
Trends in Automated Verification

K. Rustan M. Leino
Senior Principal Engineer
Automated Reasoning Group (ARG), Amazon Web Services

Keynote, SSAS 2018, 27 June 2018, NIST, Gaithersburg, MD© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Automated verification

Oh, I see.
Well, what I
mean is…

Line 218 of your
program may not
respect the data-

structure invariant

Reasoning about software programs

Old topic, considered for

example by Alan Turing [1949]

Vision, along with idealism

and criticism, was developed

during the 1970s

Photo credits:

https://commons.wikimedia.org/wiki/File:Alan_Turing.jpg, Jon Callas from San Jose, USA.
https://www.amazon.com/Abba-11-14-Photo-Print/dp/B076CS43M6/ref=sr_1_1?ie=UTF8&qid=1530114575&sr=8-1&keywords=abba+posters

Leino,

https://commons.wikimedia.org/wiki/File:Stevie_Wonder_1973.JPG

Program verification:
1971

Source: “Proof of a program: FIND” by C.A.R. Hoare, CACM, 1971

Systems for specification and verification
LANGUAGES

GYPSY
CLU
Alphard
Euclid
Eiffel
Larch

PROOF ASSISTANTS

Boyer-Moore prover
Stanford Pascal Verifier
PRL, NuPRL

PVS
ACL2
HOL
Coq

1970-

1985-

Extended Static Checking (1993-2000)
To enable automation:

Reduce ambitions
from functional correctness
to absence of run-time errors

To keep human effort low:
Give up on trying to find
certain kinds of errors

Underlying logical engine:
Satisfiability Modulo
Theories (SMT) solver

Source: Invited talk “ESC/Java” by K.R.M. Leino at Larch User’s Group Meeting, FM’99, Toulouse, France, Sep 1999

Greg Nelson

Photo credit: Compaq SRC

Extended Static Checking for Java
(ESC/Java)

Source: Talk and first (pre-tool) ESC/Java demo by K.R.M. Leino to Hopper et al. at DEC WRL, “Extended Static Checking for Java”, March 1998

2000s: Intermediate Verification Languages
Boogie, Why, CoreStar, Viper, …

Source language

Intermediate
verification
language

Target logicSMT

2000s: Intermediate Verification Languages
Boogie, Why, CoreStar, Viper, …

Why3

2000s: Modular specification and
verification of the heap
Ownership

“Boogie [Spec#] methodology”: Spec#, VCC
Dynamic frames

VeriCool, Dafny
Permissions

Boyland’s types, Plaid
Separation Logic: SmallFoot, jStar, VeriFast
Implicit dynamic frames: VeriCool 3, Chalice

Increasing ambitions (2005-)

Source: Paper presentation on Dafny by K.R.M. Leino at LPAR-16, Dakar, Senegal, April 2010

Dafny
Programming language
designed for reasoning
Language features drawn from:

Imperative programming
if, while, :=, class, …

Functional programming
function, datatype, codatatype, …

Proof authoring
lemma, calc, refines, inductive predicate, …

Program verifier
Integrated development environment (IDE)

Demo
Nistonacci

function Nist(n: nat): nat {
if n < 2 then n else Nist(n-2) + 2 * Nist(n-1)

}

method Nistonacci(n: nat) returns (x: nat)
ensures x == Nist(n)

{
x := 0;
var i, y := 0, 1;
while i < n

invariant 0 <= i <= n
invariant x == Nist(i) && y == Nist(i+1)

{
x, y := y, x + 2 * y;
i := i + 1;

}
}

2010s
Annotated program text alone is not enough
Need ability to formalize models, state lemmas, and assist in proof
authoring
This has always been possible in interactive proof assistants

Coq, Isabelle/HOL, Agda, …
Now it has come to automated program verifiers as well

Dafny, VeriFast, WhyML, F*, Liquid Haskell, …

Photo credits: https://pxhere.com/en/photo/593542, https://pxhere.com/en/photo/170332

Demo
Lemmas, proofs

lemma {:induction false} NistProperty(n: nat)
ensures Nist(n) >= n

{
if n < 2 {
} else {

calc {
Nist(n);

== // def. Nist
Nist(n-2) + 2 * Nist(n-1);

>= { NistProperty(n-2); }
(n-2) + 2 * Nist(n-1);

>= { NistProperty(n-1); }
(n-2) + 2 * (n-1);

==
3 * n - 4;

>=
n;

}
}

}

Language illustration: INC
Cmd	::=		Inc |		Cmd⨟Cmd |		Repeat(Cmd)
Semantics given by the “big step” relation
Cmd, State → State

where
6, 7 → 8

says that
there is an execution of command 6 from state 7 that
terminates in state 8

Semantics of INC
Cmd	::=		Inc |		Cmd⨟Cmd |		Repeat(Cmd)

34567
89:, 5 →3

=>, 5 →5? =7, 5? →3
=>⨟=7, 5 →3

345
@ABACD EFGH , 5 →3

EFGH, 5 →5? (@ABACD EFGH), 5? →3
@ABACD EFGH , 5 →3

Semantics of INC
Cmd	::=		Inc |		Cmd⨟Cmd |		Repeat(Cmd)

34567
89:, 5 →3

$ 5=. >?, 5 →5= >7, 5= →3
>?⨟>7, 5 →3

345
@ABACD EFGH , 5 →3

$ 5=. EFGH, 5 →5= (@ABACD EFGH), 5= →3
@ABACD EFGH , 5 →3

Demo
INC

datatype cmd = Inc | Seq(cmd, cmd) | Repeat(cmd)
type state = int

inductive predicate BigStep(c: cmd, s: state, t: state)
{

match c
case Inc =>

t == s + 1
case Seq(c0, c1) =>

exists s' :: BigStep(c0, s, s') && BigStep(c1, s', t)
case Repeat(body) =>

s == t ||
exists s' :: BigStep(body, s, s') && BigStep(c, s', t)

}

inductive lemma Monotonic(c: cmd, s: state, t: state)
requires BigStep(c, s, t)
ensures s <= t

{
match c
case Inc =>
case Seq(c0, c1) =>

var s' :| BigStep(c0, s, s') && BigStep(c1, s', t);
Monotonic(c0, s, s’);
Monotonic(c1, s', t);

case Repeat(body) =>
if s == t{
} else {

var s' :| BigStep(body, s, s') && BigStep(c, s', t);
Monotonic(body, s, s’);
Monotonic(c, s', t);

}
}

Development

• Tool is part of
development process

• Specifications, code,
proofs developed
together

• No legacy code

Verified systems
Paris Metro line 14 brake system (B)
seL4 Verified (Haskell, Isabelle/HOL, C)
CompCert (Coq)
Ironclad, IronFleet (Dafny)

…

Verification done by

Formal methods experts

Systems programmers

Accessibility
Paris Metro line 14 brake system (B)
seL4 Verified (Haskell, Isabelle/HOL, C)
CompCert (Coq)
Ironclad, IronFleet (Dafny)

Conclusions
Program verifiers

have a high degree of automation and
support expressive specifications

Program verification is accessible to patient, interested
non-experts
Usability is important
Teach!

