' galois|

Reflections on Industrial Use
of Frama-C

Joseph R. Kiniry and Daniel M. Zimmerman

Sound Static Analysis for Security Workshop
NIST — Gaithersburg, Maryland — 28 June 2018

About Galois

e established in 1999 to apply functional
programming and formal methods to the
problem of information assurance

e over 40 active projects for numerous clients,
both U.S. government (NSA, DARPA, IARPA,
Homeland Security, Air Force Research Lab)
and commercial (Amazon, LG, others)

e over the years, we have substantially broadened
our scope to high assurance everything

© 2018 Galois, Inc.

Galois and Frama-C

Galois has used Frama-C on some projects
DARPA Crowdsourced Formal Verification
e WP plugin to generate verification conditions

e custom plugins to generate schematic
assertions and program traces

DARPA SHAVE

Our clients rarely ask for formal verification in

Frama-C’s “sweet spot”

© 2018 Galois, Inc.

SHAVE: Software/Hardware
Assurance Verified End-to-End

e DARPA MTO seedling for the SSITH program
® a bump-in-wire encryption device

¢ single, one-time AES key provisioning

e encryption or decryption mutual exclusion

e open hardware, firmware, and software

o crypto realized as a MMIO RISC-V extension

e custom development of a verification system for
Bluespec hardware description language

© 2018 Galois, Inc.

SHAVE Assurance

Concept Silicon
: Verilog .
Artifacts Informal | Architec- | | BSV o] RTL Netlist GDSII
specs ture spec spec spec spec spec

Refinement manual design automatic synthesis and manual design
Technology
A::sznie manual inspection manual inspection, runtime testing,
! P model checking, formal verification
Technique
ASHAVE formal verification that produces independently verifiable claims and proofs
ssurance

© 2018 Galois, Inc.

T

he SHAVE Process

SHAVE Process
Systems Engineering Point-of-view

.] define an informal 5 perform domain 3 [specify informal
domain model engineering domain model system requwements

X

formalize

Systems Engineer ma

automatically generated

nually implement validation ocowise implement
properties that cannot be 14 P P
speC|f|cat|on

13

/

implement “bottom”
behavior for all
implementations

T

12

specify concrete
implementations that
refine models

f

11

automatically generate

execute runtime formally verify
verification of test implementations
benches against all models
16 16

N

reason about concrete
implementations to ensure
that they are fit for purpose

validation bench from
specifications J

< 10

] [specify dynamic]

5

v

[specify static system]

architecture

6

system model

7

{

specify the behavior of
the system model

v

[reason about all formal]
models to ensure that |< 9
[they are fit for purpose J

[formalize informal
system requirements
L as properties

© 2018 Galois, Inc.

The SHAVE Architecture

STREAMING ENCRYPTION
APPLICATION . %
architecture ber;z\élgra IibraryB sof twalE
SOFTWARE NO OPERATING SYSTEM (;%el\cl) (ACSL/ (t;heory| C code
Cryptol) (Cryptol)
CRYPTO LIBRARY

v architecture ber;?)\éigra firmwarem firmware
CRYPTO FIRMWARE spec theor
FIRMWARE e aosu || Jheory | cods
Cryptol)
L ™ JAN
RISC-V 1in . _V i
oy BSV in Coq RISC-V 1in SV
RISC-V
HARDWARE
CPU ™ ™ ™
aes CAES 1n AES in BSV AES in SV
NI ryptol

© 2018 Galois, Inc.

SHAVE Abstract State Machines

(System Initialization)

. SRRt ik Ry g g g Y
\
! |
|
. . Powered Operating Mode = !
Power On ——m—> Test Mode ————> '
E { On | { Test Mode } :
: START | :
|
|
: Normal Mode X :
|
: i |
| \ v |
! Operating Mode = o :
E { Normal Mode A > [|nitialized } :
J |
§)
N Bootand Config I

Behavior Mode =
Decrypt | pecrypting Mode

Encrypt | Behavior Mode =
Encrypting Mode X
{ Initialized J— Boot H{ Booted >{ Configured }
k K

-—ee - - —— o —— —— — — —— — — —— — — — — —
———————————————_—_—_—_—_

(
\

© 2018 Galois, Inc.

SHAVE Assurance Case

® assurance case via layered rely/guarantee

e entire system formally specified and assured except
for (a) implementation of RISC-V ISA, and (b)
behavior below RTL

® entire assurance case hangs on realization of system
ASM composing ASMs for soft/firmware

® security properties include reset predicate, write-once
key, no key leakage, crypto correctness, and
guarantee that all bits are always encrypt/decrypted

e also includes formally verified trusted boot for RISC-V

© 2018 Galois, Inc.

Assurance Technologies and
Compositionality

e userland software and firmware specified In
BON, PVS, ACSL, Cryptol, & SAW and verified
using multiple Frama-C plugins, PVS, Cryptol,
and SAW

e hardware and state machine assurance via
Cryptol and SAW

¢ including a new frontend on SAW for
reasoning about Bluespec SystemVerilog

e (Cryptol is the compositional formal model that
spans formalisms and tools

© 2018 Galois, Inc.

Composed Assurance Case

e ad hoc

e human reviewed to ensure specs written in
different concrete languages are consistent

e complex!

e need a SAW-like assurance language that
understands evidence

e we're working on that for SSITH for hardware
(and firmware) security, and some day...

© 2018 Galois, Inc.

Comparison of Experience with
other BISL Technologies

e we have ~20 years of experience using
CodeContracts, SPARK, Eiffel, and JML

e we have written several formal verification and
rigorous validation tools on these foundations

e our statements of joy and disappointment with
respect to ACSL and Frama-C come from this
background, with love

© 2018 Galois, Inc.

Frama-C Tools and Techniques Used

e both mainstream & experimental plugins used

e metrics, callback, pdg, and from analysis to
drive verification process

e ASM reasoning with Aoral

e rtegen for combined reasoning a la Julien’s talk
this morning on combining RTE+E-ACSL

e value analysis for unexpected behavior
e Wp reasoning about functional correctness

© 2018 Galois, Inc.

Our Experiences

e tool documentation is very good
e tool behavior is not as reliable as compilers

e the “fine print” is hard to find and understand even for a
formal methods expert

e understanding the dependencies between, and order in
which, different plugins should/can be used is complex

e experimental aspects of ACSL and reasoning tools are
what we need most for scaling (advanced logic
specifications, sets and lists, model programs, memory
model subtleties, etc.)

© 2018 Galois, Inc.

Constructive Next Steps

e we continue to use Frama-C at Galois as one
of the tools in our toolbox

e Frama-C complements our reasoning
capabilities (embodied in Cryptol and SAW)

® Wwe see opportunities for writing new (possibly
open source) plugins that relate to our work on
hardware security and firmware reasoning

© 2018 Galois, Inc.

