
E-ACSL
Executable ANSI/ISO C Specification Language
Version 1.9

E-ACSL

Executable ANSI/ISO C Speci�cation
Language

Version 1.9

Julien Signoles

CEA LIST, Software Reliability Laboratory

c©2011-2013 CEA LIST

This work has been supported by the `Hi-Lite' FUI project (FUI AAP 9).

CONTENTS

Contents

1 Introduction 11

1.1 Organization of this document . 11

1.2 Generalities about Annotations . 11

1.3 Notations for grammars . 11

2 Speci�cation language 13

2.1 Lexical rules . 13

2.2 Logic expressions . 13

2.2.1 Operators precedence . 17

2.2.2 Semantics . 17

2.2.3 Typing . 19

2.2.4 Integer arithmetic and machine integers 19

2.2.5 Real numbers and �oating point numbers 19

2.2.6 C arrays and pointers . 19

2.2.7 Structures, Unions and Arrays in logic 19

2.2.8 String literals . 19

2.3 Function contracts . 19

2.3.1 Built-in constructs \old and \result . 19

2.3.2 Simple function contracts . 21

2.3.3 Contracts with named behaviors . 21

2.3.4 Memory locations and sets of terms . 21

2.3.5 Default contracts, multiple contracts 21

2.4 Statement annotations . 22

2.4.1 Assertions . 22

2.4.2 Loop annotations . 22

2.4.3 Built-in construct \at . 24

2.4.4 Statement contracts . 25

2.5 Termination . 25

2.5.1 Integer measures . 25

5

CONTENTS

2.5.2 General measures . 25

2.5.3 Recursive function calls . 25

2.5.4 Non-terminating functions . 25

2.6 Logic speci�cations . 26

2.6.1 Predicate and function de�nitions . 26

2.6.2 Lemmas . 26

2.6.3 Inductive predicates . 26

2.6.4 Axiomatic de�nitions . 26

2.6.5 Polymorphic logic types . 26

2.6.6 Recursive logic de�nitions . 27

2.6.7 Higher-order logic constructions . 27

2.6.8 Concrete logic types . 27

2.6.9 Hybrid functions and predicates . 27

2.6.10 Memory footprint speci�cation: reads clause 27

2.6.11 Speci�cation Modules . 27

2.7 Pointers and physical adressing . 27

2.7.1 Memory blocks and pointer dereferencing 27

2.7.2 Separation . 27

2.7.3 Allocation and deallocation . 28

2.8 Sets as �rst-class values . 28

2.9 Abrupt termination . 28

2.10 Dependencies information . 28

2.11 Data invariants . 28

2.11.1 Semantics . 29

2.11.2 Model variables and model �elds . 29

2.12 Ghost variables and statements . 29

2.12.1 Volatile variables . 29

2.13 Unde�ned values, dangling pointers . 29

3 Libraries 31

4 Conclusion 33

A Appendices 35

A.1 Changes . 36

A.1.1 Version 1.9 . 36

A.1.2 Version 1.8 . 36

A.1.3 Version 1.7 . 36

A.1.4 Version 1.5-4 . 36

6

CONTENTS

A.1.5 Version 1.5-3 . 36

A.1.6 Version 1.5-2 . 37

A.1.7 Version 1.5-1 . 37

A.1.8 Version 1.5-0 . 37

Bibliography 39

List of Figures 41

Index 43

7

CONTENTS

Foreword

This is a preliminary design of the E-ACSL language, a deliverable of the task 3.4 of the
FUI-9 project Hi-Lite (http://www.open-do.org/projects/hi-lite).

This is the version 1.9 of E-ACSL design based on ACSL version 1.9 [2]. Several features
may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin, Bernard
Botella, Loïc Correnson, Pascal Cuoq, Johannes Kanig, David Mentré, Benjamin Monate,
Yannick Moy and Virgile Prevosto.

9

http://www.open-do.org/projects/hi-lite

Chapter 1

Introduction

This document is a reference manual for E-ACSL. E-ACSL is an acronym for �Executable
ANSI/ISO C Speci�cation Language�. It is an �executable� subset of stable ACSL [2] imple-
mented [1] in the Frama-C platform [5]. �Stable� means that no experimental ACSL feature
is supported by E-ACSL. Contrary to ACSL, each E-ACSL speci�cation is executable: it
may be evaluated at runtime.

In this document, we assume that the reader has a good knowledge of both ACSL [2] and the
ANSI C programming language [7, 8].

1.1 Organization of this document

This document is organized in the very same way that the reference manual of ACSL [2].

Instead of being a fully new reference manual, this document points out the di�erences between
E-ACSL and ACSL. Each E-ACSL construct which is not pointed out must be considered to
have the very same semantics than its ACSL counterpart. For clarity, each relevant grammar
rules are given in BNF form in separate �gures like the ACSL reference manual does. In
these rules, constructs with semantic changes are displayed in blue.

1.2 Generalities about Annotations

No di�erence with ACSL.

1.3 Notations for grammars

No di�erence with ACSL.

11

Chapter 2

Speci�cation language

2.1 Lexical rules

No di�erence with ACSL.

2.2 Logic expressions

No di�erence with ACSL, but guarded quanti�catication..

More precisely, grammars of terms and binders presented respectively Figures 2.1 and 2.3 are
the same than the one of ACSL, while Figure 2.2 presents grammar of predicates. The only
di�erence between E-ACSL and ACSL predicates are quanti�cations.

