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Foreword

This is a preliminary design of the ACSL language, a deliverable of the task 7.2 of the ANR RNTL project
CAT (http://www.rntl.org/projet/resume2005/cat.htm). In this project, a reference
implementation of ACSL is provided: the Frama-C platform (http://frama-c.cea.fr).

This is the version 1.3 of ACSL design. Several features may still evolve in the future. In particular,
some features in this document are considered experimental, meaning that their syntax and semantics is
not already fixed. These features are marked with EXPERIMENTAL. They must also be considered as
advanced features, which are not supposed to be useful for a basic use of that specification language.
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Chapter 1

Introduction

This document is a reference manual for the ACSL implementation provided by the Frama-C frame-
work [10]. ACSL is an acronym for “ANSI C Specification Language”. This is a Behavioral Interface
Specification Language (a.k.a. BISL) implemented in the FRAMA-C framework. As suggested by its
name, it aims at specifying behavioral properties of C source code. The main inspiration for this lan-
guage comes from the specification language of the CADUCEUS tool [8, 9] for deductive verification of
behavioral properties of C programs. It is itself inspired from the Java Modeling Language (JML [18])
which aims at similar goals for Java source code: indeed it aims both at runtime assertion checking
and static verification using the ESC/JAVA2 tool [14], where we aim at static verification and deductive
verification (see Appendix A.2 for a detailed comparison between ACSL and JML).

Going back further in history, JML design was guided by the general design-by-contract principle
proposed by Bertrand Meyer, who took his own inspiration from the concepts of preconditions and
postconditions on a routine, going back at least to Dijkstra, Floyd and Hoare in the late 60’s and early
70’s, and originally implemented in the EIFFEL language.

In this document, we assume that the reader has a good knowledge of the ANSI C programming
language [13, 12].

1.1 Organization of this document

In this preliminary chapter we introduce some definitions and vocabulary, and discuss generalities about
this specification language. Chapter 2 presents the specification language itself. Chapter 3 presents
additional informations about libraries of specifications. Finally, Appendix A provides a few additional
information. A detailed table of contents is given on page 2. A glossary is given in Appendix A.1.

Not all of the features mentioned in this document are currently implemented in the Frama-C kernel.
Those who aren’t yet are signaled as in the following line:

This feature is not currently supported by Frama-C 1

As a summary, the features that are not currently implemented into Frama-C include in particular:

• some built-in predicates and logical functions;

• abrupt termination clauses in statement contracts (section 2.4.4);

• definition of logical types (section 2.6);

• specification modules (section 2.6.6);

• model variables and Model fields (section 2.38);
1Additional remarks on the feature may appear as footnote
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• only basic support for ghost code is provided (section 2.11);

• verification of non interference of ghost code (p. 51);

• specification of volatile variables (section 2.11.1);

1.2 Generalities about Annotations

In this document, we consider that specifications are given as annotations in comments written directly
in C source files, so that source files remain compilable. Those comments must start by /*@ or //@ and
end as usual in C.

For some particular context, it might not be possible to modify the source code. It is strongly rec-
ommended that a tool which implements ACSL specifications provides a technical means to store an-
notations in separate files. This is not the purpose of this document to describe such technical means.
Nevertheless, some of the specifications, namely those at a global level, can be given in separate files:
logical specifications can be imported (see Section 2.6.6) and a function contract can be attached to a
copy of the function profile (see Section 2.3.5).

1.2.1 Kinds of annotations

• Global annotations:

– function contract : such an annotation is inserted just before the declaration or the definition
of a function. See section 2.3.

– global invariant : this is allowed at the level of global declarations. See section 2.10.

– type invariant : this allows both structure or union invariants, and invariants on type names
introduced by typedef. See section 2.10.

– logic specifications : logic type introduction, introduction or definition of logic functions or
predicates, axioms. Such an annotation is placed at the level of global declarations.

• Statement annotations:

– assert clause : these are allowed everywhere a C label is allowed, or just before a block
closing brace.

– loop annotation (invariant, variant, assign clauses): is allowed immediately before a loop
statement: for , while , do . . . while . See Section 2.4.2.

– statement contract : very similar to a function contract, and placed before a statement or a
block. Semantical condition must be checked (normal termination only, no goto going inside,
no goto going outside). See Section 2.4.4.

– ghost code : regular C code, only visible from the specification, that is only allowed to modify
ghost variables. See section 2.11. This includes ghost braces for enclosing blocks.

1.2.2 Parsing annotations in practice

In JML, parsing is done by simply ignoring //@, /*@ and */ at the lexical analysis level. This technique
could modify the semantics of the code, for example:

return x /*@ +1 */ ;

ANSI/ISO C Specification Language CAT RNTL project



1.3 Notations for grammars 9

In our language, this is forbidden. Technically, the current implementation of Frama-C isolates the
comments in a first step of syntax analysis, and then parses a second time. Nevertheless, the grammar
and the corresponding parser must be carefully designed to avoid interaction of annotations with the
code. For example, in code such as

if (c) //@ assert P;
c=1;

the statement c=1 must be understood as the branch of the if. This is ensured by the grammar below,
saying that assert annotations are not statement themselves, but attached to the statement that follows,
like C labels.

