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About Galois

e established in 1999 to apply functional
programming and formal methods to the
problem of information assurance

e over 40 active projects for numerous clients,
both U.S. government (NSA, DARPA, IARPA,
Homeland Security, Air Force Research Lab)
and commercial (Amazon, LG, others)

e over the years, we have substantially broadened
our scope to high assurance everything
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Galois and Frama-C

Galois has used Frama-C on some projects
DARPA Crowdsourced Formal Verification
e WP plugin to generate verification conditions

e custom plugins to generate schematic
assertions and program traces

DARPA SHAVE

Our clients rarely ask for formal verification in

Frama-C’s “sweet spot”
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SHAVE: Software/Hardware
Assurance Verified End-to-End

e DARPA MTO seedling for the SSITH program
® a bump-in-wire encryption device

¢ single, one-time AES key provisioning

e encryption or decryption mutual exclusion

e open hardware, firmware, and software

o crypto realized as a MMIO RISC-V extension

e custom development of a verification system for
Bluespec hardware description language
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SHAVE Assurance
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T

he SHAVE Process

SHAVE Process
Systems Engineering Point-of-view

. ] define an informal 5 perform domain 3 [ specify informal
domain model engineering domain model system requwements

X

formalize

Systems Engineer ma

automatically generated

nually implement validation ocowise implement
properties that cannot be 14 P P
speC|f|cat|on

13

/

implement “bottom”
behavior for all
implementations

T

12

specify concrete
implementations that
refine models

f

11

automatically generate

execute runtime formally verify
verification of test implementations
benches against all models
16 16

N

reason about concrete
implementations to ensure
that they are fit for purpose

validation bench from
specifications J

< 10

] [ specify dynamic ]

5

v

[ specify static system ]

architecture

6

system model

7

{

specify the behavior of
the system model

v

[ reason about all formal ]
models to ensure that |< 9
[ they are fit for purpose J

[ formalize informal
system requirements
L as properties

© 2018 Galois, Inc.



The SHAVE Architecture
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SHAVE Abstract State Machines
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SHAVE Assurance Case

® assurance case via layered rely/guarantee

e entire system formally specified and assured except
for (a) implementation of RISC-V ISA, and (b)
behavior below RTL

® entire assurance case hangs on realization of system
ASM composing ASMs for soft/firmware

® security properties include reset predicate, write-once
key, no key leakage, crypto correctness, and
guarantee that all bits are always encrypt/decrypted

e also includes formally verified trusted boot for RISC-V
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Assurance Technologies and
Compositionality

e userland software and firmware specified In
BON, PVS, ACSL, Cryptol, & SAW and verified
using multiple Frama-C plugins, PVS, Cryptol,
and SAW

e hardware and state machine assurance via
Cryptol and SAW

¢ including a new frontend on SAW for
reasoning about Bluespec SystemVerilog

e (Cryptol is the compositional formal model that
spans formalisms and tools
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Composed Assurance Case

e ad hoc

e human reviewed to ensure specs written in
different concrete languages are consistent

e complex!

e need a SAW-like assurance language that
understands evidence

e we're working on that for SSITH for hardware
(and firmware) security, and some day...
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Comparison of Experience with
other BISL Technologies

e we have ~20 years of experience using
CodeContracts, SPARK, Eiffel, and JML

e we have written several formal verification and
rigorous validation tools on these foundations

e our statements of joy and disappointment with
respect to ACSL and Frama-C come from this
background, with love
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Frama-C Tools and Techniques Used

e both mainstream & experimental plugins used

e metrics, callback, pdg, and from analysis to
drive verification process

e ASM reasoning with Aoral

e rtegen for combined reasoning a la Julien’s talk
this morning on combining RTE+E-ACSL

e value analysis for unexpected behavior
e Wp reasoning about functional correctness
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Our Experiences

e tool documentation is very good
e tool behavior is not as reliable as compilers

e the “fine print” is hard to find and understand even for a
formal methods expert

e understanding the dependencies between, and order in
which, different plugins should/can be used is complex

e experimental aspects of ACSL and reasoning tools are
what we need most for scaling (advanced logic
specifications, sets and lists, model programs, memory
model subtleties, etc.)
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Constructive Next Steps

e we continue to use Frama-C at Galois as one
of the tools in our toolbox

e Frama-C complements our reasoning
capabilities (embodied in Cryptol and SAW)

® Wwe see opportunities for writing new (possibly
open source) plugins that relate to our work on
hardware security and firmware reasoning
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