Reals are not correctly supported by the E-ACSL plug-in right now. Only �oating point
numbers are supported: real constants and operations are seen as C �oating point constants
and operations.

Quanti�cation

E-ACSL quanti�cation must be computable. They are limited to two limited forms.

Guarded integer quanti�cation Guarded universal quanti�cation is denoted by

\ f o r a l l τ x1,. . .,xn;
a1 <= x1 <= b1 . . . && an <= xn <= bn
==> p

and guarded existential quanti�cation by

\ e x i s t s τ x1,. . .,xn;
a1 <= x1 <= b1 . . . && an <= xn <= bn
&& p

Each variable must be guarded exactly once and the guard of xi must appear before the
guard of xj if i < j (i.e. order of guards must follow order of binders).

Following the de�nition, each quanti�ed variable belongs to a �nite interval. Since �nite
interval is only computable in practice for integers, this form of quanti�er is limited to
integer and its subtype. Thus there is no guarded quanti�cation over float, real, C
pointers or logic types.

13

CHAPTER 2. SPECIFICATION LANGUAGE

literal ::= \true | \false boolean constants
| integer integer constants
| real real constants
| string string constants
| character character constants

bin-op ::= + | - | * | / | % | << | >>

| == | != | <= | >= | > | <

| && | || | ^^ boolean operations
| & | | | --> | <--> | ^ bitwise operations

unary-op ::= + | - unary plus and minus
| ! boolean negation
| ~ bitwise complementation
| * pointer dereferencing
| & address-of operator

term ::= literal literal constants
| id variables
| unary-op term

| term bin-op term

| term [term] array access
| { term \with [term] = term } array functional modi�er
| term . id structure �eld access
| { term \with . id = term } �eld functional modi�er
| term -> id

| (type-expr) term cast
| id (term (, term)∗) function application
| (term) parentheses
| term ? term : term ternary condition
| \let id = term ; term local binding
| sizeof (term)

| sizeof (C-type-name)

| id : term syntactic naming
| string : term syntactic naming

Figure 2.1: Grammar of terms

14

2.2. LOGIC EXPRESSIONS

rel-op ::= == | != | <= | >= | > | <

pred ::= \true | \false

| term (rel-op term)+ comparisons
| id (term (, term)∗) predicate application
| (pred) parentheses
| pred && pred conjunction
| pred || pred disjunction
| pred ==> pred implication
| pred <==> pred equivalence
| ! pred negation
| pred ^^ pred exclusive or
| term ? pred : pred ternary condition
| pred ? pred : pred

| \let id = term ; pred local binding
| \let id = pred ; pred

| \forall binders ;

integer-guards ==> pred univ. integer quanti�cation
| \exists binders ;

integer-guards && pred exist. integer quanti�cation
| \forall binders ;

iterator-guard ==> pred univ. iterator quanti�cation
| \exists binders ;

iterator-guard && pred exist. iterator quanti�cation
| \forall binders ; pred univ. quanti�cation
| \exists binders ; pred exist. quanti�cation
| id : pred syntactic naming
| string : pred syntactic naming

integer-guards ::= interv (&& interv)∗

interv ::= (term integer-guard-op)+

id

(integer-guard-op term)+

integer-guard-op ::= <= | <

iterator-guard ::= id (term , term)

Figure 2.2: Grammar of predicates

15

CHAPTER 2. SPECIFICATION LANGUAGE

binders ::= binder (, binder)∗

binder ::= type-expr variable-ident

(,variable-ident)∗

type-expr ::= logic-type-expr | C-type-name

logic-type-expr ::= built-in-logic-type

| id type identi�er

built-in-logic-type ::= boolean | integer | real

variable-ident ::= id | * variable-ident

| variable-ident []

| (variable-ident)

Figure 2.3: Grammar of binders and type expressions

Iterator quanti�cation In order to iterate over non-integer types, E-ACSL introduces a
notion of iterators over types: standard ACSL unguarded quanti�cations are only
allowed over a type which an iterator is attached to.

Iterators are introduced by a speci�c construct which attachs two sets � namely nexts

and the guards � to a binary predicate over a type τ . Both sets must have the same
cardinal. This construct is described by the grammar of Figure 2.4. For a type τ , nexts

declaration ::= //@ iterator id (wildcard-param , wildcard-param) :

nexts terms ; guards predicates ;

wildcard-param ::= parameter

| _

terms ::= term (, term)∗

predicates ::= predicate (, predicate)∗

Figure 2.4: Grammar of iterator declarations

is a set of terms which take an argument of type τ and return a value of type τ which
computes the next element in this type, while guards is a set of predicates which take an
argument of type τ and are valid (resp. invalid) to continue (resp. stop) the iteration.

Furthermore, the guard of a quanti�cation using an iterator must be the predicate given
in the de�nition of the iterator. This abstract binary predicate takes two arguments of
the same type. One of them must be unnamed by using a wildcard (character under-
score '_'). The unnamed argument must be binded to the guanti�er, while the other
corresponds to the term from which the iteration begins.

