Deductive Verification in Frama-C and
SPARK?2014: Past, Present and Future

Claude Marché (Inria & Université Paris-Saclay)

QF IV

. Sk
universiteé % &
PARIS-SACLAY ZA

OSIS, Frama-C & SPARK day, May 30th, 2017

/31

Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

31

Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

31

Around 1990

Deductive Verification
» Formal Specification of functional behaviors using contracts

» Generation of Verification Conditions

v

Computer-Assisted Theorem Proving

SPARK Examiner for Ada’83

» Univ. Southampton, Praxis, then Altran
» home-made VC generator, simplifier, checker
CAVEAT, static analyzer for C code

» CEA
» home-made VC generator and solver

v

v

31

Around 2000

» The Why tool for deductive verification
» team ProVal (Inria & CNRS & Univ. Paris Sud)
» a ML-style programming language with contracts
» VC discharged using Coq
> then later with Simplify

> then with Alt-Ergo
> then with several others

» Why front-ends:
» for Java: Krakatoa
> annotations ~ Java Modeling Language
» for C: Caduceus
> annotation language ~ JML

5/31

2005-2010

» Frama-C

» CEA and ProVal

» ACSL language

» plug-in architecture to support various kind of analyses
> Jessie

» Deductive Verification plug-in
» Use Why as intermediate language
» Alias analysis using memory regions

6/31

2010-2014

v

Why3, new generation of Why
» module system, rich standard library of theories
» region-based type system for alias control
» generic architecture to plug in back-end provers

v

Jessie plug-in adapted to Why3

WP Frama-C plug-in
» various memory models and aliasing conditions
» call provers through Why3

SPARK 2014: SPARK new generation

» AdaCore - Altran

» Why3 as intermediate programming language

» Non-aliasing conditions to ease VC generation and proof
» call provers through Why3

v

v

Why3 'ecosystem’ today

Ada programs

/

8/31

Outline

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

31

Static versus Runtime Checking

Contracts can be used either
» for runtime assertion checking (RAC):
» assertions executed and checked valid during execution, tests
» for static verification (VC generation + theorem proving)
» code can be proved correct w.r.t. contracts

Example: Java Modeling Language
» JML RAC: turns assertions into regular Java code

» Static verification: ESC/Java, using solver Simplify

10/31

From JML to Krakatoa and ACSL

v

JML was designed with RAC in mind

» Consequence: assertions are Java Boolean expressions

v

Extensions to Java expressions: meant to be executable
» e.g. quantification must be bounded

(\forall int i; 0 <= 1 && i < a.length; P(i))

v

Models for specifications can be designed using extra pure
classes

» methods need to be terminating

» they should not raise exceptions

> they should not have side-effects

11/31

Why3/Krakatoa/ACSL Specification Languages

» Specification language is classical first-order logic with
> types (polymorphism)
» equality, built-in arithmetic
» user-defined theories to design abstract models

> introducing new data-types, logic functions, predicates
> either defined or axiomatized

Specification language
» distinct from programming language
» adequate for use of external provers

» does not need to be executable

12/31

Example: sorting algorithms

/*@ requires \valid(a+(0..n-1));
@ assigns a[0..n-1];
@ ensures sorted(a,0,n);
@ ensures permut{Pre,Post}(a,0,n-1);
@x/
void sort(int *a, int n) {

31

Example: sorting algorithms

/*@ predicate sorted(int *a, integer 1, integer h) =
@ \forall integer i j; 1 <=1 <= j < h ==> a[i] <= aljl ;

@x/

> Not executable a priori
» Could be executed if ranges of i and j are somehow

'computed’
» In JML, it should be written

(\forall int i; 1 <=1i && i < h ;
(\forall int j; 1 <= j & j < h; ali] <= aljl))) ;

> Notice also the type integer for mathematical, unbounded

integers

14 /31

Example: sorting algorithms

/*@

RN CNCNCNCNCNCNCRCNCNCNONG]

