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Foreword

This is the user manual of the Frama-C plug-in E-ACSL1. The contents of this document correspond
to Frama-C [6, 1]’s version 32.0 beta (Germanium). The development of the E-ACSL plug-in is still
ongoing. Features described by this document may evolve in the future.
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1 https://frama-c.com/fc-plugins/e-acsl.html
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1Introduction

Frama-C [6, 9] is a modular analysis framework for the C programming language which supports the
ACSL specification language [3]. This manual documents the E-ACSL plug-in of Frama-C, version
32.0 beta (Germanium). E-ACSL automatically translates an annotated C program into another
program that fails at runtime if an annotation is violated. If no annotation is violated, the behavior of
the new program is exactly the same as the one of the original program.

E-ACSL translation brings several benefits. First, it allows a user to monitor C code and perform
what is usually referred to as “runtime assertion checking” [5]1. This is the primary goal of E-ACSL.
Indirectly, in combination with the RTE plug-in [8] of Frama-C, this usage allows the user to detect
undefined behaviors in its C code. Second, it allows to combine Frama-C and its existing analyzers
with other C analyzers that do not natively understand the ACSL specification language. Third, the
possibility to detect invalid annotations during a concrete execution may be very helpful while writing
a correct specification of a given program, e.g. for later program proving. Finally, an executable
specification makes it possible to check assertions that cannot be verified statically and thus to establish
a link between runtime monitoring and static analysis tools such as Eva [4] or Wp [2].

Annotations used by the plug-in must be written in the E-ACSL specification language [14, 7] – a
subset of ACSL. E-ACSL plug-in is still in a preliminary state: some parts of the E-ACSL specification
language are not yet supported. Annotations supported by the plugin are described in a separate
document [15]. It is worth noting that the annotations that aim to be dynamically verified are not
necessarily hand-written, but may be automatically generated instead. That is for instance the case when
checking the absence of undefined behaviors in combination with RTE, as mentioned in the previous
paragraph. Using E-ACSL this way is therefore a fully automatic process. Many usages, including
automatic usages, are described in companion research papers [12, 17, 16].

The E-ACSL plug-in is installed with Frama-C, but this manual does not explain how to install
Frama-C. For installation instructions please refer to the INSTALL2 file in the Frama-C distribution.
Furthermore, even though this manual provides examples, it is not a full comprehensive tutorial on
Frama-C or E-ACSL.

1 In our context, “runtime annotation checking” would be more precise.

2 https://git.frama-c.com/pub/frama-c/blob/master/INSTALL.md
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2What the Plug-in Provides

This chapter is the core of this manual and describes how to use the E-ACSL plug-in. First, Section 2.1
shows how to run the plug-in on a toy example, compile the generated code with the Gcc compiler
and detect invalid annotations at runtime. Further, Section 2.2 describes e-acsl-gcc – a convenience
wrapper script around Frama-C and Gcc. The aim of this script is to simplify instrumentation and
compilation of the instrumented code. Section 2.3 gives additional details on the execution of the
generated code. Next, Section 2.5 focuses on how to deal with incomplete programs, i.e. in which some
functions are not defined or in which there are no main function. Section 2.6 explains how to combine
the E-ACSL plug-in with other Frama-C plug-ins. Finally, Section 2.7 introduces how to customize
the plug-in, and Section 2.8 details the verbosing policy of the plug-in.

2.1 Simple Example

This section is a mini-tutorial which explains from scratch how to use the E-ACSL plug-in to detect
whether an E-ACSL annotation is violated at runtime.

2.1.1 Running E-ACSL
Consider the following program containing two E-ACSL assertions such that the first assertion is valid,
whereas the second one is not.

File first.i

int main(void) {
int x = 0;
/*@ assert x == 0; */
/*@ assert x == 1; */
return 0;

}

Running E-ACSL on first.i consists of adding -e-acsl option to the Frama-C command line:
$ frama-c -e-acsl first.i
[kernel] Parsing first.i (no preprocessing)
[e-acsl] beginning translation.
[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[e-acsl] translation done in project "e-acsl".

Even though first.i has already been preprocessed, E-ACSL first asks the Frama-C kernel to
process and combine it against several header files provided by the E-ACSL plug-in. Further E-ACSL
translates the annotated code into a new Frama-C project named e-acsl1. By default, the option

1 The notion of project is explained in Section 8.1 of the Frama-C user manual [6].
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-e-acsl does nothing more. It is however possible to have a look at the generated code in the Frama-C
GUI. This is also possible through the command line thanks to the kernel options -then-last and
-print. The former switches to the last generated project, while the latter pretty prints the C code [6]:

$ frama-c -e-acsl first.i -then-last -print
[kernel] Parsing first.i (no preprocessing)
[e-acsl] beginning translation.
[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[e-acsl] translation done in project "e-acsl".
/* Generated by Frama-C */
#include "stddef.h"
#include "stdio.h"
struct __e_acsl_contract_t;
typedef struct __e_acsl_contract_t __attribute__((FC_BUILTIN)) __e_acsl_contract_t;
struct __e_acsl_mpz_struct {

int _mp_alloc ;
int _mp_size ;
unsigned long *_mp_d ;

};
typedef struct __e_acsl_mpz_struct __e_acsl_mpz_struct;
typedef __e_acsl_mpz_struct ( __attribute__((FC_BUILTIN)) __e_acsl_mpz_t)[1];
struct __e_acsl_mpq_struct {

__e_acsl_mpz_struct _mp_num ;
__e_acsl_mpz_struct _mp_den ;

};
typedef struct __e_acsl_mpq_struct __e_acsl_mpq_struct;
typedef __e_acsl_mpq_struct ( __attribute__((FC_BUILTIN)) __e_acsl_mpq_t)[1];
typedef unsigned long __e_acsl_mp_bitcnt_t;
/*@ requires pred != 0;

assigns \nothing; */
__attribute__((FC_BUILTIN)) void __e_acsl_assert(int pred,

char const *kind,
char const *fct,
char const *pred_txt,
char const *file,
int line);

extern size_t __e_acsl_heap_allocation_size;

extern size_t __e_acsl_heap_allocated_blocks;

/*@ ghost extern int __fc_heap_status; */

/*@ ghost extern int __e_acsl_init; */

long valid_nstring(char *s, long n, int wrtbl);

long valid_nwstring(wchar_t *s, long n, int wrtbl);

__inline static long valid_string__fc_inline(char *s, int wrtbl)
{
long tmp;
tmp = valid_nstring(s,(long)(-1),wrtbl);
return tmp;

}

__inline static long valid_wstring__fc_inline(wchar_t *s, int wrtbl)
{

7



2.1. SIMPLE EXAMPLE

long tmp;
tmp = valid_nwstring(s,(long)(-1),wrtbl);
return tmp;

}

int main(void)
{
int __retres;
int x = 0;
__e_acsl_assert(x == 0,"Assertion","main","x == 0","first.i",3);
/*@ assert x == 0; */ ;
__e_acsl_assert(x == 1,"Assertion","main","x == 1","first.i",4);
/*@ assert x == 1; */ ;
__retres = 0;
return __retres;

}

As you can see, the generated code contains additional type declarations, constant declarations
and global ACSL annotations not present in the initial file first.i. They are part of the E-ACSL
monitoring library. You can safely ignore them for now. The translated main function of first.i is
displayed at the end. Before each E-ACSL annotation, a call to __e_acsl_assert has been added.

