
C Source Code Analysis for Memory Safety

Henny Sipma
Kestrel Technology

Sound Static Analysis for Security Workshop
NIST, June 26-27

Founded:

Location:

Core activity:

Languages supported:

Underlying technology:

2000

Palo Alto, CA

Sound Static Analysis of Software

C source, Java bytecode, x86 executables

Abstract interpretation (Cousot & Cousot, 1977)

Properties:
Memory safety analysisC:

Information flow analysis, complexity analysisJava:

Memory safety, information extraction, malware analysis, reverse engineeringx86:

Kestrel Technology

abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

sound abstraction from Java
byte code into CHIF

Java byte code front end

CIL
sound abstraction from

preprocessed CIL code into
CHIF

C source code front end

disassembly
abstraction from x86 binary

code into CHIF

x86 binary front end

.class
.jar
.war

.c

.exe

Kestrel Technology CodeHawk Tool Suite

abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

CIL
sound abstraction from

preprocessed CIL code into
CHIF

C source code front end

.c

CodeHawk C Analyzer

Sound Static Memory Safety Analysis for C

Goal: Mathematically prove absence of memory safety vulnerabilities

(covering more than 50 CWEs) for real-world applications

Approach:

• Specification: C Standard – specification of undefined behavior

• Translate into preconditions on instructions and library functions

• Prove that all preconditions are valid

Advantages:

• If successful: full assurance of memory safety

• Exhaustive: no false negatives

• Evidence: results can be independently audited

• Metrics: progress and success

Sound Static Memory Safety Analysis for C
Challenges

Approach:

ü Specification: C Standard – specification of undefined behavior

ü Translate into preconditions on instructions and library functions

Ø Prove that all preconditions are valid

Not automatic

May involve significant effort

Analysis

Open
Primary proof obligations

(ppo’s)
Closed ppo’s

or

Test Applications
application LOC

Cairo-1.14.12 227,818

Cleanflight-CLFL-v2.3.2 118,758
Dnsmasq-2.76 29,922

Dovecot-2.0.beta6 (SATE 2010) 208,636
File 14,379

Git-2.17.0 205,636
Hping 11,336

Irssi-0.8.14 (SATE 2009) 61,972
Lighttpd-1.4.18 (SATE 2008) 49,747

Nagios-2.10 (SATE 2008) 47,652
Naim-0.11.8.3.1 (SATE 2008) 25,759

Nginx-1.14.0 103,388
Nginx-1.2.9 102,151

Openssl-1.0.1.f 275,060
Pvm3.4.6 (SATE 2009) 60,029

Wpa_supplicant-2.6 96,554
Total 1,638,797

.c

Gcc - preprocessor

Makefile

bear

CIL

CodeHawk C Analyzer

ppo’s

Creating Primary Proof Obligations

File/function
semantics

Primary Proof Obligations: How Many?

5,545,304

Primary Proof Obligations: How Many?

5,545,304

2.8

1.2
3.7

4.1

3.2

4.1

3.3

4.3
4.1 3.7 6.5

5.3

3.3

2.8

2.3

2.9

Ppo’s per lines of code

Primary Proof Obligations: What are they?

First-order atomic predicates:

• allocation-base(p)
• cast(x,t1,t2)
• common-base(p1,p2)
• common-base-type(p1,p2)
• format-string(p)
• global-memory(p)
• index-lower-bound(a)
• index-upper-bound(a,s)
• initialized(v)
• initialized-range(p,s)
• int-overflow(op,a,b,t)
• int-underflow(op,a,b,t)
• lower-bound(p)
• no-overlap(p1,p2)

• non-negative(a)
• not-null(p)
• not-zero(a)
• null(p)
• null-terminated(p)
• pointer-cast(p,t1,t2)
• ptr-lower-bound(op,p,a)
• ptr-upper-bound(op,p,a)
• ptr-upper-bound-deref(op,p,a)
• signed-to-unsigned-cast(a,t1,t2)
• unsigned-to-signed-cast(a,t1,t2)
• upper-bound(p)
• valid-memory(p)
• value-constraint(x)
• width-overflow(a)