Important points

predicate swap{L1l,L2}(int *a, integer i, integer j) =
\at(a[i],L1) == \at(a[j],L2) && \at(al[jl,L1l) == \at(a[i],L2) &
\forall integer k; k != i & k != j ==> \at(a[k],L1) == \at(a[k],L2);

inductive permut{L1l,L2}(int *a, integer 1, integer h) {
case permut_refl{L}:
\forall int *a, integer 1 h; permut{L,L}(a, 1, h) ;
case permut_sym{L1,L2}:
\forall int =a, integer 1 h;
permut{L1,L2}(a, 1, h) ==> permut{L2,L1}(a, 1, h) ;
case permut_trans{L1,L2,L3}:
\forall int *a, integer 1 h;
permut{L1,L2}(a, 1, h) && permut{L2,L3}(a, 1, h) ==> permut{L1,L3}(a, 1, h);
case permut_swap{L1,L2}:
\forall int *a, integer 1 h i j;
l<=1i<h& 1 <=j < h&& swap{L1,L2}(a, i, j) ==> permut{Ll,L2}(a, 1, h) ;

}
«/

» Why3/ACSL spec. lang. significantly diverged from JML

» Spec. language can be more powerful when RAC is not
intended

> Yet, RAC may be useful to complement proofs

31

Design of E-ACSL
E-ACSL:
> Need for run-time checking in Frama-C

» Executable subset of ACSL
> assertions turned into regular C code:
» mathematical integers handled using GMP

» built-in memory-related predicates (\valid, \initialized)
handled using a specific memory management library
» axiomatic models not supported
ACSL and E-ACSL have slightly different semantics
Undefined expressions:
assert { 1/0 == 1/0 }
assert { *p == *p } // when p == NULL
» valid in ACSL (logic of total functions)
» raise errors in E-ACSL

Note: similar differences between JML RAC and ESC/Java

16

31

Ada contracts and SPARK 2014

Ada 2012:
» add contracts as part of regular Ada

> assertions are Boolean expressions

v

Expression-functions can be used in assertions

v

Bounded quantification now part of Ada expressions:

for all I in <range> => P(I)

v

Ada compiler generates corresponding run-time checks for pre-
and post-conditions

17 /31

Static Verification in SPARK 2014

Important design choice

Semantics of annotations is fixed by the execution semantics

» VC are generated for well-definedness: 1/0, array index in
bounds, etc.
» abstract models, unbounded integers:

» not possible since it would forbids RAC
» indeed possible via an SPARK-specific extension
(“external axiomatization”)

18/31

Summary

Why3 Frama-C SPARK
ACSL | E-ACSL | 2014
Executable contracts no no yes yes
Only total functions in logic | yes yes no! no?
Unbounded integers in logic | yes yes yes no’
Unbounded quantification yes yes no no
Ghost code yes yest | yes* yes

run-time checks for well-definedness are generated

2 run-time checks and VCs for well-definedness are generated
3 possible through external axiomatization
4

restrictions: only executable C code, and non-interference
with regular code is not checked

(See [Kosmatov et al., ISOLA'2016] for more details)

19/31

Advertisement: be Afraid of no Ghost!

> ghost variable: added to the regular, for the purpose of formal
specification

» ghost code, subprograms: extra code added to operate on
ghost variables

Ghost code
Commonly used in most non-trivial examples
> keeping track of previous values of variables

» attach some abstract state (a kind of data refinement)

> etc.

Example: a sorting algorithm may return a ghost array of indices,
giving the permutation of elements done by sorting.

procedure sort(a:array) returns (ghost p:array of integer)
assigns a
ensures \forall integer i; a[il=\old(a)I[pl[il]

20 /31

Ghost code in Why3, Frama-C and SPARK 2014

Ghost code is possible in all of them

Pros
» Very useful in practice/for complex cases

» A kind of 'executable’ specification

» Compatible with both static and run-time checking

Cons
Tools should check non-interference between ghost code and
regular code

» Why3, SPARK 2014 do it thanks to strong non-aliasing policy

» Frama-C doesn't do it yet

v

21/31

Bonus: Lemma Functions

Proving theorems using ghost code!