1.2.3 About preprocessing

This document considers C source after preprocessing. Tools must decide what to do for preprocessing
phase: what to do with annotations, should macro substitution be performed or not, etc.

1.2.4 About keywords

Additional keywords of the specification language start with a backslash, if they are used in position of
a term or a predicate (which are defined in the following). Otherwise they do not start with a backslash
(like ensures) and they remain valid identifiers.

1.3 Notations for grammars

In this document, grammar rules are given in BNF form. In grammar rules, we use extra notations e∗ to
denote repetition of zero, one or more occurrences of e, e+ for repetition of one or more occurrences of
e, and e? for zero or one occurrence of e. For the sake of simplicity, we only describe annotations in the
usual /*@ . . . */ style of comments. One-line annotations in //@ comments are alike.

ANSI/ISO C Specification Language CAT RNTL project
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Chapter 2

Specification language

2.1 Lexical rules

Lexical structure mostly follows that of ANSI C. A few differences must be noted.

• The at sign (@) is a blank character, thus equivalent to a space character.

• Identifiers may start with the backslash character (\).

• Some UTF8 characters may be used in place of some constructs, as shown in the following table:

>= ≥ 0x2265
<= ≤ 0x2264
> > 0x003E
< < 0x003C
!= 6≡ 0x2262
== ≡ 0x2261
==> =⇒ 0x21D2
<==> ⇐⇒ 0x21D4
&& ∧ 0x2227
|| ∨ 0x2228
^^ ⊕ 0x22BB
! ¬ 0x00AC
\forall ∀ 0x2200
\exists ∃ 0x2203

In this document, we use UTF8 characters in the examples, to improve readability.

2.2 Logic expressions

This first section presents the language of expressions one can use in annotations. These are called logic
expressions in the following. They correspond to pure C expressions, with additional constructs that we
will introduce progressively.

Figure 2.1 presents the grammar for the basic constructs of logic expressions. In that grammar,
we distinguish between predicates and terms, following the usual distinction between propositions and
terms in classical first-order logic. The grammar for binders and type expressions is given separately in
Figure 2.2.

With respect to C pure expressions, the additional constructs are as follows:
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bin-op ::= + | - | * | / | %
| == | != | <= | >= | > | <
| && | || | boolean operations
| & | | | --> | <--> | ^ bitwise operations

unary-op ::= + | - unary plus and minus
| ! boolean negation
| ~ bitwise complementation
| * pointer dereferencing
| & address-of operator

term ::= \true | \false
| integer integer constants
| real real constants
| id variables
| unary-op term
| term bin-op term
| term [ term ] array access
| { term for [ term ] = term } array functional modifier
| term . id structure field access
| { term for id = term } structure field functional modifier
| term -> id
| ( type-expr ) term cast
| id ( term (, term)∗ ) function application
| ( term ) parentheses
| term ? term : term
| \let id = term ; term local binding
| sizeof ( term )
| sizeof ( C-type-expr )
| id : term syntactic naming

rel-op ::= == | != | <= | >= | > | <

pred ::= \true | \false
| term (rel-op term)+ comparisons (see remark)
| id ( term (, term)∗ ) predicate application
| ( pred ) parentheses
| pred && pred conjunction
| pred || pred disjunction
| pred ==> pred implication
| pred <==> pred equivalence
| ! pred negation
| pred ^^ pred exclusive or
| term ? pred : pred
| pred ? pred : pred
| \let id = term ; pred local binding
| \forall binders ; pred universal quantification
| \exists binders ; pred existential quantification
| id : pred syntactic naming

Figure 2.1: Grammar of terms and predicates

ANSI/ISO C Specification Language CAT RNTL project



2.2 Logic expressions 13

binders ::= type-expr variable-ident+

(, type-expr variable-ident+)∗

type-expr ::= logic-type-expr | C-type-expr

logic-type-expr ::= built-in-logic-type
| id type identifier

built-in-logic-type ::= boolean | integer | real

variable-ident ::= id | * variable-ident | variable-ident []
| ( variable-ident )

Figure 2.2: Grammar of binders and type expressions

Additional connectives C operators && (UTF8: ∧), || (UTF8: ∨) and ! (UTF8: ¬) are used as logical
connectives. There are additional connectives ==> (UTF8: =⇒) for implication, <==> (UTF8:
⇐⇒) for equivalence and ^^ (UTF8: ⊕) for exclusive or. These logical connectives all have a
bitwise counterpart, either C ones like &, |, ~ and ^, or additional ones like bitwise implication
--> and bitwise equivalence <-->.

Quantification Universal quantification is denoted by \forall τ x1, . . . , xn; e and existential quan-
tification by \exists τ x1, . . . , xn; e.

Local binding \let x = e1 ; e2 introduces the name x for expression e1 which can be used in expression e2.

Conditional c ? e1 : e2. There is a subtlety here: the condition may be either a boolean term or a pred-
icate. In case of a predicate, the two branches must be also predicates, so that this construct acts
as a connective with the following semantics: c?e1:e2 is equivalent to (c==>e1)&&(!c==>e2).

Syntactic naming id:e is a term or a predicate equivalent to e. It is different from local naming with
\let : the name cannot be reused in other terms or predicates. It is only for readibility purposes.