Example 2.1 The following example introduces binary trees and a predicate which is
valid if and only if each value of a binary tree is even.

s t r u c t bt ree {

i n t va l ;

s t r u c t bt ree * l e f t , * r i g h t ;

};

/∗@ iterator access (_, struct btree ∗t) :
@ nexts t−>left , t−>right ;

16

2.2. LOGIC EXPRESSIONS

@ guards \ v a l i d (t−>le f t) , \ v a l i d (t−>right) ; ∗/

/∗@ predicate is_even(struct btree ∗t) =
@ \ f o r a l l struct btree ∗tt ; access (tt , t) ==> tt−>val % 2 == 0; ∗/

Unguarded quanti�cation They are only allowed over boolean and char.

2.2.1 Operators precedence

No di�erence with ACSL.

Figure 2.5 summarizes operator precedences.

class associativity operators

selection left [· · ·] -> .

unary right ! ~ + - * & (cast) sizeof

multiplicative left * / %

additive left + -

shift left << >>

comparison left < <= > >=

comparison left == !=

bitwise and left &

bitwise xor left ^

bitwise or left |

bitwise implies left -->

bitwise equiv left <-->

connective and left &&

connective xor left ^^

connective or left ||

connective implies right ==>

connective equiv left <==>

ternary connective right · · ·?· · ·:· · ·
binding left \forall \exists \let

naming right :

Figure 2.5: Operator precedence

2.2.2 Semantics

No di�erence with ACSL, but unde�nedness and same laziness than C.

More precisely, while ACSL is a 2-valued logic with only total functions, E-ACSL is a 3-
valued logic with partial functions since terms and predicates may be �unde�ned�.

In this logic, the semantics of a term denoting a C expression e is unde�ned if e leads to a
runtime error. Consequently the semantics of any term t (resp. predicate p) containing a
C expression e leading to a runtime error is unde�ned if e has to be evaluated in order to
evaluate t (resp. p).

Example 2.2 The semantics of all the below predicates are unde�ned:

17

CHAPTER 2. SPECIFICATION LANGUAGE

• 1/0 == 1/0

• f(*p) for any logic function f and invalid pointer p

Furthermore, C-like operators &&, ||, ^^ and _ ? _ : _ are lazy like in C: their right members
are evaluated only if required. Thus the amount of unde�nedness is limited. Consequently,
predicate p ==> q is also lazy since it is equivalent to !p || q. It is also the case for guarded
quanti�cations since guards are conjunctions and for ternary condition since it is equivalent
to a disjunction of implications.

Example 2.3 Below, the �rst, second and fourth predicates are invalid while the third one is
valid:

• \false && 1/0 == 1/0

• \forall integer x, -1 <= x <= 1 ==> 1/x > 0

• \forall integer x, 0 <= x <= 0 ==> \false ==> -1 <= 1/x <= 1

• \exists integer x, 1 <= x <= 0 && -1 <= 1/x <= 1

In particular, the second one is invalid since the quanti�cation is in fact an enumeration over
a �nite number of elements, it amounts to 1/-1 > 0 && 1/0 > 0 && 1/1 > 0. The �rst atomic
proposition is invalid, so the rest of the conjunction (and in particular 1/0) is not evaluated.
The fourth one is invalid since it is an existential quanti�cation over an empty range.

A contrario the semantics of predicates below is unde�ned:

• 1/0 == 1/0 && \false

• -1 <= 1/0 <= 1 ==> \true

• \exists integer x, -1 <= x <= 1 && 1/x > 0

Furthermore, casting a term denoting a C expression e to a smaller type τ is unde�ned if e is
not representable in τ .

Example 2.4 Below, the �rst term is well-de�ned, while the second one is unde�ned.

• (char)127

• (char)128

Handling unde�nedness in tools It is the responsibility of each tool which interprets
E-ACSL to ensure that an unde�ned term is never evaluated. For instance, they may exit
with a proper error message or, if they generate C code, they may guard each generated
unde�ned C expression in order to be sure that they are always safely used.

This behavior is consistent with both ACSL [2] and mainstream speci�cation languages for
runtime assertion checking like JML [9]. Consistency means that, if it exists and is de�ned,
the E-ACSL predicate corresponding to a valid (resp. invalid) ACSL predicate is valid (resp.
invalid). Thus it is possible to reuse tools interpreting ACSL like the Frama-C's value
analysis plug-in [6] in order to interpret E-ACSL, and it is also possible to perform runtime
assertion checking of E-ACSL predicates in the same way than JML predicates. Reader
interested by the implications (especially issues) of such a choice may read articles of Patrice
Chalin [3, 4].

18

2.3. FUNCTION CONTRACTS

2.2.3 Typing

No di�erence with ACSL, but no user-de�ned types.

It is not possible to de�ne logic types introduced by the speci�cation writer (see Section 2.6).

2.2.4 Integer arithmetic and machine integers

No di�erence with ACSL.

2.2.5 Real numbers and �oating point numbers

No di�erence with ACSL.

Exact real numbers and even �oating point numbers are usually di�cult to implement. Thus
you would not wonder if most tools do not support them (or support them partially).

2.2.6 C arrays and pointers

No di�erence with ACSL.

Ensuring validity of memory accesses is usually di�cult to implement, since it requires the
implementation of a memory model. Thus you would not wonder if most tools do not support
it (or support it partially).

2.2.7 Structures, Unions and Arrays in logic

No di�erence with ACSL.

Logic arrays without an explicit length are usually di�cult to implement. Thus you would not
wonder if most tools do not support them (or support them partially).

2.2.8 String literals

No di�erence with ACSL.