ghost f(xy : T1,...,%, : Tp) returns r:r
requires Pre
ensures Post

if this function has no side-effect and is proved terminating then it
is a constructive proof of

Vx1,...,Xn,3r, Pre = Post

Examples:
» proving lemmas by induction (with automated provers only!)
> proving existential properties

Note: similar feature exists in other environments, e.g. Dafny

Outline

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

23 /31

The ProoflnUse project

N,
X o 4o
Joint Lab
% § between Inria
Y gpe e and AdaCore
Main Goal
Spread the use of formal proof in SPARK users’ community J

» Help for “debugging” when proof fails

» Counterexamples
» Simple interactive prover

» Enlarge language support

» Bit-wise operators
» Floating-point arithmetic

> Increase automation
> Better exploit SMT solvers

24 /31

Bit-Wise Operators

» New Why3 theory for bit-wise operations
» Use of SMT-LIB bit-vector theory (CVC4, Z3)

» Case study: BitWalker

» Original C code by Siemens, ITEA 2 project OpenETCS
» Rewritten by Jens Gerlach for Frama-C/WP

» Formal specification in ACSL
> proved with Alt-Ergo+Coq

» Version in SPARK 2014
> proved with Alt-Ergo+CVC4+Z73

See [Fumex et al., NFM'2016]

25 /31

Counterexample Generation in SPARK

- saturation.adb

¢ procedure Saturate (Val i in out Unsigned 16)

-- Wal = 4096
4~ with
5 FPost ==
60
-- WVal'old = 4096 and val = 0

7 (if val'old = 255 then Val = 255)
8 1is
9 begin
0 val i val and lohers

-- WVal =0
11 end Saturate;
Saturate

Messages Locations

4 - @ |2 2 arfilter
N
] w saturation.adb (1 item)
‘B 6:7 medium: postcondition might fail (e.g. when

26/31

Counterexample Generation in SPARK

v

Instrumentation of VC generation for tracing variables

v

Query a model when SMT solver answers 'SAT’

v

Reinterpret the model in the source code

v

Display counterexample in the graphical interface

See [Hauzar et al., SEFM'2016]

27 /31

Proof Debugging (Frama-C plug-in StaDy)

C code + annotations

Transformation B
(contract weakness)

Transformation A
(non-compliance)

[Dynamic Symbolic Executionj

v

[Report on annotations failures]

» Non-compliance: code does not satisfy annotations

» subcontract weakness:
contracts of called functions, loop invariants, not powerful
enough to prove the annotations correct

See [Petiot et al., TAP'2016]

28 /31

Discharging VCs interactively

Goal

(hopefully simple) user interactions to assist automatic provers
when proof fails

» On-going work for SPARK within ProoflnUse joint lab
» Recently available in Frama-C/WP

See the talk by Loic Correnson today!

29 /31

Floating-Point Computations

Goals

» better handling Floating-Point in specifications and VC
generation

» improve success rate of automated provers

» SOPRANO project

» involves both Frama-C and SPARK developers
» solvers Alt-Ergo FP and COLIBRI

> recent progress in SPARK
» support for FP in SPARK 17.1, using

» CodePeer interval analysis
> FP support in prover Z3

» on-going: use of Alt-Ergo FP and COLIBRI

See the talk by Francois Bobot today!

30/31

Conclusions

» Frama-C and SPARK share not only a common history but

» A will to transfer academic research to the industry of critical
software
» Common challenges, approaches, technical solutions

OSIS Frama-C and SPARK day
Enjoy the talks, exchange ideas during breaks!

31/31

	Why this joint Frama-C and SPARK day?
	common history of Frama-C and SPARK

	ACSL and SPARK 2014: how they differ?
	static versus runtime checking
	specification languages: design choices
	advertisement: ghost code

	Recent and Future Trends
	bit-wise, floating-point computations
	proof debugging, counterexamples
	interactively discharging VCs