Functional modifier The composite element modifier is an additional operator in relation to the C struc-
ture field and array accessors. The expression { s for id = v } denotes the same structure than s,
except for the field id to be modified by v. The equivalent expression for an array is { t for [ i ]
= v } which returns the same array than t, except for the ith element those value is updated to v.
See Section 2.9 for an example of use of these operators.

Logic functions Applications in terms and in propositions are not applications of C functions, but of
logic functions or predicates; see Section 2.6 for detail.

Consecutive comparison operators The construct t1 relop1 t2 relop2 t3 · · · tk with several consecutive
comparison operators is a shortcut for (t1 relop1 t2) && (t2 relop2 t3) && · · ·. It is required that
the relopi operators must be in the same “direction”, i.e. they must all belong either to {<,<=,==}
or to {>,>=,==}. Expressions such as x < y > z or x != y != z are not allowed.

To enforce the same interpretation as in C expressions, one may need to add extra parentheses:
a==b<c is equivalent to a==b&&b<c, whereas a==(b<c) is equivalent to \let x=b<c;a==x.
This situation raises some issues, see example below.

There is a subtlety with respect to comparison operators: they are predicates when used in predicate
position, and boolean functions when used in term position.

Example 2.1 Let’s consider the following example:

ANSI/ISO C Specification Language CAT RNTL project



14 Specification language

class associativity operators
selection left [ · · ·] -> .
unary right ! ~ + - * & (cast) sizeof
multiplicative left * / %
additive left + -
shift left << >>
comparison left < <= > >=
comparison left == !=
bitwise and left &
bitwise xor left ^
bitwise or left |
bitwise implies left -->
bitwise equiv left <-->
connective and left &&
connective xor left ^^
connective or left ||
connective implies right ==>
connective equiv left <==>
ternary connective right · · ·? · · ·: · · ·
binding left \forall \exists \let
naming right :

Figure 2.3: Operator precedence

int f(int a, int b) { return a < b; }

The following postconditions are wrong:

• the obvious postcondition \result == a < b is not the right one because it is actually a
shortcut for \result == a && a < b.

• adding parentheses results in an ill-typed postcondition \result == (a < b), because it
tests equality of \result which has type int with a < b which has type boolean.

• similarly, \result <==> a < b is not well-typed, because it makes an equivalence between
an int and a predicate.

The following are correct postconditions:

• \result != 0 <==> a < b is acceptable because it is an equivalence between two predi-
cates.

• \result == (integer)(a<b) is also acceptable because it compares two integers. The
cast towards integer enforces a<b to be understood as a boolean term. Notice that a cast
towards int would also be acceptable.

2.2.1 Operators precedence

The precedence of C operators is conservatively extended with additional operators, as shown in Fig-
ure 2.3. In this table, operators are sorted from highest to lowest priority. Operators of same priority are
presented on the same line.

ANSI/ISO C Specification Language CAT RNTL project



2.2 Logic expressions 15

There is a remaining ambiguity between the connective ..?..:.. and the labelling operator :.
Consider for instance the expression x?y:z:t. The precedence table does not indicate whether this
should be understood as x?(y:z):t or x?y:(z:t). Such a case must be considered as a syntax
error, and should be fixed by explicitly adding parentheses.

2.2.2 Semantics

The semantics of logic expressions in ACSL is based on mathematical first-order logic [24]. In particular,
it is a 2-valued logic with only total functions. Consequently, expressions are never “undefined”. This
is an important design choice and the specification writer should be aware of that. (For a discussion
about the issues raised by such design choices, in similar specification languages such as JML, see the
comprehensive list compiled by Patrice Chalin [2, 3].)

Having only total functions implies than one can write terms such as 1/0, or *p when p is null (or
more generally when it points to a non-properly allocated memory cell). In particular, the predicates

1/0 == 1/0

*p == *p

are valid, since they are instances of the axiom ∀x, x = x of first-order logic. Of course, there is no
way to deduce anything useful about such terms. As usual, it is up to the specification designer to write
consistent assertions. For example, when introducing the following lemma (see Section 2.6):

/*@ lemma div_mul_identity:
@ ∀ real x, real y; y 6≡ 0.0 =⇒ y*(x/y) ≡ x;
@*/

a premise is added to require y to be non zero.

2.2.3 Typing

The language of logic expressions is typed (as in multi-sorted first-order logic). Types are either C types
or logic types defined as follows:

• “mathematical” types: integer for unbounded, mathematical integers, real for real numbers,
boolean for booleans (with values written \true and \false);

• logic types introduced by the specification writer (see Section 2.6).

There are implicit coercions for numeric types:

• C integral types char, short, int and long, signed or unsigned, are all subtypes of type
integer;

• integer is itself a subtype of type real;

• C types float and double are subtypes of type real.

Notes:

• There is a distinction between booleans and predicates. The expression x < y in term position is
a boolean, and the same expression is also allowed in predicate position.

• Unlike in C, there is a distinction between booleans and integers. There is an implicit promotion
from integers to booleans, thus one may write x && y instead of x != 0 && y != 0. If the
reverse conversion is needed, an explicit cast is required, e.g. (int)(x>0)+1, where \false
becomes 0 and \true becomes 1.
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• Quantification can be made over any type: logic types and C types. Quantification over pointers
must be used carefully, since it depends on the memory state where dereferencing is done (see
Section 2.2.4 and Section 2.6.5).