2.3 Function contracts

No di�erence with ACSL, but no terminates and abrupt clauses.

Figure 2.6 shows grammar of function contracts. This is a simpli�ed version of ACSL one
without terminates and abrupt clauses. Section 2.5 (resp. 2.9) explains why E-ACSL has no
terminates (resp. abrupt) clause.

2.3.1 Built-in constructs \old and \result

No di�erence with ACSL.

Figure 2.7 summarizes grammar extension of terms with \old and \result .

19

CHAPTER 2. SPECIFICATION LANGUAGE

function-contract ::= requires-clause∗

decreases-clause? simple-clause∗

named-behavior∗ completeness-clause∗

requires-clause ::= requires pred ;

decreases-clause ::= decreases term (for id)? ;

simple-clause ::= assigns-clause | ensures-clause

assigns-clause ::= assigns locations ;

locations ::= location (, location) ∗ | \nothing

location ::= tset

ensures-clause ::= ensures pred ;

named-behavior ::= behavior id : behavior-body

behavior-body ::= assumes-clause∗ requires-clause∗ simple-clause∗

assumes-clause ::= assumes pred ;

completeness-clause ::= complete behaviors (id (, id)∗)? ;

| disjoint behaviors (id (, id)∗)? ;

Figure 2.6: Grammar of function contracts

term ::= \old (term) old value
| \result result of a function

pred ::= \old (pred)

Figure 2.7: \old and \result in terms

20

2.3. FUNCTION CONTRACTS

2.3.2 Simple function contracts

No di�erence with ACSL.

\assigns is usually di�cult to implement, since it requires the implementation of a memory
model. Thus you would not wonder if most tools do not support it (or support it partially).

2.3.3 Contracts with named behaviors

No di�erence with ACSL.

2.3.4 Memory locations and sets of terms

No di�erence with ACSL, but ranges and set comprehensions are limited in order to be �nite.

Figure 2.8 describes grammar of sets of terms. The only di�erences with ACSL are that
both lower and upper bounds of ranges are mandatory and that the predicate inside set
comprehension must be guarded and bind only one variable. In that way, each set of terms is
�nite and their members easily identi�able.

tset ::= \empty empty set
| tset -> id

| tset . id

| * tset

| & tset

| tset [tset]

| term .. term range
| \union (tset (, tset)∗) union of locations
| \inter (tset (, tset)∗) intersection
| tset + tset

| (tset)

| { tset | binder ; guards (&& pred)? } set comprehension
| { term } explicit singleton
| term implicit singleton

pred ::= \subset (tset , tset) set inclusion

Figure 2.8: Grammar for sets of terms

Example 2.5 The set { x | integer x; 0 <= x <= 9 || 20 <= x <= 29 } denotes the set of
all integers between 0 and 9 and between 20 and 29.

2.3.5 Default contracts, multiple contracts

No di�erence with ACSL.

21

CHAPTER 2. SPECIFICATION LANGUAGE

2.4 Statement annotations

2.4.1 Assertions

No di�erence with ACSL.

Figure 2.9 summarizes grammar for assertions.

C-compound-statement ::= { declaration∗ statement∗ assertion+ }

C-statement ::= assertion statement

assertion ::= /*@ assert pred ; */

| /*@ for id (, id)∗ : assert pred ; */

Figure 2.9: Grammar for assertions

2.4.2 Loop annotations

No di�erence with ACSL, but loop invariants lose their inductive nature.

Figure 2.10 shows grammar for loop annotations. There is no syntactic di�erence with ACSL.

statement ::= /*@ loop-annot */

while (C-expression) C-statement

| /*@ loop-annot */

for

(C-expression ; C-expression ; C-expression)

statement

| /*@ loop-annot */

do C-statement

while (C-expression) ;

loop-annot ::= loop-clause∗

loop-behavior∗

loop-variant?

loop-clause ::= loop-invariant

| loop-assigns

loop-invariant ::= loop invariant pred ;

loop-assigns ::= loop assigns locations ;

loop-behavior ::= for id (, id)∗ :

loop-clause∗ annotation for behavior id

loop-variant ::= loop variant term ;

| loop variant term for id ; variant for relation id

Figure 2.10: Grammar for loop annotations

22

2.4. STATEMENT ANNOTATIONS

loop assigns is usually di�cult to implement, since it requires the implementation of a memory
model. Thus you would not wonder if most tools do not support it (or support it partially).

Loop invariants

The semantics of loop invariants is the same than the one de�ned in ACSL, except that
they are not inductive. More precisely, if one does not take care of side e�ects (semantics of
speci�cations about side e�ects in loop is the same in E-ACSL than the one in ACSL), a
loop invariant I is valid in ACSL if and only if:

• I holds before entering the loop; and

• if I is assumed true in some state where the loop condition c is also true, and if execution
of the loop body in that state ends normally at the end of the body or with a "continue"
statement, I is true in the resulting state.

In E-ACSL, the same loop invariant I is valid if and only if:

• I holds before entering the loop; and

• if execution of the loop body in that state ends normally at the end of the body or with
a "continue" statement, I is true in the resulting state.

Thus the only di�erence with ACSL is that E-ACSL does not assume that the invariant
previously holds when one checks that it holds at the end of the loop body. In other words
a loop invariant I is equivalent to put an assertion I just before entering the loop and at the
very end of the loop body.

Example 2.6 In the following, bsearch(t,n,v) searches for element v in array t between
indices 0 and n-1.