__e_acsl_assert(x == 0,"Assertion","main","x == 0","first.i",3);
/*@ assert x == 0; */ ;
__e_acsl_assert(x == 1,"Assertion","main","x == 1","first.i",4);
/*@ assert x == 1; */ ;

Each call to __e_acsl_assert, function defined by the E-ACSL monitoring library, dynamically
verifies the validity of the corresponding assertion. In other words, it checks that its first argument (here
x == 0 or x == 1) is not equal to 0 and fails otherwise. The extra arguments are used to display
error reports as shown in Section 2.1.2.

2.1.2 Executing the generated code
Using -ocode Frama-C [6] option, the code generated by the E-ACSL plug-in can be redirected into
a file as follows:

$ frama-c -e-acsl first.i -then-last -print -ocode monitored_first.c

Frama-C uses architecture-dependent configuration which affects sizes of integer types, endianness
and potentially other features. It can be seen that the code generated from first.i (shown in the
previous section) defines C type size_t as unsigned long, whereas in 32-bit architectures size_t
is typically defined as unsigned int. The architecture used during Frama-C translation is controlled
through Frama-C -machdep option that specifies the architecture type to use during translation.
The default value of -machdep is x86_64 (a generic 64-bit x86 architecture). Note that since code
generated by E-ACSL is aimed at being compiled it is important that the architecture used by Frama-C
matches the architecture corresponding to your compiler and your system. For instance, in a 32-bit
machine you should also pass -machdep x86_32 option as follows:

$ frama-c -machdep x86_32 -e-acsl first.i -then-last \
-print -ocode monitored_first.c

This file can be compile with a C compiler (for instance Gcc), as follows:

$ gcc -c -Wno-attributes monitored_first.c

However, creating an executable through a proper invocation to Gcc is painful and is not documented.
Instead, E-ACSL comes with a companion wrapper script for this purpose.
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2.2. E-ACSL WRAPPER SCRIPT

2.2 E-ACSL Wrapper Script

Presently, e-acsl-gcc is a recommended way of running the E-ACSL plug-in. This manual further
describes features of the E-ACSL plug-in using e-acsl-gcc as its main driver for source code
instrumentation and compilation of the instrumented programs.

In this section we describe e-acsl-gcc and provide several examples of its use.

2.2.1 Standard Usage
The default behaviour of e-acsl-gcc is to instrument, compile and link an annotated C program with
runtime assertions via a run of Frama-C.

$ e-acsl-gcc -omonitored_first.i first.i

The above command first instruments first.i with runtime assertions and outputs the generated
code to monitored_first.i. Unless the name of the output file is specified via the -o option
(i.e., -omonitored_first.i in the above example), the generated code is placed to a file named
a.out.frama.c. It then produces two executables: a.out and a.out.e-acsl, such that a.out
is an executable compiled from first.i, while a.out.e-acsl is an executable compiled from
monitored_first.i generated by E-ACSL.

The -n option can be used to deactivate the compilation and linking and only output the instrumented
code. For instance, command

$ e-acsl-gcc -n -omonitored_first.i first.i

only instruments the code in first.i and outputs it to monitored_first.i.
You can execute the generate binaries, in particular a.out.e-acsl which detects at runtime the

incorrect annotation.
$ ./a.out.e-acsl
first.i: In function ’main’
first.i:4: Error: Assertion failed:

The failing predicate is:
x == 1.

Aborted (core dumped)
$ echo $?
134

The execution aborts with a non-zero exit code (134) and an error message indicating an E-ACSL
annotation that has been violated. There is no output for the valid E-ACSL annotation. That is, the
run of an executable generated from the instrumented source file (i.e., monitored_first.i) detects
that the second annotation in the initial program is invalid, whereas the first annotation holds for this
execution.

Named executables can be created using the -O option. This is such that a value supplied to the -O
option is used to name the executable generated from the original program and the executable generated
from the E-ACSL-instrumented code is suffixed .e-acsl.

For example, command

$ e-acsl-gcc -omonitored_first.i -Omonitored_first first.i

names the executables generated from first.i and monitored_first.i: monitored_first and
monitored_first.e-acsl respectively.

The e-acsl-gcc -C option allows to skip the instrumentation step and compile a given program
as if it was already instrumented by the E-ACSL plug-in. This option is useful if one makes changes to
an already instrumented source file by hand and only wants to recompile it.
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$ e-acsl-gcc -C -Omonitored_first monitored_first.i

The above command generates a single executable named monitored_first.e-acsl. This is
because monitored_first.i is considered to be instrumented code and thus no original program is
provided.

2.2.2 Customising Frama-C and Gcc Invocations
By default e-acsl-gcc uses frama-c and gcc executables by looking them up in a system’s path. If
either of the tools are not found the script fails with an appropriate error message. Paths to Frama-C
and Gcc executables can also be passed using -I and -G options respectively, for instance as follows:

$ e-acsl-gcc -I/usr/local/bin/frama-c -G/usr/bin/gcc6 foo.c

Runs of Frama-C and Gcc issued by e-acsl-gcc can further be customized by using additional
flags. Frama-C flags can be passed using the -F option, while -e and -l options allow for passing
additional preprocessor and linker flags during Gcc invocations. For example, command

$ e-acsl-gcc -F"-unicode" -e"-I/bar -I/baz" foo.c

yields an instrumented program a.out.frama.c where ACSL formulas are output using the UTF-8
character set. Further, during the compilation of a.out.frama.c Gcc adds directories /bar and
/baz to the list of directories to be searched for header files.

It is worth mentioning that e-acsl-gcc implements several convenience flags for setting some of
the Frama-C options. For instance, -E can be used to pass additional arguments to the Frama-C
preprocessor (see Section 2.2.6).

2.2.3 Verbosity Levels and Output Redirection
By default e-acsl-gcc prints the executed Frama-C and Gcc commands and pipes their output
to the terminal. The verbosity of Frama-C output can be changed using -v and -d options used to
pass values to -verbose and -debug flags of Frama-C respectively. For instance, to increase the
verbosity of plug-ins but suppress the verbosity of the Frama-C kernel while instrumenting foo.c one
can use the following command:

$ e-acsl-gcc -v5 -F"-kernel-verbose 0" foo.c

Verbosity of the e-acsl-gcc output can also be reduced using the -q option that suppresses any
output except errors or warnings issued by Gcc, Frama-C, and e-acsl-gcc itself.