Primary Proof Obligations: Analysis
Simple Things First

A. Check validity based on individual statement and declarations

int a[10];
...
a[3] = 0;

strcpy(dst,”string”)

• index-lower-bound(3)

• index-upper-bound(3,10)

• null-terminated(“string”)

• not-null(“string”)

• lower-bound(“string”)

• upper-bound(“string”)

• valid-memory(“string”)

3,389,371

2,155,365

Primary Proof Obligations

Discharge ppo’s at the statement level

3,389,371

2,155,365

Primary Proof Obligations

Discharge ppo’s at the statement level
(as a percent of total)

Primary Proof Obligations: Analysis
Generating Invariants

B. Check validity based on invariants generated

int a[10];
....
for (int i=0; i < 10; i++) {

a[i] = 0;
}

i = [0 .. 9]index-lower-bound(i)
index-upper-bound(i)

1. int x;
....
10. x =
....
20. x = x + 1;

...
initialized (x)
...

x:initialized@10

proof obligations invariant

abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

Analysis: Generating Local Invariants
(Context-insensitive)

• Abstract Interpretation (Cousot,Cousot, 1977)

• Domains:

• Intervals (Cousot, Cousot)

• Linear Equalities (Karr, 1976)

• Value Sets (Reps, 2004)

• Symbolic Sets

• Parametric Ranges

• Flow-sensitive, Path-insensitive

.c

Gcc - preprocessor

Makefile

bear

CIL

CodeHawk C Analyzer

ppo’s

Analysis: Generating Local Invariants

File/function
semantics

Analysis: Generating Local Invariants

CodeHawk C Analyzer

ppo’s

File/function
semantics

invariants

3,976,097

Primary Proof Obligations

Discharge ppo’s using local function invariants
1,568,639

3,976,097

Primary Proof Obligations

Discharge ppo’s using local function invariants
1,568,639

Analysis: Delegating Proof Obligations
(Context sensitivity)

C. Lift responsibility to api

int f (int *p) {
int *q;
int x;
...
q = p;
x = *q + 5;

1. not-null(q)
2. valid-memory(q)
3. lower-bound(q)
4. upper-bound(q)
5. initialized(*q)
6. Int-overflow(*q+5)

p = q

proof obligations

invariant

1. not-null(p)
2. valid-memory(p)
3. lower-bound(p)
4. upper-bound(p)
5. initialized(*p)
6. Int-overflow(*p + 5)

API requirements on f

Analysis: Delegating Proof Obligations
Impose Preconditions on Callers

Analysis: Delegating Proof Obligations
Create Supporting Proof Obligations

CodeHawk C Analyzer

ppo’s

File/function
semantics

invariants

api
requirements

python API

linker

spo’s

Analysis: Delegating Proof Obligations
Impose Postconditions on Callers?

Ø Global variables?
Ø Heap-allocated data structures?

Analysis: Delegating Proof Obligations
File/Function Contracts

CodeHawk C Analyzer

ppo’s

File/function
semantics

invariantsapi
requirements

python API

linker

spo’s

File/Function Contracts

Analysis: Delegating Proof Obligations
File/Function Contracts

CodeHawk C Analyzer

ppo’s

File/function
semantics

invariantsapi
requirements

python API

linker

spo’s

File/Function Contracts

4,191,788

Primary Proof Obligations

Discharge ppo’s using context sensitivity
1,097,471

4,191,788

Primary Proof Obligations

Discharge ppo’s using context sensitivity
1,097,471

4,191,788

Primary + Supporting Proof Obligations

1,097,471 415,211

378,013

+
+

1,512,682

4,569,801

=
=

4,191,788

Primary + Supporting Proof Obligations

1,097,471 415,211

378,013

+
+

1,512,682

4,569,801

=
=

Bugs, False Positives?