Formal typing rules for terms are given in appendix A.3.

2.2.4 Integer arithmetic and machine integers

The following integer arithmetic operations apply to mathematical integers: addition, subtraction, mul-
tiplication, unary minus. The value of a C variable of an integral type is promoted to a mathematical
integer. As a consequence, there is no such thing as “overflow” in logic expressions.

Division and modulo are also mathematical operations, which coincide with the corresponding C
operations on C machine integers, thus following the ANSI C99 conventions. In particular, these are not
the usual mathematical Euclidean division and remainder. Generally speaking, division rounds the result
towards zero. The results are not specified if divisor is zero; otherwise if q and r are the quotient and the
remainder of n divided by d then:

• |d× q| ≤ |n|, and |q| is maximal for this property;

• q is zero if |n| < |d|;

• q is positive if |n| ≥ |d| and n and d have the same sign;

• q is negative if |n| ≥ |d| and n and d have opposite signs;

• q × d+ r = n;

• |r| < |d|;

• r is zero or has the same sign as d.

Example 2.2 The following examples illustrate the results of division and modulo depending on the sign
of their arguments:

• 5/3 is 1 and 5%3 is 2;

• (-5)/3 is -1 and (-5)%3 is -2;

• 5/(-3) is -1 and 5%(-3) is 2;

• (-5)/(-3) is 1 and (-5)%(-3) is -2.

Hexadecimal and octal constants

Hexadecimal and octal constants are always non-negative. Suffixes u and l for C constants are allowed
but meaningless.

Casts and overflows

In logic expressions, casting from mathematical integers to an integral C type t (such as char, short,
int, etc.) is allowed and is interpreted as follows: the result is the unique value of the corresponding
type that is congruent to the mathematical result modulo the cardinal of this type, that is 28×sizeof(t).

Example 2.3 (unsigned char)1000 is 1000 mod 256 i.e. 232.
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To express in the logic the value of a C expression, one has to add all the necessary casts. For exam-
ple, the logic expression denoting the value of the C expression x∗y+ z is (int)((int)(x*y)+z).
Note that there is no implicit cast from integers to C integral types.

Example 2.4 The declaration

//@ logic int f(int x) = x+1 ;

is not allowed because x+1, which is a mathematical integer, must be casted to int. One should write
either

//@ logic integer f(int x) = x+1 ;

or

//@ logic int f(int x) = (int)(x+1) ;

Quantification on C integral types

Quantification over a C integral type corresponds to integer quantification over the corresponding inter-
val.

Example 2.5 Thus the formula

\forall char c; c <= 1000

is equivalent to

\forall integer c; -128 <= c <= 127 ==> c <= 1000

Size of C integer types

Remark that the size of C types is architecture-dependent. ACSL does not enforce these sizes either,
hence the semantics of terms involving such types is also architecture-dependent. The sizeof operator
may be used in the logic and is assumed to be consistent with the C code. For instance, it should be
possible to verify the following code:

/*@ ensures \result ≤ sizeof(int); */
int f() { return sizeof(char); }

Constants giving maximum and minimum values of those types may be given in a library.

Enum types

Enum types are also interpreted as mathematical integers. Casting an integer into an enum in the logic
must give the same result as if it was in the C code.
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Bitwise operations

Like arithmetic operations, bitwise operations apply to any mathematical integer: any mathematical
integer has a unique infinite 2-complement binary representation with infinitely many zeros (for non-
negative numbers) or ones (for negative numbers) on the left. Then bitwise operations apply to this
representation.

Example 2.6

• 7 & 12 = · · · 00111 & · · · 001100 = · · · 00100 = 4

• -8 | 5 = · · · 11000 | · · · 00101 = · · · 11101 = -3

• ~5 = ~ · · · 00101 = · · · 111010 = -6

• -5 << 2 = · · · 11011 << 2 = · · · 11101100 = -20

• 5 >> 2 = · · · 00101 >> 2 = · · · 0001 = 1

• -5 >> 2 = · · · 11011 >> 2 = · · · 1110 = -2

Transcendental functions

Classical mathematical operations like exponential, sine, cosine, etc. are supposed to be available in
some library (see Section 3.1.1).

2.2.5 Real numbers and floating point numbers

Floating-point constants and operations are interpreted as mathematical real numbers: a C variable of
type float or double is implicitly promoted to a real. Integers are promoted to reals if necessary.

Example 2.7 2 ∗ 3.5 is equal to the real number 7

Unlike the promotion of C integer types to mathematical integers, there are special float values which
do not naturally map to a real number, namely NaN, +Infinity and -Infinity. Since we want a logic
with total functions, we consider that there are implicit promotion functions real_of_float and
real_of_double whose results on the 3 values above is left unspecified.

Usual operators for comparison are interpreted as real operators too. In particular, equality operation
≡ of float (or double) expressions means equality of the real numbers they represent respectively. Or
equivalently, x ≡ y for x, y two float variables means real_of_float(x) ≡ real_of_float(y)
with the mathematical equality of real numbers.