The output of e-acsl-gcc can also be redirected to a specified file using the -s option. For
example, the following command redirects all output during instrumentation and compilation of foo.c
to the file named /tmp/log.

$ e-acsl-gcc -s/tmp/log foo.c

2.2.4 Architecture Dependency
As pointed out in Section 2.1.2 the execution of a C program depends on the underlying machine
architecture it is executed on. The program must be compiled on the very same architecture (or
cross-compiled for it) for the compiler being able to generate a correct binary.

Frama-C makes assumptions about the machine architecture when analyzing source code. By
default, it assumes an X86 64-bit platform, but it can be customized through -machdep switch [6].
This option is of primary importance when using the E-ACSL plug-in: it must be set to the value
corresponding to the machine architecture which the generated code will be executed on, otherwise the
generated program is likely to fail to link against the E-ACSL library. Note that the library is built
using the default machine architecture.

10



2.2. E-ACSL WRAPPER SCRIPT

One of the benefits of using the wrapper script is that it makes sure that Frama-C is invoked
with the correct -machdep option. By default e-acsl-gcc uses -machdep gcc_x86_64 for 64-bit
architectures and -machdep gcc_x86_32 for 32-bit ones. Compiler invocations are further passed
-m64 or -m32 options to generate code using 64-bit or 32-bit ABI respectively.

At the present stage of implementation E-ACSL does not support generating executables with ABI
different to the default one.

2.2.5 Concurrency Support
How to Activate Concurrency

E-ACSL supports the monitoring of Linux’s pthreads concurrent code by using the option
--concurrency of e-acsl-gcc.

Example of compilation with concurrency support using e-acsl-gcc:

$ e-acsl-gcc foo.c --concurrency -o foo.frama.c -O foo

The concurrency support is a two part activation: first the --e-acsl-concurrency Frama-C
option is enabled to generate concurrent ready code, then when compiling the generated code, the
preprocessor variable E_ACSL_CONCURRENCY_PTHREAD is defined and the linker option -pthread is
added.

Example of compilation with concurrency support using Frama-C and Gcc directly (where
$E_ACSL_SHARE points to the share/frama-c/e-acsl folder of Frama-C and $E_ACSL_LIB
points to the lib/frama-c/e-acsl folder of Frama-C):

$ frama-c \
-keep-unused-functions none \
-machdep gcc_x86_64 \
-cpp-extra-args="-std=c99 -D_DEFAULT_SOURCE -D__NO_CTYPE \

-D__FC_MACHDEP_X86_64" \
-no-frama-c-stdlib \
foo.c \
-e-acsl -e-acsl-concurrency \
-then-last -print -ocode foo.frama.c

$ gcc \
-std=c99 -m64 -g -O2 -fno-builtin -fno-merge-constants \
-Wno-attributes -Wno-implicit-function-declaration \
-DE_ACSL_SEGMENT_MMODEL -DE_ACSL_CONCURRENCY_PTHREAD \
-I$E_ACSL_SHARE \
-o foo.e-acsl \
foo.frama.c \
$E_ACSL_SHARE/e_acsl_rtl.c \
-pthread \
$E_ACSL_LIB/libeacsl-dlmalloc.a \
-lgmp -lm

Function Contracts Limitations

For now, the E-ACSL language [14] does not support concurrent access indications, so some care should
be taken when writing specifications that access to the shared memory. As a workaround, the memory
accesses inside the specification can be protected code outside the specification, for instance by acquiring
and releasing a lock around E-ACSL assertions.

As an example, the following code acquire the lock on a mutex before accessing the shared global
variable a. However, E-ACSL will place the translation of the precondition before acquiring the lock,

11
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and the translation of the postcondition after releasing the lock. Therefore, their validity status may
vary with respect to the thread interleaving.

/*@ requires \valid(a) && \initialized(a);
requires \valid(b) && \initialized(b);
ensures *a == \old(*a) + 1;
ensures *b == \old(*b) + *a; */

void f() {
pthread_mutex_lock(&lock);

*a += 1;

*b += *a;
pthread_mutex_unlock(&lock);

}

The workaround here is to move the function contract to a statement contract surrounded by the
lock:

void f() {
pthread_mutex_lock(&lock);
/*@ requires \valid(a) && \initialized(a);

requires \valid(b) && \initialized(b);
ensures *a == \old(*a) + 1;
ensures *b == \old(*b) + *a; */

{

*a += 1;

*b += *a;
}
pthread_mutex_unlock(&lock);

}

2.2.6 Documentation
For full up-to-date documentation of e-acsl-gcc see its man page:

$ man e-acsl-gcc

Alternatively, you can also use the -h option of e-acsl-gcc:
$ e-acsl-gcc -h

2.3 Execution Environment of the Generated Code

The environment in which the code is executed is not necessarily the same as the one assumed by
Frama-C. You should take care of that when running the E-ACSL plug-in and when compiling the
generated code with Gcc. In this aspect, the plug-in offers a few possibilities of customization.

2.3.1 Runtime Errors in Annotations
The major difference between ACSL [3] and E-ACSL [14] specification languages is that the logic is
total in the former while it is partial in the latter one: the semantics of a logic construct c denoting a C
expression e is undefined if e leads to a runtime error and, consequently, the semantics of any term t
(resp. predicate p) containing such a construct c is undefined as soon as e has to be evaluated in order
to evaluate t (resp. p). The E-ACSL Reference Manual also states that “it is the responsibility of each
tool which interprets E-ACSL to ensure that an undefined term is never evaluated” [14].

Accordingly, the E-ACSL plug-in prevents an undefined term from being evaluated. If an annotation
contains such a term, E-ACSL will report a proper error at runtime instead of evaluating it.
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2.3. EXECUTION ENVIRONMENT OF THE GENERATED CODE

Consider for instance the following annotated program.
File rte.i
/*@ behavior yes:

assumes x % y == 0;
ensures \result == 1;
behavior no:
assumes x % y != 0;
ensures \result == 0; */

int is_dividable(int x, int y) {
return x % y == 0;

}

int main(void) {
is_dividable(2, 0);
return 0;

}

The terms and predicates containing the modulo ‘%’ in the assumes clause are undefined in the
context of the main function call since the second argument is equal to 0. However, we can generate an
instrumented code and compile it using the following command:

$ e-acsl-gcc -omonitored_rte.i -Orte rte.i

Now, when rte.e-acsl is executed, you get the following output indicating that your function
contract is invalid because it contains a division by zero.

$ ./rte.e-acsl
RTE failed at line 5 in function is_dividable.
The failing predicate is:
division_by_zero: y != 0.
Aborted

2.3.2 Libc
By default, Frama-C uses its own standard library (aka libc) instead of the one of your system. If you
do not want to use it, you have to add the option -no-framac-stdlib to the Frama-C command
line.