/∗@ requires n >= 0 && \ v a l i d (t+(0..n−1));
@ assigns \noth ing ;
@ ensures −1 <= \ r e s u l t <= n−1;
@ behavior success :
@ ensures \ r e s u l t >= 0 ==> t [\ r e s u l t] == v;
@ behavior fa i lure :
@ assumes t_is_sorted : \ f o r a l l integer k1 , int k2 ;
@ 0 <= k1 <= k2 <= n−1 ==> t [k1] <= t [k2] ;
@ ensures \ r e s u l t == −1 ==>
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k] != v;
@∗/

i n t bsearch (doub l e t [], i n t n, doub l e v) {

i n t l = 0, u = n-1;

/∗@ loop invariant 0 <= l && u <= n−1;
@ for fa i lure : loop invariant
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k] == v ==> l <= k <= u;
@∗/

wh i l e (l <= u) {

i n t m = l + (u- l)/2; // better than (l+u)/2
i f (t [m] < v) l = m + 1;

e l s e i f (t [m] > v) u = m - 1;

e l s e r e t u r n m;

}

r e t u r n -1;

}

In E-ACSL, this annotated function is equivalent to the following one since loop invariants
are not inductive.

23

CHAPTER 2. SPECIFICATION LANGUAGE

assertion ::= /*@ invariant pred ; */

| /*@ for id (, id)∗ : invariant pred ; */

Figure 2.11: Grammar for general inductive invariants

/∗@ requires n >= 0 && \ v a l i d (t+(0..n−1));
@ assigns \noth ing ;
@ ensures −1 <= \ r e s u l t <= n−1;
@ behavior success :
@ ensures \ r e s u l t >= 0 ==> t [\ r e s u l t] == v;
@ behavior fa i lure :
@ assumes t_is_sorted : \ f o r a l l integer k1 , int k2 ;
@ 0 <= k1 <= k2 <= n−1 ==> t [k1] <= t [k2] ;
@ ensures \ r e s u l t == −1 ==>
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k] != v;
@∗/

i n t bsearch (doub l e t [], i n t n, doub l e v) {

i n t l = 0, u = n-1;

/∗@ assert 0 <= l && u <= n−1;
@ for fa i lure : assert
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k] == v ==> l <= k <= u;
@∗/

wh i l e (l <= u) {

i n t m = l + (u- l)/2; // better than (l+u)/2
i f (t [m] < v) l = m + 1;

e l s e i f (t [m] > v) u = m - 1;

e l s e r e t u r n m;

/∗@ assert 0 <= l && u <= n−1;
@ for fa i lure : assert
@ \ f o r a l l integer k ; 0 <= k < n ==> t [k] == v ==> l <= k <= u;
@∗/ ;

}

r e t u r n -1;

}

General inductive invariant

Syntax of these kinds of invariant is shown Figure 2.11

In E-ACSL, these kinds of invariants put everywhere in a loop body is exactly equivalent to
an assertion.

2.4.3 Built-in construct \at

No di�erence with ACSL, but no forward references.

The construct \at(t,id) (where id is a regular C label, a label added within a ghost statement
or a default logic label) follows the same rule than its ACSL counterpart, except that a more
restrictive scoping rule must be respected in addition to the standard ACSL scoping rule:
when evaluating \at(t,id) at a propram point p, the program point p′ denoted by id must
be executed after p the program execution �ow.

Example 2.7 In the following example, both assertions are accepted and valid in ACSL,
but only the �rst one is accepted and valid in E-ACSL since evaluating the term
\at(*(p+\at(*q,Here)),L1) at L2 requires to evaluate the term \at(*q,Here) at L1: that
is forbidden since L1 is executed before L2.

24

2.5. TERMINATION

/∗@ requires \ v a l i d (p+(0..1));
@ requires \ v a l i d (q) ;
@∗/

vo i d f (i n t *p, i n t *q) {

*p = 0;

*(p+1) = 1;

*q = 0;

L1: *p = 2;

*(p+1) = 3;

*q = 1;

L2:

/∗@ assert (\at (∗(p+\at (∗q,L1)) ,Here) == 2); ∗/
/∗@ assert (\at (∗(p+\at (∗q,Here)) ,L1) == 1); ∗/
r e t u r n ;

}

2.4.4 Statement contracts

No di�erence with ACSL, but no abrupt clauses.

Figure 2.6 shows grammar of statement contracts. Like function contracts, this is a simpli�ed
version of ACSL with no abrupt clauses. All other constructs are unchanged.

statement ::= /*@ statement-contract */ statement

statement-contract ::= (for id (, id)∗ :)? requires-clause∗

simple-clause∗ behavior-body∗

Figure 2.12: Grammar for statement contracts

2.5 Termination

No di�erence with ACSL, but no terminates clauses.

2.5.1 Integer measures

No di�erence with ACSL.

2.5.2 General measures

No di�erence with ACSL.

2.5.3 Recursive function calls

No di�erence with ACSL.

2.5.4 Non-terminating functions

No such feature in E-ACSL, since it is still experimental in ACSL.

25

CHAPTER 2. SPECIFICATION LANGUAGE

2.6 Logic speci�cations

Limited to stable and computable features.

Figure 2.13 presents grammar of logic de�nitions. This is the same than the one of ACSL
without polymorphic de�nitions, lemmas, nor axiomatics.