Special predicates are also available to express the comparison operators of float (resp. double)
numbers as in C: \eq_float, \gt_float, \ge_float, \le_float, \lt_float, \ne_float
(resp. for double).

Casts, infinity and NaNs

Casting from a C integer type or a float type to a float or a double is as in C: the same conversion
operations apply.

Conversion of real numbers to float or double values indeed depends on various possible rounding
modes defined by the IEEE 754 standard [23, 25]. These modes are defined by a logic type:

type rounding_mode =
Nearest_even | To_zero | Round_up | Round_down | Nearest_away

Then rounding a real number can be done explicitly using functions
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logic float \round_float(rounding_mode m, real x);
logic double \round_double(rounding_mode m, real x);

Cast operators (float) and (double) applied to a mathematical integer or real number x are equiva-
lent to apply rounding functions above with the nearest-even rounding mode (which is the default round-
ing mode in C programs) If the source real number is too large, this may also result into one of the special
values +infinity and -infinity.

Example 2.8 We have (float)0.1 ≡ 13421773×2−27 which is equal to 0.10000000149006473916

Notice also that unlike for integers, suffixes f and d are meaningful, because they implicitly add a cast
operator as above.

This semantics of casts ensures that the float result r of a C operation e1ope2 on floats, if there is
no overflow and if the default rounding mode is not changed in the program, has the same real value as
the logic expression (float)(e1ope2). Notice that this is not true for the equality \eq_float of floats:
-0.0 + -0.0 in C is equal to the float number -0.0, which is not \eq_float to 0.0, which is the
value of the logic expression (float)(-0.0 + -0.0).

Finally, two additional predicates are provided on float and double numbers,which check that their
argument is NaN or a finite number respectively:

predicate \is_nan_float(float x);
predicate \is_nan_double(double x);
predicate \is_finite_float(float x);
predicate \is_finite_double(double x);

Quantification

Quantification over a variable of type real is of course usual quantification over real numbers.
Quantification over float (resp. double) types is allowed too, and is supposed to range over all real

numbers representable as floats (resp doubles). In particular, this does not include NaN, +infinity and
-infinity in the considered range.

2.3 Function contracts

Figure 2.4 shows a grammar for function contracts. Non-terminal location is defined later in Section 2.3.4
(informally, location denotes a set of C l-values).

This section is organized as follows. First, the grammar for terms is extended with two new con-
structs. Then Section 2.3.2 introduces simple contracts. Finally, Section 2.3.3 defines more general
contracts involving named behaviors The decreases and terminates clauses are presented later in
Section 2.5.

2.3.1 Built-in constructs \old and \result

Function contracts usually require to refer to function results and values in the pre-state. Thus terms are
extended with the following new constructs (shown in Figure 2.5).

• \old(e) denotes the value of e in the pre-state of the function.

• \result denotes the returned value of the function.

\old(e) and \result can be used only in assigns clauses and ensures clauses, since
requires and assumes clauses refer to the pre-state.
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fun-contract ::= simple-behavior named-behavior∗ decreases-clause?

simple-behavior ::= simple-clauses∗ terminates-clause? simple-clauses∗

simple-clauses ::= requires-clause | assigns-clause | ensures-clause

named-behavior ::= behavior ident : behavior-body

behavior-body ::= (assumes-clause | requires-clausea | assigns-clause | ensures-clause)∗

assumes-clause ::= assumes predicate ;

requires-clause ::= requires predicate ;

assigns-clause ::= assigns locations ;

locations ::= location (, location)∗ | \nothing

ensures-clause ::= ensures predicate ;

decreases-clause ::= decreases term (for ident)? ;

terminates-clause ::= terminates pred ;

anot in a named behavior

Figure 2.4: Grammar of function contracts

term ::= \old ( term ) old value
| \result result of a function

pred ::= \old ( pred )

Figure 2.5: \old and \result in terms

2.3.2 Simple function contracts

A simple function contract, having no named behavior, has the following form:

/*@ requires P1; requires P2; ...
@ assigns L1; assigns L2; ...
@ ensures E1; ensures E2; ...
@*/

The semantics of such a contract is as follows:

• The caller of the function must guarantee that it is called in a state where the property
P1&&P2&& . . . holds.

• The called function returns a state where the property E1&&E2&& . . . holds.

• All memory locations of the pre-state that do not belong to the set L1 ∪ L2 ∪ . . . remain allocated
and are left unchanged in the post-state. The set L1 ∪ L2 ∪ . . . is interpreted in the post-state.

Notice that the multiplicity of clauses are proposed mainly to improve readibility since the contract
above is equivalent to the following simplified one:
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/*@ requires P1 && P2 && . . .;
@ assigns L1, L2, . . .;
@ ensures E1 && E2 && . . .;
@*/

If no clause requires is given, it defaults to \true, and similarly for ensures clause. Giving no
assigns clause means that locations assigned by the function are not specified, so the caller has no
information at all on this function’s side effects. See Section 2.3.5 for more details on default status of
clauses.

Example 2.9 The following function is given a simple contract for computation of the integer square
root.

/*@ requires x ≥ 0;
@ ensures \result ≥ 0;
@ ensures \result * \result ≤ x;
@ ensures x < (\result + 1) * (\result + 1);
@*/

int isqrt(int x);

The contract means that the function must be called with a nonnegative argument, and returns a value
satisfying the conjunction of the three ensures clauses.