It might be particularly useful in one of the following contexts:
– several libc functions used by the analyzed program are still not defined in the Frama-C libc; or
– your system libc and the Frama-C libc mismatch about several function types (for instance, your

system libc is not 100% POSIX compliant); or
– several Frama-C lib functions get a contract and you are not interested in verifying them (for

instance, only checking undefine behaviors matters).

Notably, e-acsl-gcc disables Frama-C libc by default. This is because most of its functions are
annotated with E-ACSL contracts and generating code for these contracts results in additional runtime
overheads. To enforce default Frama-C contracts with e-acsl-gcc you can pass -L option to the
wrapper script.

2.3.3 Integers
E-ACSL uses an integer type corresponding to mathematical integers which does not fit in any
integral C type. To circumvent this issue, E-ACSL uses the GMP library2. Thus, even if E-ACSL

2 http://gmplib.org
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does its best to use standard integral types instead of GMP [10], it may generate such integers from
time to time. It is notably the case if your program contains long long, either signed or unsigned.

Consider for instance the following program.
File gmp.i

unsigned long long my_pow(unsigned int x, unsigned int n) {
int res = 1;
while (n) {

if (n & 1) res *= x;
n >>= 1;
x *= x;

}
return res;

}

int main(void) {
unsigned long long x = my_pow(2, 63);
/*@ assert (2 * x + 1) % 2 == 1; */
return 0;

}

Even on a 64-bit machine, it is not possible to compute the assertion with a standard C type. In
this case, the E-ACSL plug-in generates GMP code. Note that E-ACSL library already includes GMP,
thus no additional arguments need to be provided. We can generate and execute the instrumented code
as usual via the following command:

$ e-acsl-gcc -omonitored_gmp.i -Ogmp gmp.i
$ ./gmp.e-acsl

Since the assertion is valid, there is no output in this case.
Note that it is possible to use GMP arithmetic in all cases (even if not required). This option is

controlled through -g switch of e-acsl-gcc which passes the -e-acsl-gmp-only option to the
E-ACSL plug-in. However it could slow down the execution of the instrumented program significantly.

2.3.4 Memory-related Annotations
The E-ACSL plug-in handles memory-related annotations such as \valid. Consider for instance the
following program.

File valid.c

#include "stdlib.h"

extern void *malloc(size_t);
extern void free(void*);

int main(void) {
int *x;
x = (int*)malloc(sizeof(int));
/*@ assert \valid(x); */
free(x);
/*@ assert freed: \valid(x); */
return 0;

}

Even though the first annotation holds, the second annotation (labelled freed) is invalid. This is
because at the point of its execution memory allocated via malloc has been deallocated and x is a

14
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stale pointer referencing unallocated memory. The execution of the instrumented program thus reports
the violation of the second annotation:

$ e-acsl-gcc -Ovalid valid.c
$ ./valid.e-acsl
valid.c: In function ’main’
valid.c:11: Error: Assertion failed:

The failing predicate is:
freed: \valid(x).

Aborted (core dumped)

To check memory-related predicates (such as \valid) E-ACSL tracks memory allocated by a
program at runtime. E-ACSL records memory blocks in a meta-storage tracking each block’s boundaries
(i.e., its base address and length), per-byte initialization and the notion of an address being freeable
(i.e., whether it can be safely passed to the free function). During an execution of the instrumented
program code injected by E-ACSL transformations queries the meta-storage to identify properties of an
address in question. For instance, during the execution of the above program the monitor injected by
E-ACSL first records information about the memory block allocated via a call to malloc. Further,
during the execution of the first assertion the monitor queries the meta-storage about the address of
the memory location pointed to by x. Since the location belongs to an allocated memory block, the
meta-storage identifies it as belonging to the tracked allocation. Consequently, the assertion evaluates to
true and the monitors allows the execution to continue. The second assertion, however, fails. This is
because the block pointed to by x has been removed from the meta-storage by a call to free, and thus
a meta-storage query identifies location x as belonging unallocated memory space.

E-ACSL Memory Models

Memory tracking implemented by the E-ACSL library comes in two flavours dubbed bittree-based
and segment-based memory models. With the bittree-based model meta-storage is implemented as a
compact prefix trie called Patricia trie [11], whereas segment-based memory model is based on shadow
memory [18]. The functionality of the provided memory models is equivalent, however they differ in
performance. We further discuss performance considerations.

The E-ACSL models allocate heap memory using a customized version of the dlmalloc3 memory
allocator replacing system-wide malloc and similar functions (e.g., calloc or free).

At the level of e-acsl-gcc you can choose between different memory models using the -m switch
followed by the name of the memory model to link against. For instance, command

$ e-acsl-gcc -mbittree -Ovalid valid.c

links a program generated from valid.c against the library implementing the bittree-based memory
model, whereas the following invocation uses shadow-based tracking:

$ e-acsl-gcc -msegment -Ovalid valid.c

It is also possible to generate executables using both models as follows:
$ e-acsl-gcc -msegment,bittree -Ovalid valid.c

In this case, e-acsl-gcc produces 3 executables: valid, valid.e-acsl-segment and
valid.e-acsl-bittree corresponding to an executable generated from the original source code, and
the executables generated from the E-ACSL-instrumented sources linked against segment-based and
bittree-based memory models.

Unless specified, E-ACSL defaults to the segment-based memory model.

3 http://dlmalloc.net/
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Performance Considerations

As pointed out in the previous section the functionalities provided by both segment-based and bittree-
based memory models are equivalent but differ in performance. The bittree-based model uses compact
memory representation of metadata. The segment-based model on the other hand uses significantly
more memory. You can expect over 2x times memory overheads when using it. However It is often an
order of magnitude faster than the bittree-based model [18].

Maximized Memory Tracking

By default E-ACSL uses static analysis to reduce instrumentation and therefore runtime and memory
overheads [13]. With respect to memory tracking this means that E-ACSL may omit recording memory
blocks irrelevant for runtime analysis. It is, however, still possible to systematically instrument the code
for handling potential memory-related annotations even when it is not required. This feature can be
enabled using the -M switch of e-acsl-gcc or -e-acsl-full-mtracking option of the E-ACSL
plug-in.

The above-mentioned static analysis is probably the less robust part of E-ACSL for the time being.
When handling a large piece of code, it might be necessary to deactivate it and systematically instrument
the code as explained above.

2.3.5 Runtime Monitor Behavior
When a predicate is checked at runtime, function __e_acsl_assert is called. By default this function
does nothing if the predicate is valid, and prints an error message and aborts the execution (by raising
an ABORT signal via a call to the C function abort) if the predicate is invalid. If E-ACSL detects
that its verdict is not trustable (see Section 2.5.4), it prints a warning with its guess and continues the
execution.

The default behavior of __e_acsl_assert can be altered using --fail-with-code=CODE
option of e-acsl-gcc that uses exit(CODE) instead of abort.

For instance, the program generated using the following command exits with code 5 on a predicate
violation.