Our perspective: Anything that cannot be proven safe needs work:

Ø Additional user input (in the form of contract conditions), and/or

Ø Additional analysis capabilities, and/or

Ø Modifications to the program

A proof obligation is marked ‘violated’ (and closed) if

• the reason it cannot be proven safe is known, and

• no additional information can make it safe

Violations can indicate

• A bug, (primary or supporting proof obligation), or

• A contract condition that is too strong (supporting proof obligation), or

• A potential violation outside the analysis realm

• A proof obligation is violated for all behaviors (universal)

• An existential condition is identified that violates a proof obligation

• Use of return value from malloc, calloc, realloc without null check

• Use of return value from fopen, getenv, etc., without null check

• Cast -1 to unsigned integer

• Unchecked user input values

• Volatile values, random values

• An existential condition outside the realm of reasoning is identified that may

violate a proof obligation

• unchecked return value from strchr, strrchr, strtol, strtoll, etc.

• ……

Violations

But, …
3 potentially serious memory vulnerabilities found in one of the test applications

Mostly not very likely or not very interesting

Comparison between applications and Juliet Test Suite
~ 150 test cases

Collaborative Analysis of Open Source Software
Tools and Communities

CodeHawk C Analyzer

ppo’s

File/function
semantics

invariants
api

requirement
s

python API

linker

spo’s

File/Function Contracts

Conclusions

Analysis

Open
Primary proof obligations

(ppo’s)
Closed ppo’s

or

Our goal was:

Conclusions

Analysis

Open
Primary proof obligations

(ppo’s)
Closed ppo’s

or

Our goal was:

Analysis

Where we are

Primary
proof

obligations

Supporting
proof

obligations

Conclusions

Analysis

Where we are

• Full semantics of application in accessible form
• Exhaustive set of proof obligations + evidence
• Function api conditions
• Invariants generated
• Programmable api in python

other tools

• Specialized analyses (academic tools)
• Incremental analysis
• Every result is subject to verification
• Modular analysis (function/file level)
• Clear measure of success

Community effort

enables

Conclusions

Analysis

Where we are

• Full semantics of application in accessible form
• Exhaustive set of proof obligations +evidence
• Function api conditions
• Invariants generated
• Programmable api in python

other tools

• Specialized analyses (academic tools)
• Incremental analysis
• Every result is subject to verification
• Modular analysis (function/file level)
• Clear measure of success

Most analysis results can be
reused across versions;
Assumptions can be rechecked

enables

Conclusions: What’s next?
• Extend with other properties, specified by state machines

• Extend expressiveness of contract specifications

• Continuous improvement of the analyzer, increase automation, C++

• Make C Analyzer available on the SWAMP

……….. and eventually (wishful thinking)

For every (many) important open-source C applications:

Create an open-source community-owned exhaustive set of proof
obligations with (partial) analysis results, full set of assumptions
(represented as api requirements and contract conditions) that evolves
with new versions created

………… and (more wishful thinking)

Make sound static analysis an integral part of the open-
source software development process

Conclusions: What’s next?

Currently available on private GitHub repository

If you want to contribute contact us:

sipma@kestreltechnology.com

THANK YOU !

Property: Absence of memory vulnerabilities

Property Specification

C Standard lists 37 memory-related conditions that lead to undefined behavior

Property: Absence of memory-related undefined behavior

Primary Proof Obligations

§ on language constructs
§ on standard library functions

Prove, by structural induction on the program, that every state of every
computation is well-defined

Initially: the starting state of every computation is well-defined

Inductive step: For every operation in the program:

Assume the inductive hypothesis:
the starting state of the operation is well-defined

Prove: the resulting state after the operation is well-defined, according
the C semantics

Conclude:
Ø every state of every computation is well-defined
Ø absence of memory access violations

Proof by Structural Induction

Prove, by structural induction on the program, that every state of every
computation is well-defined

Initially: the starting state of every computation is well-defined

Inductive step: For every operation in the program:

Assume the inductive hypothesis:
the starting state of the operation is well-defined

Prove: the resulting state after the operation is well-defined, according
the C semantics

Problem: Inductive hypothesis is not strong enough to prove the inductive step

Proof by Structural Induction

Inductive step: For every operation in the program:

Assume:
• the inductive hypothesis (state is well-defined), and
• invariants generated for the starting state of the operation

Prove:
• the resulting state after the operation is well-defined, according to the C

semantics

Solution: Use abstract interpretation to generate invariants to strengthen
the inductive hypothesis