C-global-decl ::= /*@ logic-def + */

logic-def ::= logic-const-def

| logic-function-def

| logic-predicate-def

type-expr ::= id

logic-const-def ::= logic type-expr id = term ;

logic-function-def ::= logic type-expr id parameters = term ;

logic-predicate-def ::= predicate id parameters? = pred ;

parameters ::= (parameter (, parameter)∗)

parameter ::= type-expr id

Figure 2.13: Grammar for global logic de�nitions

2.6.1 Predicate and function de�nitions

No di�erence with ACSL.

2.6.2 Lemmas

No such feature in E-ACSL: lemmas are user-given propositions. They are written usually
to help theorem provers to establish validity of speci�cations. Thus they are mostly useful
for veri�cation activities based on deductive methods which are out of the scope of E-ACSL.
Furthermore, they often requires human help to be proven, although E-ACSL targets are
automatic tools.

2.6.3 Inductive predicates

No such feature in E-ACSL: inductive predicates are not computable if they really use their
inductive nature.

2.6.4 Axiomatic de�nitions

No such feature in E-ACSL: by nature, an axiomatic is not computable.

2.6.5 Polymorphic logic types

No such feature in E-ACSL, since it is still experimental in ACSL.

26

2.7. POINTERS AND PHYSICAL ADRESSING

2.6.6 Recursive logic de�nitions

No di�erence with ACSL.

2.6.7 Higher-order logic constructions

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.8 Concrete logic types

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.9 Hybrid functions and predicates

No di�erence with ACSL.

Hybrid functions and predicates are usually di�cult to implement, since they require the im-
plementation of a memory model (or at least to support \at). Thus you would not wonder if
most tools do not support them (or support them partially).

2.6.10 Memory footprint speci�cation: reads clause

No such feature in E-ACSL, since it is still experimental in ACSL.

2.6.11 Speci�cation Modules

No di�erence with ACSL.

2.7 Pointers and physical adressing

No di�erence with ACSL, but separation.

Figure 2.14 shows the additional constructs for terms and predicates which are related to
memory location.

2.7.1 Memory blocks and pointer dereferencing

No di�erence with ACSL.

\base_addr, \block_length, \valid , \valid_read and \o�set are usually di�cult to implement,
since they require the implementation of a memory model. Thus you would not wonder if most
tools do not support them (or support them partially).

2.7.2 Separation

No di�erence with ACSL.

\separated are usually di�cult to implement, since they require the implementation of a mem-
ory model. Thus you would not wonder if most tools do not support them (or support them
partially).

27

CHAPTER 2. SPECIFICATION LANGUAGE

term ::= \null

| \base_addr one-label? (term)

| \block_length one-label? (term)

| \o�set one-label? (term)

| \allocation one-label? (term)

pred ::= \allocable one-label? (term)

| \freeable one-label? (term)

| \fresh two-labels? (term, term)

| \valid one-label? (location-address)

| \valid_read one-label? (location-address)

| \separated (location-address , location-addresses)

one-label ::= { id }

two-labels ::= { id, id }

location-addresses ::= location-address (, location-address)∗

location-address ::= tset

Figure 2.14: Grammar extension of terms and predicates about memory

2.7.3 Allocation and deallocation

All these constructs are usually di�cult to implement, since they require the implementation
of a memory model. Thus you would not wonder if most tools do not support them (or support
them partially).

Warning: this section is still almost experimental in ACSL. Thus it might still evolve in
the future.

2.8 Sets as �rst-class values

No di�erence with ACSL.

2.9 Abrupt termination

No such feature in E-ACSL, since it is still experimental in ACSL.

2.10 Dependencies information

No such feature in E-ACSL, since it is still experimental in ACSL.

2.11 Data invariants

No di�erence with ACSL.

Figure 2.15 summarizes grammar for declarations of data invariants.

28

2.12. GHOST VARIABLES AND STATEMENTS

declaration ::= /*@ data-inv-decl */

data-inv-decl ::= data-invariant | type-invariant

data-invariant ::= inv-strength? global invariant

id : pred ;

type-invariant ::= inv-strength? type invariant

id (C-type-name id) = pred ;

inv-strength ::= weak | strong

Figure 2.15: Grammar for declarations of data invariants

2.11.1 Semantics

No di�erence with ACSL.

2.11.2 Model variables and model �elds

No di�erence with ACSL.

Figure 2.16 summarizes grammar for declarations of model variables and �elds.

declaration ::= C-declaration

| /*@ model parameter ; */ model variable
| /*@ model C-type-name { parameter ;? } ; */ model �eld

Figure 2.16: Grammar for declarations of model variables and �elds

2.12 Ghost variables and statements

No di�erence with ACSL, but no speci�c construct for volatile variables.

Figure 2.17 summarizes grammar for ghost statements which is the same than the one of
ACSL.

2.12.1 Volatile variables

No such feature in E-ACSL, since it is still experimental in ACSL.

2.13 Unde�ned values, dangling pointers

No di�erence with ACSL.

\initialized and \dangling are usually di�cult to implement, since they require the implemen-
tation of a memory model. Thus you would not wonder if most tools do not support them (or
support them partially).

29

CHAPTER 2. SPECIFICATION LANGUAGE

ghost-type-speci�er ::= C-type-speci�er

| logic-type

declaration ::= C-declaration

| /*@ ghost ghost-declaration */

direct-declarator ::= C-direct-declarator

| direct-declarator

(C-parameter-type-list?)