$ e-acsl-gcc --fail-with-code=5 foo.c

Forceful termination of a monitored program can be disabled using --keep-going option. If
specified, e-acsl-gcc generates code that reports each property violated at runtime but allows
the monitored program to continue execution. --keep-going should be used with caution: such
unterminated executions may lead to incorrect verification results.

e-acsl-gcc also provides a way to use an alternative definition of __e_acsl_assert.
Custom implementation of __e_acsl_assert should be provided in a separate C (or object file)

and respect the following signature:

void __e_acsl_assert(int predicate, __e_acsl_assert_data_t * data);

With data a structure containing the following fields:
– blocking: integer representing if the assertion is blocking or not;
– kind: C string representing a kind of annotation (e.g., "Assertion");
– pred_txt: stringified predicate;
– file: un-instrumented file of predicate placement;
– fct: function of predicate placement in the un-instrumented file;
– line: line of predicate placement in the un-instrumented file;
– values: values contributing to the predicate.
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Additionally, it may depends on the global variable __e_acsl_sound_verdict. This variable
of type int is set to 0 as soon as the verdict provided by E-ACSL is not trustworthy anymore (see
Section 2.5.4).

Below is an example which prints the validity status of each property but never exits.
File my_assert.c

#include <stdio.h>
#include <e_acsl.h>

extern int __e_acsl_sound_verdict;

void __e_acsl_assert(int predicate, __e_acsl_assert_data_t * data) {
printf("%s in file %s at line %d in function %s is %s (%s).\n\

The verified predicate was: ‘%s’.\n",
data->kind,
data->file,
data->line,
data->fct,
predicate ? "valid" : "invalid",
__e_acsl_sound_verdict ? "trustworthy" : "UNTRUSTWORTHY",
data->pred_txt);

if (data->values) {
printf("With values:\n");
__e_acsl_assert_data_value_t * value = data->values;
while (value != NULL) {
__e_acsl_print_value(value);
value = value->next;

}
}

}

A monitored program that uses custom definition of __e_acsl_assert can then be generated as
follows using --external-assert option of e-acsl-gcc to replace the default implementation of
__e_acsl_assert with the customized one specified in my_assert.c.

$ e-acsl-gcc -X first.i -Ofirst --external-assert=my_assert.c
$ ./first.e-acsl
Assertion in file first.i at line 3 in function main is valid (trustworthy).
The verified predicate was: ‘x == 0’.
Assertion in file first.i at line 4 in function main is invalid (trustworthy).
The verified predicate was: ‘x == 1’.

The default assertion function prints the values contributing to an assertion along with the error
message.

$ e-acsl-gcc -X first.i -Ofirst
$ ./first.e-acsl
first.i: In function ’main’
first.i:4: Error: Assertion failed:

The failing predicate is:
x == 1.
With values:
- x: 0

This behavior can be overridden by using the --no-assert-print-data option of e-acsl-gcc.
$ e-acsl-gcc -X first.i -Ofirst --no-assert-print-data
$ ./first.e-acsl
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first.i: In function ’main’
first.i:4: Error: Assertion failed:

The failing predicate is:
x == 1.

As with the assertion function, e-acsl-gcc provides a way to use an alternative definition of
__e_acsl_print_value.

Custom implementation of __e_acsl_print_value should be provided in a separate C (or object
file) and respect the following signature:

void __e_acsl_print_value(__e_acsl_assert_data_value_t * value);

The details and documentation of the structure __e_acsl_assert_data_value_t can be
found in the file e_acsl_assert_data.h distributed with E-ACSL in the installation folder
share/frama-c/e-acsl/instrumentation_model.

Below is an example which prints only the name of the variable contributing to an assertion.
File my_print_value.c

#include <stdio.h>
#include <e_acsl.h>

void __e_acsl_print_value(__e_acsl_assert_data_value_t * value) {
printf("\t- custom print for %s\n", value->name);

}

A monitored program that uses custom definition of __e_acsl_print_value can then be gener-
ated as follows using --external-print-value option of e-acsl-gcc to replace the default imple-
mentation of __e_acsl_print_value with the customized one specified in my_print_value.c.

$ e-acsl-gcc -X first.i -Ofirst \
--external-print-value=my_print_value.c

$ ./first.e-acsl
first.i: In function ’main’
first.i:4: Error: Assertion failed:

The failing predicate is:
x == 1.
With values:
- custom print for x

The custom definitions of __e_acsl_assert and __e_acsl_print_value can be used at the
same time.

$ e-acsl-gcc -X first.i -Ofirst \
--external-assert=my_assert.c \
--external-print-value=my_print_value.c

$ ./first.e-acsl
Assertion in file first.i at line 3 in function main is valid (trustworthy).
The verified predicate was: ‘x == 0’.
With values:

- custom print for x
Assertion in file first.i at line 4 in function main is invalid (trustworthy).
The verified predicate was: ‘x == 1’.
With values:

- custom print for x

2.4 Additional Verifications

In addition to checking annotations at runtime, E-ACSL is able to detect a few errors at runtime.
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2.4.1 Format String Vulnerabilities
Whenever option --validate-format-strings of e-acsl-gcc is set, E-ACSL detects format-
string vulnerabilities in printf-like function. Below is an example which incorrectly tries to print a
string through a %d format.

File printf.c

#include <stdio.h>

int main(void) {
printf("is %d really an int?", "foo");
return 0;

}

This error can be detected by E-ACSL as follows.
$ e-acsl-gcc -Oprintf -c --validate-format-strings printf.c
$ ./printf.e-acsl
printf: directive 1 (’%d’) expects argument of type ’int’ but the corresponding
argument has type ’char*’
Abort

2.4.2 Incorrect Usage of Libc Functions
Whenever option --libc-replacements of e-acsl-gcc is set, E-ACSL is able to detect incorrect
usage of the following libc functions:

– memcmp
– memcpy
– memmove
– memset
– strcat
– strncat
– strcmp
– strcpy
– strncpy
– strlen

For instance, the program below incorrectly uses strcpy because the destination string should
contain at least 7 char (and not only 6).

File strcpy.c

#include <stdlib.h>
#include <string.h>

int main(void) {
char *dst = malloc(sizeof(char) * 6);
strcpy(dst, "foobar");
return 0;

}

This error can be reported by E-ACSL as follows.
$ e-acsl-gcc -Ostrcpy -c --libc-replacements strcpy.c
$ ./strcpy.e-acsl
strlen: insufficient space in destination string, at least 7 bytes required
Abort
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2.5 Incomplete Verification

Executing a C program requires to have a complete application. However, the E-ACSL plug-in does
not necessarily require to have it to generate the instrumented code. It is still possible to instrument
a partial program with no entry point (Section 2.5.1) or in which some functions remain undefined
(Section 2.5.2).

It is also possible to partially instrument an application in order to reduce the runtime overhead.

2.5.1 Programs with no Main Function
The E-ACSL plug-in can instrument a program without the main function. Consider for instance the
following annotated program without main.