Example 2.10 The following function is given a contract to specify that it increments the value pointed
to by the pointer given as argument.

/*@ requires \valid(p);
@ assigns *p;
@ ensures *p ≡ \old(*p) + 1;
@*/

void incrstar(int *p);

The contract means that the function must be called with a pointer p that points to a safely allocated
memory location (see Section 2.7 for details on the \valid built-in predicate). It does not modify any
memory location but the one pointed to by p. Finally, the ensures clause specifies that the value *p is
incremented by one.

2.3.3 Contracts with named behaviors

The general form of a function contract contains several named behaviors (restricted to two behaviors,
in the following, for readability).

/*@ requires P;
@ behavior b1:
@ assumes A1;
@ requires R1 ;
@ assigns L1;
@ ensures E1;
@ behavior b2:
@ assumes A2;
@ requires R2 ;
@ assigns L2;
@ ensures E2;
@*/
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The semantics of such a contract is as follows:

• The caller of the function must guarantee that the call is performed in a state where the property
P&&(A1==>R1)&&(A2==>R2) holds.

• The called function returns a state where the properties \old(Ai)==>Ei hold for each i.

• For each i, if the function is called in a pre-state where Ai holds, then each memory location of
that pre-state that does not belong to the set Li remains allocated and is left unchanged in the
post-state.

Notice that the requires clauses in the behaviors are proposed mainly to improve readibility (to
avoid some duplication of formulas), since the contract above is equivalent to the following simplified
one:

/*@ requires P&&(A1==>R1)&&(A2==>R2);
@ behavior b1:
@ assumes A1;
@ assigns L1;
@ ensures E1;
@ behavior b2:
@ assumes A2;
@ assigns L2;
@ ensures E2;
@*/

Note that a simple contract such as

/*@ requires P; assigns L; ensures E; */

is actually equivalent to a single named behavior as follows:

/*@ requires P;
@ behavior <any name>:
@ assumes \true;
@ assigns L;
@ ensures E;
@*/

Similarly, global assigns and ensures clauses are equivalent to a single named behavior. More
precisely,

/*@ requires P;
@ assigns L;
@ ensures E;
@ behavior b1: ...
@ behavior b2: ...

@
...

@*/

is equivalent to

/*@ requires P;
@ behavior <any name>:
@ assumes \true;
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@ assigns L;
@ ensures E;
@ behavior b1: ...
@ behavior b2: ...

@
...

@*/

Example 2.11 In the following, bsearch(t, n, v) searches for element v in array t between indices 0
and n− 1.

/*@ requires n ≥ 0 ∧ \valid(t+(0..n−1));
@ assigns \nothing;
@ ensures −1 ≤ \result ≤ n−1;
@ behavior success:
@ ensures \result ≥ 0 =⇒ t[\result] ≡ v;
@ behavior failure:
@ assumes t_is_sorted : ∀ integer k1, integer k2;
@ 0 ≤ k1 ≤ k2 ≤ n−1 =⇒ t[k1] ≤ t[k2];
@ ensures \result ≡ −1 =⇒
@ ∀ integer k; 0 ≤ k < n =⇒ t[k] 6≡ v;
@*/

int bsearch(double t[], int n, double v);

The precondition requires array t to be allocated at least from indices 0 to n − 1. The two named
behaviors correspond respectively to the successful behavior and the failing behavior.

Since the function is performing a binary search, it requires the array t to be sorted in increasing
order: this is the purpose of the predicate named t_is_sorted in the assumes clause of the behavior
named failure.

See 2.4.2 for a continuation of this example.

Example 2.12 The following function illustrates the importance of different assigns clauses for each
behavior.

/*@ behavior p_changed:
@ assumes n > 0;
@ requires \valid(p);
@ assigns *p;
@ ensures *p ≡ n;
@ behavior q_changed:
@ assumes n ≤ 0;
@ requires \valid(q);
@ assigns *q;
@ ensures *q ≡ n;
@*/

void f(int n, int *p, int *q) {
if (n > 0) *p = n; else *q = n;

}

Its contract means that it assigns values pointed to by p or by q, conditionally on the sign of n.
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Completeness of behaviors

Notice that in a contract with named behaviors, it is not required that the disjunction of the Ai is true, i.e.
it is not mandatory to provide a “complete” set of behaviors. If such a condition is seeked, it is possible
to add the following clause to a contract:

/*@ ...
@ complete behaviors b1, . . . , bn;
@*/

It specifies that the set of behaviors b1, . . . , bn is complete i.e. that

R⇒
∨

1≤i≤n

Ai

holds, where R is the precondition of the contract. The simplified version of that clause

/*@ ...
@ complete behaviors;
@*/

means that all behaviors given in the contract should be taken into account.
Similarly, it is not required that two distinct behaviors are disjoint. If desired, this can be specified

with the following clause:

/*@ ...
@ disjoint behaviors b1, . . . , bn;
@*/

It means that the given behaviors are pairwise disjoint i.e. that, for all distinct i and j,

R⇒ ¬(Ai ∧Aj)

holds. The simplified version of that clause

/*@ ...
@ disjoint behaviors;
@*/

means that all behaviors given in the contract should be taken into account.