/*@ ghost

(ghost-parameter-list)

*/ ghost args

post�x-expression ::= C-post�x-expression

| post�x-expression

(C-argument-expression-list?)

/*@ ghost

(ghost-argument-expression-list)

*/ call with ghosts

statement ::= C-statement

| statements-ghost

statements-ghost ::= /*@ ghost

ghost-statement+ */

ghost-selection-statement ::= C-selection-statement

| if (C-expression)

statement

/*@ ghost else

ghost-statement+

*/

struct-declaration ::= C-struct-declaration

| /*@ ghost

struct-declaration */ ghost �eld

Figure 2.17: Grammar for ghost statements

30

Chapter 3

Libraries

Disclaimer: this chapter is yet empty. It is left here to give an idea of what the �nal document
will look and to be consistent with the ACSL reference manual [2].

31

Chapter 4

Conclusion

This document presents an Executable ANSI/ISO C Speci�cation Language. It provides a
subset of ACSL [2] implemented [1] in the Frama-C platform [5] in which each construct
may be evaluated at runtime. The speci�cation language described here is intented to evolve
in the future in two directions. First it is based on ACSL which is itself still evolving. Second
the considered subset of ACSL may also change.

33

AppendixA

Appendices

35

APPENDIX A. APPENDICES

A.1 Changes

A.1.1 Version 1.9

• Section 2.7.3: include this section.

• Update according to ACSL 1.9.

A.1.2 Version 1.8

• Section 2.3.4: Fix example 2.5.

• Section 2.7: Add grammar of memory-related terms and predicates.

A.1.3 Version 1.7

• Update according to ACSL 1.7.

• Section 2.7.2: no more absent.

A.1.4 Version 1.5-4

• Fix typos.

• Section 2.2: �x syntax of guards in iterators.

• Section 2.2.2: �x de�nition of unde�ned terms and predicates.

• Section 2.2.3: no user-de�ned types.

• Section 2.3.1: no more implementation issue for \old.

• Section 2.4.3: more restrictive scoping rule for label references in \at.

A.1.5 Version 1.5-3

• Fix various typos.

• Warn about features known to be di�cult to implement.

• Section 2.2: �x semantics of ternary operator.

• Section 2.2: �x semantics of cast operator.

• Section 2.2: improve syntax of iterator quanti�cations.

• Section 2.2.2: improve and �x example 2.3.

• Section 2.4.2: improve explanations about loop invariants.

• Section 2.6.9: add hybrid functions and predicates.

36

A.1. CHANGES

A.1.6 Version 1.5-2

• Section 2.2: remove laziness of operator <==>.

• Section 2.2: restrict guarded quanti�cations to integer.

• Section 2.2: add iterator quanti�cations.

• Section 2.2: extend unguarded quanti�cations to char.

• Section 2.3.4: extend syntax of set comprehensions.

• Section 2.4.2: simplify explanations for loop invariants and add example..

A.1.7 Version 1.5-1

• Fix many typos.

• Highlight constructs with semantic changes in grammars.

• Explain why unsupported features have been removed.

• Indicate that experimental ACSL features are unsupported.

• Add operations over memory like \valid .

• Section 2.2: lazy operators &&, ||, ^^, ==> and <==>.

• Section 2.2: allow unguarded quanti�cation over boolean.

• Section 2.2: revise syntax of \exists .

• Section 2.2.2: better semantics for unde�nedness.

• Section 2.3.4: revise syntax of set comprehensions.

• Section 2.4.2: add loop invariants, but they lose their inductive ACSL nature.

• Section 2.5.2: add general measures for termination.

• Section 2.6.11: add speci�cation modules.

A.1.8 Version 1.5-0

• Initial version.

37

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL version 1.5, Implementation in
Carbon-20110201, February 2011. http://frama-c.com/acsl.html.

[2] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL, ANSI/ISO C Speci�cation Language, February 2011.
Vesion 1.5. http://frama-c.com/acsl.html.

[3] Patrice Chalin. Reassessing JML's logical foundation. In Proceedings of the 7th Workshop
on Formal Techniques for Java-like Programs (FTfJP'05), Glasgow, Scotland, July 2005.

[4] Patrice Chalin. A sound assertion semantics for the dependable systems evolution veri-
fying compiler. In Proceedings of the International Conference on Software Engineering
(ICSE'07), pages 23�33, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[5] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Virgile Prevosto, Armand Puccetti, Julien
Signoles, and Boris Yakobowski. Frama-C User Manual, October 2011. http://frama-c.
com.

[6] Pascal Cuoq and Virgile Prevosto. Frama-C's value analysis plug-in, October 2011. http:
//frama-c.com/value.html.

[7] International Organization for Standardization (ISO). The ANSI C standard (C99). http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[8] Brian Kernighan and Dennis Ritchie. The C Programming Language (2nd Ed.). Prentice-
Hall, 1988.

[9] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
Minneapolis, Minnesota, pages 105�106, 2000.