File no_main.i

/*@ behavior even:
@ assumes n % 2 == 0;
@ ensures \result >= 1;
@ behavior odd:
@ assumes n % 2 != 0;
@ ensures \result >= 1; */

unsigned long long my_pow(unsigned int x, unsigned int n) {
unsigned long long res = 1;
while (n) {

if (n & 1) res *= x;
n >>= 1;
x *= x;

}
return res;

}

The instrumented code is generated as usual, even though you get an additional warning.
$ e-acsl-gcc no_main.i -omonitored_no_main.i
[kernel] Parsing no_main.i (no preprocessing)
[e-acsl] beginning translation.
[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[e-acsl] Warning: cannot find entry point ‘main’.
Please use option ‘-main’ for specifying a valid entry point.
The generated program may miss memory instrumentation
if there are memory-related annotations.

[e-acsl] translation done in project "e-acsl".

This warning indicates that the instrumentation could be incorrect if the program contains memory-
related annotations (see Section 3.3.1). That is not the case here, so you can safely ignore it. Now, it is
possible to compile the generated code with a C compiler in a standard way, and even link it against
additional files such as the following:

File main.c

#include "stdio.h"

int main(void) {
unsigned long long x = my_pow(2, 16);
printf("x = %llu\n",x);
return 0;

}
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$ e-acsl-gcc -C monitored_no_main.i main.c -Owith_main
$ ./with_main.e-acsl
x = 65536

2.5.2 Undefined Functions
Similar to the above section E-ACSL is capable of instrumenting a program which has definitions
of arbitrary functions missing. Consider for instance the following annotated program for which the
implementation of the function my_pow is not provided.

File no_code.c

#include "stdio.h"

/*@ behavior even:
@ assumes n % 2 == 0;
@ ensures \result >= 1;
@ behavior odd:
@ assumes n % 2 != 0;
@ ensures \result >= 1; */

extern unsigned long long my_pow(unsigned int x, unsigned int n);

int main(void) {
unsigned long long x = my_pow(2, 64);
return 0;

}

The instrumented code is generated as usual, even though you get an additional warning.
$ e-acsl-gcc -omonitored_no_code.i no_code.c
[kernel] Parsing no_code.c (with preprocessing)
[e-acsl] beginning translation.
[e-acsl] Warning: annotating undefined function ‘my_pow’:
the generated program may miss memory instrumentation
if there are memory-related annotations.

[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[e-acsl] translation done in project "e-acsl".

Similar to the previous Section the warning indicates that the instrumentation could be incorrect if
the program contains memory-related annotations (see Section 3.3.2). That is still not the case here, so
you can safely ignore it.

File pow.i

unsigned long long my_pow(unsigned int x, unsigned int n) {
unsigned long long res = 1;
while (n) {

if (n & 1) res *= x;
n >>= 1;
x *= x;

}
return res;

}

Similar to the example shown in the previous section you can generate the executable by providing
definition of my_pow.

$ e-acsl-gcc -C -Ono_code pow.i monitored_no_code.i
$ ./no_code.e-acsl
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no_code.c: In function ’my_pow’
no_code.c:5: Error: Postcondition failed:

The failing predicate is:
even: \result >= 1.

Aborted (core dumped)

The execution of the corresponding binary fails at runtime: actually, our implementation of the
function my_pow overflows in case of large exponentiations.

2.5.3 Providing a White List of Functions
By default, the E-ACSL plug-in generates code for checking at runtime all the annotations of the
analyzed files. Yet, it is possible to handle only annotations of a given set of functions through the
option -e-acsl-functions. This way, no runtime check is generated for annotations of all the other
functions. It allows the user to focus on a particular part of the code, while reducing the global runtime
overhead.

2.5.4 Partial Instrumentation (Experimental)
Partial instrumentation is still an experimental feature. It may evolve in the future and/or not work as
expected.

By default, the E-ACSL plug-in generates all the necessary pieces of code for checking at runtime the
provided annotations. This amount of instrumentation may be quite large. It is possible to reduce it by
manually specifying the set of functions to be instrumented through the option -e-acsl-instrument.

This way, contrary to the option -e-acsl-functions, all the annotations are still checked at
runtime. However, since less code is generated, the generated program usually runs faster. However, it
may lead to unsound verdicts if it would have been necessary to generate the instrumentation for one of
the uninstrumented functions.

A typical usage of this option consists in specifying the set of functions to be not instru-
mented. For instance, to instrument all functions except functions f and g, you should specify
-e-acsl-instrument=+@all,-f,-g.

Consider the following example in which all assertions are valid.
File partial.i

void f(int *p) {

*p = 0;
}

void g(int *p) {

*p = 1;
}

int main(void) {
int t[3];
f(&t[0]);
/*@ assert \initialized(&t[0]); */
t[1] = 1;
g(&t[1]);
g(&t[2]);
/*@ assert \initialized(&t[1]); */
/*@ assert \initialized(&t[2]); */
return 0;

}
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One can ask to not instrument function g (i.e. to instrument only functions f and main) through
the following command.

$ e-acsl-gcc \
-c --oexec-e-acsl partial.out \
--e-acsl-extra="-e-acsl-instrument=+@all,-g" \
partial.i

Therefore, running the generated executable partial.out leads to the following verdicts.
$ ./partial.out
partial.i: In function ’main’
partial.i:16: Warning: no sound verdict for Assertion (guess: ok).

the considered predicate is:
\initialized(&t[1])

partial.i: In function ’main’
partial.i:17: Warning: no sound verdict for Assertion (guess: FAIL).

the considered predicate is:
\initialized(&t[2])

First, there is no message for the first assertion about the initialization of &t[0], meaning that this
assertion is silently checked as valid by E-ACSL (see Section 2.3.5). It was made possible because of
the complete instrumentation of functions f and main.

Second, since function g was not instrumented, no sound verdict may be provided after executing
it. It leads to the printed warnings for the last two assertions. The indicated guesses (ok for the first
assertion and FAIL for the second one) are the verdicts computed by E-ACSL. They can be trusted if
and only if the E-ACSL instrumentation is not necessary for validating the considered annotations. In
that particular case, it is not true. For instance, the second guess is incorrect since &t[2] is actually
initialized through function g. E-ACSL missed it since this function is not instrumented..

2.6 Combining E-ACSL with Other Plug-ins

As the E-ACSL plug-in generates a new Frama-C project, it is easy to run any plug-in on the generated
program, either in the same Frama-C session (thanks to the option -then or through the GUI), or in
another one. The only issue might be that, depending on the plug-in, the analysis may be imperfect if
the generated program uses GMP or the dedicated memory library: both make intensive use of dynamic
structures which are usually difficult to handle by analysis tools.

Another way to combine E-ACSL with other plug-ins is to run E-ACSL last. For instance, the RTE
plug-in [8] may be used to generate annotations corresponding to runtime errors. Then the E-ACSL
plug-in may generate an instrumented program to verify that there are no such runtime errors during
the execution of the program.