2.3.4 Memory locations

There are several places where one needs to describe a set of memory locations: in assigns clauses
of function contracts, or in reads clauses (see Section 2.6). More generally, we introduce syntactic
constructs to denote sets of terms. A memory location is then any set of terms denoting a set of l-values.
Moreover, a location given as argument to an assigns clause must be a set of modifiable l-values, as
described in Section A.1.

The grammar for sets of terms is given in Figure 2.6. The semantics is given below, where s denotes
any tset.

• \empty denotes the empty set.

• a simple term denotes a singleton set.

• s→ id denotes the set of x→ id for each x ∈ s.
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tset ::= \empty empty set
| term singleton
| tset -> id
| tset . id
| * tset
| tset [ tset ]
| term? .. term? range
| \union ( tset (, tset)∗ ) union of locations
| \inter ( tset (, tset)∗ ) intersection
| tset + tset
| ( tset )
| { tset | binders (; pred)? } set comprehension

pred ::= \subset ( tset , tset ) set inclusion

Figure 2.6: Grammar for sets of terms

• s.id denotes the set of x.id for each x ∈ s.

• ∗s denotes the set of ∗x for each x ∈ s.

• s1[s2] denotes the set of x1[x2] for each x1 ∈ s1 and x2 ∈ s2.

• t1..t2 denotes the set of integers between t1 and t2, included. If t1 > t2, this the same as \empty

• union(s1, . . . , sn) denotes the union of s1, s2, . . . and sn;

• inter(s1, . . . , sn) denotes the intersection of s1, s2, . . . and sn;

• s1 + s2 denotes the set of x1 + x2 for each x1 ∈ s1 and x2 ∈ s2;

• (s) denotes the same set as s;

• {s | b;P} denotes set comprehension, that is the union of the sets denoted by s for each value b of
binders satisfying predicate P (binders b are bound in both s and P ).

Note that \assigns \nothing is equivalent to \assigns \empty; it is left for convenience.

Example 2.13 The following function sets to 0 each cell of an array.

/*@ requires \valid(t+(0..n−1));
@ assigns t[0..n−1];
@ assigns *(t+(0..n−1));
@ assigns *(t+{ i | integer i ; 0 ≤ i < n });
@*/

void reset_array(int t[],int n) {
int i;
for (i=0; i < n; i++) t[i] = 0;

}

It is annotated with three equivalent assigns clauses, each one specifying that only the set of cells
{t[0], . . . , t[n− 1]} is modified.
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Example 2.14 The following function increments each value stored in a linked list.

struct list {
int hd;
struct list *next;

};

// reachability in NULL−terminated lists
/*@ predicate reachable(struct list *root, struct list *to) =
@ root ≡ to ∨ root 6≡ \null ∧ reachable(root−>next,to) ;
@*/

// The requires clause forbids to give a circular list
/*@ requires reachable(p,\null);
assigns { q−>hd | struct list *q ; reachable(p,q) } ;

*/
void incr_list(struct list *p) {

while (p) { p−>hd++ ; p = p−>next; }
}

The assigns clause specifies that the set of modified memory locations is the set of fields q->hd for
each pointer q reachable from p following next fields. See Section 2.6 for details about the declaration
of the predicate reachable.

2.3.5 Default contracts, multiple contracts

A C function can be defined only once but declared several times. It is allowed to annotate each of
these declarations with contracts. Those contracts are seen as a single contract with the union of the
requires clauses and behaviors.

On the other hand a function may have no contract at all, or a contract with missing clauses. Miss-
ing requires and ensures clauses default to \true. If no assigns clause is given, it remains
unspecified. If the function under consideration has only a declaration but no body, then it means that it
potentially modifies “everything”, hence in practice it will be impossible to verify anything about pro-
grams calling that function; in other words giving it a contract is in practice mandatory. On the other
hand, if that function has a body, giving no assigns clause means in practice that it is left to tools to
compute an over-approximation of the sets of assigned locations.

2.4 Statement annotations

Annotations on C statements are of three kinds:

• Assertions: allowed before any C statement or at end of blocks.

• Loop annotations: invariant, assigns clause, variant; allowed before any loop statement: while,
for, and do...while.

• Statement contracts: allowed before any C statement, specifying their behavior in a similar manner
to C function contracts.
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compound-statement ::= { declaration∗ statement∗ assertion+ }

statement ::= assertion statement

assertion ::= /*@ assert pred ; */
| /*@ for id (, id)∗ : assert pred ; */

Figure 2.7: Grammar for assertions

statement ::= /*@ loop-annot */
while ( expr ) statement

| /*@ loop-annot */
for ( expr ; expr ; expr ) statement

| /*@ loop-annot */
do statement while ( expr ) ;

loop-annot ::= (loop-invariant | loop-assigns)∗

loop-variant?

loop-invariant ::= loop invariant pred ;
| for id (, id)∗ : loop invariant pred ; invariant for behavior id

loop-assigns ::= loop assigns locations ;
| for id (, id)∗ : loop assigns locations ; assigns for behavior id

loop-variant ::= loop variant term ;
| loop variant term for id ; variant for relation id

Figure 2.8: Grammar for loop annotations

2.4.1 Assertions

The syntax of assertions is given in Figure 2.7, as an extension of the grammar of C statements.

