++ code 41000
ACSL++ handler 20000

OCaml code 7000
STL Headers 2000
Total 51000



Conclusion

Current State

Main results
I Covers major C++ features

I Support for basic ACSL++ constructions

I Partial support for Standard Library

I Still requires a lot of polishing (with the help of TiS and
FOKUS)

I Able to analyze real-world programs of moderate size
(˜1kLoC)

Release
I In the coming days

I LGPL licence

I Compatible with Clang 3.8.0 (and Frama-C Aluminium)

I For adventurous users only!



Conclusion

Next steps for translation

I Complete handling of virtual inheritance

I Polish existing features

I Extend STL support (and add annotations)

I Take into account more C++11 features (e.g. Function
objects)



Conclusion

Next steps for analyzers

Under design
I Abstract away (with ACSL predicates and contracts)

operations dealing with inheritance through clever pointer
arithmetic (selection of virtual member function, dynamic
cast, ...)

I Enhance WP’s handling of indirect calls

Longer Term
I Propose specific lattices in EVAlhalla for tracing inheritance

I Modular analysis over templates instead of instances


	Introduction
	Frama-Clang Basics
	Evolved Features
	C++ Standard Library
	Conclusion