Consider the following program.
File combine.i

int main(void) {
int x = 0xffff;
int y = 0xfff;
int z = x + y;
return 0;

}

To check at runtime that this program does not perform any runtime error (which are potential overflows
in this case), just do:

$ frama-c -rte combine.i -then -e-acsl -then-last -print
-ocode monitored_combine.c
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$ e-acsl-gcc -C -Ocombine monitored_combine.c
$ ./combine.e-acsl

Automatic assertion generation can also be enabled via e-acsl-gcc directly via the following
command:

$ e-acsl-gcc -Ocombine -omonitored_combine.i --rte=all combine.i

Note the use of e-acsl-gcc --rte option which asks Frama-C to combine E-ACSL with RTE
plug-in. This plug-in automatically instruments the input program with runtime assertions before
running the E-ACSL plug-in on it. --rte option of e-acsl-gcc also accepts a comma-separated list
of arguments indicating the types of assertions to generate. Consult the e-acsl-gcc man page for a
detailed list of arguments accepted by --rte.

The present implementation of e-acsl-gcc does not fully support combining E-ACSL with other
Frama-C plug-ins. However it is still possible to instrument programs with E-ACSL directly and use
e-acsl-gcc to compile the generated code.

In this context, the E-ACSL plug-in does not generate code for annotations proven valid by another
plug-in, except if you explicitly set the option -e-acsl-valid. For instance, Eva [4] is able to prove
that there is no potential overflow in the previous program, so the E-ACSL plug-in does not generate
additional code for checking them if you run the following command.

$ frama-c -rte combine.i -then -eva -then -e-acsl \
-then-last -print -ocode monitored_combine.i

The additional code will be generated with the two following command.
$ frama-c -rte combine.i -then -eva -then -e-acsl \
-e-acsl-valid -then-last -print -ocode monitored_combine.i

2.7 Customization

There are several ways to customize the E-ACSL plug-in.
First, the name of the generated project – which is e-acsl by default – may be changed by setting

the option -e-acsl-project option of the E-ACSL plug-in. While there is not direct support for
this option in e-acsl-gcc you can pass it using -F switch:

File check.i
int main(void) {

int x = 0;
/*@ assert x == 0; */
/*@ assert x << 2 == 0; */
return 0;

}

$ e-acsl-gcc -F"-e-acsl-project foobar" check.i
[kernel] Parsing check.i (no preprocessing)
[e-acsl] beginning translation.
[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[e-acsl] translation done in project "foobar".

2.8 Verbosity Policy

By default, E-ACSL does not provide much information when it is running. Mainly, it prints a message
when it begins the translation, and another one when the translation is done. It may also display
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warnings when something requires the attention of the user, for instance if it is not able to translate an
annotation. Such information is usually enough but, in some cases, you might want to get additional
control on what is displayed. As quite usual with Frama-C plug-ins, E-ACSL offers two different ways
to do this: the verbosity level which indicates the amount of information to display, and the message
categories which indicate the kind of information to display.

2.8.1 Verbosity Level
The amount of information displayed by the E-ACSL plug-in is settable by the option
-e-acsl-verbose. It is 1 by default. Below is indicated which information is displayed accord-
ing to the verbosing level. The level n also displays the information of all the lower levels.

-e-acsl-verbose 0 only warnings and errors
-e-acsl-verbose 1 beginning and ending of the translation
-e-acsl-verbose 2 different parts of the translation and functions-related information
-e-acsl-verbose 3 predicates- and statements-related information
-e-acsl-verbose 4 terms- and expressions-related information

2.8.2 Message Categories
The kind of information to display is settable by the option -e-acsl-msg-key (and unsettable by the
option -e-acsl-msg-key-unset). The different keys refer to different parts of the translation, as
detailed below.

analysis minimization of the instrumentation for memory-related annotation (section 2.3.4)
preparation duplication of functions with contracts (section 2.5.2)
translation translation of an annotation into C code
typing minimization of the instrumentation for integers (section 2.3.3)
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3Known Limitations

The development of the E-ACSL plug-in is still ongoing. First, the E-ACSL reference manual [14] is
not yet fully supported. Which annotations can already be translated into C code and which cannot is
defined in a separate document [15]. Second, even though we do our best to avoid them, bugs may exist.
If you find a new one, please report it on the bug tracking system1 (see Chapter 10 of the Frama-C
User Manual [6]). Third, there are some additional known limitations, which could be annoying for
the user in some cases, but are tedious to lift. Please contact us if you are interested in lifting these
limitations2.

3.1 Supported Systems

The only well-supported system is a Linux distribution on a 64-bit architecture.

3.1.1 Operating Systems
Non-Linux systems are almost not yet experimented. It might work but there are most probably issues,
in particular if using a non-standard libc. For instance, there are known bugs under Mac OS X3.

3.1.2 Architectures and Runtime Library
The segment-based memory model (used by default for monitoring memory properties such as \valid)
assumes little-endian architecture and has very limited support for 32-bit architectures. When using a
32-bit machine or big-endians, we recommend using the bittree-based memory model instead.

The runtime library is also not thread-safe.

3.2 Uninitialized Values

As explained in Section 2.3.1, the E-ACSL plug-in should never translate an annotation into C code
which can lead to a runtime error. This is enforced, except for uninitialized values which are values read
before having been written.

File uninitialized.i

1 https://git.frama-c.com/pub/frama-c/-/issues

2 Read https://git.frama-c.com/pub/frama-c/blob/master/CONTRIBUTING.md for additional details.

3 See for instance at https://bts.frama-c.com/view.php?id=2369
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3.3. INCOMPLETE PROGRAMS

int main(void) {
int x;
/*@ assert x == 0; */
return 0;

}

If you generate the instrumented code, compile it, and finally execute it, you may get no runtime
error depending on your C compiler, but the behavior is actually undefined because the assertion reads
the uninitialized variable x. You should be caught by the E-ACSL plug-in, but that is not the case yet.

$ e-acsl-gcc uninitialized.i -Omonitored_uninitialized
monitored_uninitialized.i: In function ’main’:
monitored_uninitialized.i:44:16: warning: ’x’ is used uninitialized in this function
[-Wuninitialized]
$ ./monitored_uninitialized.e-acsl

This is more a design choice than a limitation: should the E-ACSL plug-in generate additional
instrumentation to prevent such values from being evaluated, the generated code would be much more
verbose and slower.

If you really want to track such uninitializations in your annotation, you have to manually add calls
to the E-ACSL predicate \initialized [14].

3.3 Incomplete Programs

Section 2.5 explains how the E-ACSL plug-in is able to handle incomplete programs, which are either
programs without main, or programs containing undefined functions (i.e. functions without body).

However, if such programs contain memory-related annotations, the generated code may be incorrect.
That is made explicit by a warning displayed when the E-ACSL plug-in is running (see examples of
Sections 2.5.1 and 2.5.2).