39

http://frama-c.com/acsl.html
http://frama-c.com/acsl.html
http://frama-c.com
http://frama-c.com
http://frama-c.com/value.html
http://frama-c.com/value.html
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf

LIST OF FIGURES

List of Figures

2.1 Grammar of terms . 14

2.2 Grammar of predicates . 15

2.3 Grammar of binders and type expressions . 16

2.4 Grammar of iterator declarations . 16

2.5 Operator precedence . 17

2.6 Grammar of function contracts . 20

2.7 \old and \result in terms . 20

2.8 Grammar for sets of terms . 21

2.9 Grammar for assertions . 22

2.10 Grammar for loop annotations . 22

2.11 Grammar for general inductive invariants . 24

2.12 Grammar for statement contracts . 25

2.13 Grammar for global logic de�nitions . 26

2.14 Grammar extension of terms and predicates about memory 28

2.15 Grammar for declarations of data invariants 29

2.16 Grammar for declarations of model variables and �elds 29

2.17 Grammar for ghost statements . 30

41

INDEX

Index

?, 14, 15
_, 16

\allocable , 28
\allocation , 28
annotation, 22
assert , 22
assigns , 20, 22
assumes, 20
\at, 24

\base_addr, 28
behavior, 21
behavior , 20
behaviors , 20
\block_length, 28
boolean, 16

complete, 20
contract, 19, 25

data invariant, 28
decreases , 20
\decreases , 25
disjoint , 20
do, 22

else , 30
\empty, 21
ensures , 20
\exists , 15

\false , 14, 15
for , 20, 22, 24, 25
\forall , 15
\freeable , 28
\fresh , 28
function behavior, 21
function contract, 19

ghost, 29
ghost, 30
global , 29

global invariant, 28
grammar entries

C-compound-statement, 22
C-global-decl, 26
C-statement, 22
assertion, 22, 24
assigns-clause, 20
assumes-clause, 20
behavior-body, 20
bin-op, 14
binders, 16
binder, 16
built-in-logic-type, 16
completeness-clause, 20
data-inv-decl, 29
data-invariant, 29
declaration, 16, 29, 30
decreases-clause, 20
direct-declarator, 30
ensures-clause, 20
function-contract, 20
ghost-selection-statement, 30
ghost-type-speci�er, 30
integer-guard-op, 15
integer-guards, 15
interv, 15
inv-strength, 29
iterator-guard, 15
literal, 14
location-addresses, 28
location-address, 28
locations, 20
location, 20
logic-const-def, 26
logic-def, 26
logic-function-def, 26
logic-predicate-def, 26
logic-type-expr, 16
loop-annot, 22
loop-assigns, 22
loop-behavior, 22

43

INDEX

loop-clause, 22

loop-invariant, 22

loop-variant, 22

named-behavior, 20

one-label, 28

parameters, 26

parameter, 26

post�x-expression, 30

predicates, 16

pred, 15, 20, 21, 28

rel-op, 15

requires-clause, 20

simple-clause, 20

statement-contract, 25

statements-ghost, 30

statement, 22, 25, 30

struct-declaration, 30

terms, 16

term, 14, 20, 28

tset, 21

two-labels, 28

type-expr, 16, 26

type-invariant, 29

unary-op, 14

variable-ident, 16

wildcard-param, 16

guards, 16

hybrid

function, 27

predicate, 27

if , 30

integer , 16

\inter , 21

invariant, 23

data, 28

global, 28

type, 28

invariant , 22, 24, 29

iterator, 16

\let , 14, 15

location, 28

logic , 26

logic speci�cation, 26

loop, 22

model, 29

model, 29

nexts, 16
\nothing, 20
\null , 28

\o�set , 28
\old, 20

predicate , 26

real , 16
recursion, 27
requires , 20
\result , 20

\separated , 28
sizeof , 14
speci�cation, 26
statement contract, 25
strong , 29
\subset , 21

termination, 25
\true , 14, 15
type, 29
type invariant, 28

\union, 21

\valid , 28
\valid_read , 28
variant , 22
\variant , 25

weak, 29
while , 22
\with, 14

44

	Introduction
	Organization of this document
	Generalities about Annotations
	Notations for grammars

	Specification language
	Lexical rules
	Logic expressions
	Operators precedence
	Semantics
	Typing
	Integer arithmetic and machine integers
	Real numbers and floating point numbers
	C arrays and pointers
	Structures, Unions and Arrays in logic
	String literals

	Function contracts
	Built-in constructs \old and \result
	Simple function contracts
	Contracts with named behaviors
	Memory locations and sets of terms
	Default contracts, multiple contracts

	Statement annotations
	Assertions
	Loop annotations
	Built-in construct \at
	Statement contracts

	Termination
	Integer measures
	General measures
	Recursive function calls
	Non-terminating functions

	Logic specifications
	Predicate and function definitions
	Lemmas
	Inductive predicates
	Axiomatic definitions
	Polymorphic logic types
	Recursive logic definitions
	Higher-order logic constructions
	Concrete logic types
	Hybrid functions and predicates
	Memory footprint specification: reads clause
	Specification Modules

	Pointers and physical adressing
	Memory blocks and pointer dereferencing
	Separation
	Allocation and deallocation

	Sets as first-class values
	Abrupt termination
	Dependencies information
	Data invariants
	Semantics
	Model variables and model fields

	Ghost variables and statements
	Volatile variables

	Undefined values, dangling pointers

	Libraries
	Conclusion
	Appendices
	Changes
	Version 1.9
	Version 1.8
	Version 1.7
	Version 1.5-4
	Version 1.5-3
	Version 1.5-2
	Version 1.5-1
	Version 1.5-0

	Bibliography
	List of Figures
	Index