Proof by Structural Induction

Domains:

Solution: Use abstract interpretation to generate invariants to strengthen
the inductive hypothesis

§ Intervals (Cousot & Halbwachs)
§ Linear Equalities (Karr)
§ Symbolic Sets
§ Value sets (Balakrishnan, Reps)

Proof by Structural Induction

Prove, by structural induction on the program, that every state of every
computation is well-defined

Approach is
Ø Sound: if all proof obligations can be proven valid, no memory

access violations are possible
Ø Complete: if no memory access violations are possible then an

inductive invariant exists to prove it

but (since undecidable)

not complete for demonstrating the existence of counter examples

Proof by Structural Induction

CWE’s covered
118 Improper access of indexed resource (range error)

119 improper restriction of operations within the bound

120 Buffer copy without checking size of input (classic buffer overflow)

121 Stack-based buffer overflow

122 Heap-based buffer overflow

123 Write-what-where condition

124 Buffer underwrite

125 Out-of-bounds read

126 Buffer over-read

127 Buffer under-read

128 Wrap-around error

129 Improper validation of array index

130 Improper handling of length parameter inconsistency

131 Incorrect calculation of buffer size

135 Incorrect calculation of multi-byte string length

170 Improper null termination

CWE’s covered
190 Integer Overflow or wrap-around

191 Integer Underflow or wrap-around

193 Off-by-one error

195 Signed to unsigned conversion error

196 Unsigned to signed conversion error

242 Use of inherently dangerous function (as related to memory safety)

415 Double free

416 Use after free

456 Missing initialization of variable

466 Return of pointer value outside of expected range

467 Use of sizeof() on pointer type

469 Use of pointer subtraction to determine size

476 Null pointer dereference

588 Attempt to access child of non-structure pointer

590 Free of memory not on the heap

785 Use of path manipulation function without maximum-sized buffer

CWE’s covered
786 Access of memory location before start of buffer

787 Out-of-bounds write

788 Access of memory location after start of buffer

805 Buffer access with incorrect length value

822 Untrusted pointer dereference

823 Use of out-of-range pointer offset

824 Use of uninitialized pointer

825 Expired pointer dereference

839 Numeric range comparison check without maximum check

843 Access of reource using incompatible type (type confusion)

369 Divide by zero

134 Uncontrolled format string

197 Numeric truncation

Abstracting C into CHIF

Some constructs are representable precisely:

int x;
....
x = x + 1;

x := x + 1

Some constructs are not (yet) supported:

int x, y;
....
x = | y; abstract(x)

Abstracting C into CHIF

CHIF is a register language: no aliasing, no pointers

int x;
....
f(&x);

abstract(x)

int x;
int *p;
....
p = &x;
*p = *p + 1;

remove x from
analysis

Abstracting C into CHIF

CHIF analysis is intra-procedural

use assume-guarantee reasoning for interprocedural relationships

int f(...) {
....
if (...) {

...
return 0;

}
....
return 1;

}

int x;
....
x = f(...);

x in [0..1]

Many more constructs in C that require specialized abstraction

Test Applications
application LOC PPO’s

Cairo-1.14.12 227,818 628,808

Cleanflight-CLFL-v2.3.2 118,758 143,015
Dnsmasq-2.76 29,922 110,743

Dovecot-2.0.beta6 (SATE 2010) 208,636 856,210
File 14,379 46,209

Git-2.17.0 205,636 851,087
Hping 11,336 37,079

Irssi-0.8.14 (SATE 2009) 61,972 265,345
Lighttpd-1.4.18 (SATE 2008) 49,747 202,157

Nagios-2.10 (SATE 2008) 47,652 173,868
Naim-0.11.8.3.1 (SATE 2008) 25,759 167,533

Nginx-1.14.0 103,388 343,759
Nginx-1.2.9 102,151 542,697

Openssl-1.0.1.f 275,060 762,621
Pvm3.4.6 (SATE 2009) 60,029 136,320

Wpa_supplicant-2.6 96,554 277,853
Total 1,638,797 5,545,304