3.3.1 Programs without Main
The instrumentation in the generated program is partial for every program without main containing
memory-related annotations, except if the option -e-acsl-full-mtracking or the E-ACSL plug-in
(of -M option of e-acsl-gcc) is provided. In that case, violations of such annotations are undetected.

Consider the following example.
File valid_no_main.c

#include "stdlib.h"

extern void *malloc(size_t);
extern void free(void*);

int f(void) {
int *x;
x = (int*)malloc(sizeof(int));
/*@ assert \valid(x); */
free(x);
/*@ assert freed: \valid(x); */
return 0;

}

You can generate the instrumented program as follows.
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3.3. INCOMPLETE PROGRAMS

$ e-acsl-gcc -n -M -omonitored_valid_no_main.i valid_no_main.c
[kernel] Parsing valid_no_main.c (with preprocessing)
[e-acsl] beginning translation.
[kernel] Parsing FRAMAC_SHARE/e-acsl/e_acsl.h (with preprocessing)
[kernel] Warning: no entry point specified:
you must call functions ‘__e_acsl_globals_init’, ‘__e_acsl_globals_clean’,
‘__e_acsl_memory_init’ and ‘__e_acsl_memory_clean’ by yourself.

[e-acsl] translation done in project "e-acsl".

The last warning states an important point: if this program is linked against another file con-
taining main function, then this main function must be modified to insert a calls to the functions
__e_acsl_globals_init and __e_acsl_memory_init at the very beginning. These functions
play a very important role: the latter initializes metadata storage used for tracking of memory blocks
while the former initializes tracking of global variables and constants. Unless these calls are inserted the
run of a modified program is likely to fail.

While it is possible to add such intrumentation manually we recommend using e-acsl-gcc.
Consider the following incomplete program containing main:

File modified_main.c

int main(int argc, char **argv) {
f();
return 0;

}

Then just compile and run it as explained in Section 2.3.4.
$ e-acsl-gcc -n -M -omonitored_modified_main.i modified_main.c
$ e-acsl-gcc -C -Ovalid_no_main monitored_modified_main.i monitored_valid_no_main.i
$ ./valid_no_main.e-acsl
Assertion failed at line 11 in function f.
The failing predicate is:
freed: \valid(x).
Aborted

Also, if the unprovided main initializes some variables, running the instrumented code (linked against
this main) could print some warnings from the E-ACSL memory library4.

3.3.2 Undefined Functions
The instrumentation in the generated program is partial for a program p if p contains a memory-related
annotation a and an undefined function f such that:

– either f has an (even indirect) effect on a left-value occurring in a;
– or a is one of the post-conditions of f .

A violation of such an annotation a is undetected. There is no workaround yet.

3.3.3 Incomplete Types
The instrumentation in the generated program is partial for a program p if p contains a memory-related
annotation a and a variable v with an incomplete type definition such that a depends on v (even
indirectly).

A violation of such an annotation a is undetected. There is no workaround yet.

4 see https://bts.frama-c.com/view.php?id=1696 for an example
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3.4. RECURSIVE FUNCTIONS

3.4 Recursive Functions

Programs containing recursive functions have the same limitations as the ones containing undefined
functions (Section 3.3.2) and memory-related annotations.

3.5 Variadic Functions

Programs containing undefined variadic functions with contracts are not yet supported. Using the
-variadic-translation option of Frama-C could be a solution in some cases, but its generated
code cannot always be compiled.

3.6 Function Pointers

Programs containing function pointers have the same limitations on memory-related annotations as the
ones containing undefined or recursive functions.

3.7 Requirements to Input Programs

3.7.1 E-ACSL Namespace
While E-ACSL uses source-to-source transformations and not binary instrumentations it is important
that the source code provided as input does not contain any variables or functions prefixed __e_acsl_.
E-ACSL reserves this namespace for its transformations, and therefore an input program containing
such symbols beforehand may fail to be instrumented or compiled.

3.7.2 Memory Management Functions
Programs providing custom definitions of syscall, mmap or sbrk should be rejected. Also, an input
programs should not modify memory-management functions namely malloc, calloc, realloc, free,
cfree, posix_memalign and aligned_alloc. E-ACSL relies on these functions in order to track
heap memory. Further, correct heap memory monitoring requires to limit allocation and deallocation of
heap memory to POSIX-compliant memory management functions listed above. Monitoring of programs
that allocate memory using non-standard or obsolete functions (e.g., valloc, memalign, pvalloc)
may not work correctly.
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AChanges

This chapter summarizes the changes in this documentation between each E-ACSL release. First we list
changes of the last release.

E-ACSL 25.0 Manganese

– New section Concurrency Support.

E-ACSL 24.0 Chromium

– Runtime Monitor Behavior: Document new options --assert-print-data and
--external-print-value of e-acsl-gcc, and update documentation for option
--external-assert.

E-ACSL 22.0 Titanium

– Update every section with changes to Frama-C and e-acsl-gcc output
– Simple Example: Remove option -e-acsl-check
– Combining E-ACSL with Other PLug-ins: -e-acsl-prepare is no more necessary.

E-ACSL 19.0 Potassium

– Runtime Monitor Behavior: Document global variable __e_acsl_sound_verdict usable
in __e_acsl_assert.

– New section Partial Instrumentation.
– New section Providing a White List of Functions.

E-ACSL 18.0 Argon

– Introduction: Improve a bit and reference new related papers.
– What the Plug-in Provides: Highlight that the memory analysis is not yet robust.
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– What the Plug-in Provides: Highlight the importance of -e-acsl-prepare.
– Known Limitations: Replace section “Limitations of E-ACSL Monitoring Libraries” by the new

section “Supported Systems”.
– Known Limitations: Add limitation about monitoring of variables with incomplete types.

E-ACSL Chlorine-20180501

– New section Additional Verifications.
– Update every section with respect to the changes introduced since E-ACSL Sulfur-20180101.

E-ACSL Sulfur-20180101

– no changes

E-ACSL Phosphorus-20170501

– Removed chapter Easy Instrumentation with E-ACSL.
– What the Plug-in Provides: added section E-ACSL Wrapper Script.
– What the Plug-in Provides: added description of E-ACSL runtime libraries.
– Known Limitations: added section Requirements to Input Programs.
– Known Limitations: added section Limitations of E-ACSL Monitoring Libraries.
– Recursive Functions: remove limitation about possible uses before being declared.
– Variadic Functions: mention the Variadic plug-in.

E-ACSL 0.6

– Easy Instrumentation with E-ACSL: new chapter.

E-ACSL 0.5

– Libc: new section.
– Architecture Dependent Annotations: add a remark about Gcc’s machdep.
– Use -then-last whenever possible.
– Update output wrt Frama-C Sodium changes.
– Bibliography: fix incorrect links.

E-ACSL 0.4

– No change.
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E-ACSL 0.3

– Introduction: reference the E-ACSL tutorial.
– Memory-related Annotations: document the E_ACSL_MACHDEP macro.

E-ACSL 0.2

– First release of this manual.
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