• assert p means that p must hold in the current state (the sequence point where the assertion
occurs).

• The variant for id1, . . . , idk : assert p associates the assertion to the named behaviors idi,
each of them being a behavior identifier for the current function (or a behavior of an enclosing
block as defined later in Section 2.4.4). It means that this assertion must hold only for the consid-
ered behaviors.

2.4.2 Loop annotations

The syntax of loop annotations is given in Figure 2.8, as an extension of the grammar of C statements.

Loop invariants

The semantics of loop invariants is defined as follows: a loop annotation of the form
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/*@ loop invariant I;
@ loop assigns L;
@*/

...

specifies that the following conditions hold.

• The predicate I holds before entering the loop (in the case of a for loop, this means right after
the initialization expression).

• The predicate I is an inductive invariant, that is if I is assumed true in some state where the
condition c is also true, and if execution of the loop body in that state ends normally at the end of
the body or with a continue statement, I is true in the resulting state. If the loop condition has
side effects, these are included in the loop body in a suitable way:

– for a while (c) s loop, I must be preserved by the side-effects of c followed by s;

– for a for(init; c; step) s loop, I must be preserved by the side-effects of c followed by s
followed by step;

– for a do s while (c); loop, I must be preserved by s followed by the side-effects of c.

• At any loop iteration, any location that was allocated before entering the loop, and is not member
of L (interpreted in the current state), must remain allocated and has the same value as before
entering the loop.

Remarks

• The \old construct is not allowed 1 in loop annotations. The \at form should be used to refer to
another state (see Section 2.4.3).

• When a loop exits with break or return or goto, it is not required that the loop invariant
holds.

Example 2.15 Here is a continuation of example 2.11. Note the use of a loop invariant associated to a
function behavior.

/*@ requires n ≥ 0 ∧ \valid(t+(0..n−1));
@ assigns \nothing;
@ ensures −1 ≤ \result ≤ n−1;
@ behavior success:
@ ensures \result ≥ 0 =⇒ t[\result] ≡ v;
@ behavior failure:
@ assumes t_is_sorted : ∀ integer k1, int k2;
@ 0 ≤ k1 ≤ k2 ≤ n−1 =⇒ t[k1] ≤ t[k2];
@ ensures \result ≡ −1 =⇒
@ ∀ integer k; 0 ≤ k < n => t[k] 6≡ v;
@*/

int bsearch(double t[], int n, double v) {
int l = 0, u = n−1;
/*@ loop invariant 0 ≤ l ∧ u ≤ n−1;

@ for failure: loop invariant
@ ∀ integer k; 0 ≤ k < n ∧ t[k] ≡ v =⇒ l ≤ k ≤ u;

1This is not checked
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assertion ::= /*@ invariant pred ; */
| /*@ for id (, id)∗ : invariant pred ; */

Figure 2.9: Grammar for general inductive invariants

@*/
while (l ≤ u ) {

int m = l + (u−l)/2; // better than (l+u)/2
if (t[m] < v) l = m + 1;
else if (t[m] > v) u = m − 1;
else return m;

}
return −1;

}

Loop variants

Optionally, a loop annotation may include a loop variant of the form

/*@ loop variant m;
@*/

...

where m is a term of type integer.
The semantics is as follows: for each loop iteration that terminates normally or with continue,

the value of m at end of the iteration must be smaller that its value at the beginning of the iteration.
Moreover, its value at the beginning must be nonnegative. Note that the value of m at loop exit might be
negative. It does not compromise termination of the loop. Here is an example:

Example 2.16
void f(int x) {

//@ loop variant x;
while (x ≥ 0) {
x −= 2;

}
}

It is also possible to specify termination orderings other than the usual order on integers, using the
additional for modifier. This is explained in Section 2.5.

General inductive invariants

It is actually allowed to pose an inductive invariant anywhere inside a loop body. For example, it makes
sense for a do s while (c); loop to contain an invariant right after statement s. Such an invariant is
a kind of assertions, as shown in Figure 2.9.

Example 2.17 In the following example, the natural invariant holds at this point (\max and \lambda
are introduced later in Section 2.6.3). It would be less convenient to set an invariant at the beginning of
the loop.
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/*@ requires n > 0 ∧ \valid(t+(0..n−1));
@ ensures \result ≡ \max(0,n−1,(\lambda integer k ; t[k]));
@*/

double max(double t[], int n) {
int i = 0; double m,v;
do {

v = t[i++];
m = v > m ? v : m;
/*@ invariant m ≡ \max(0,i−1,(\lambda integer k ; t[k])); */

} while (i < n);
return m;

}

More generally, loops can be introduced by gotos. As a consequence, such invariants may occur
anywhere inside a function’s body. The meaning is that the invariant holds at that point, much like an
assert. Moreover, the invariant must be inductive, i.e. it must be preserved across a loop iteration.
Several invariants are allowed at different places in a loop body. These extensions are useful when
dealing with complex control flows.

Example 2.18 Here is a program annotated with an invariant inside the loop body:

/*@ requires n > 0;
@ ensures \result ≡ \max(0,n−1,\lambda integer k; t[k]);
@*/

double max_array(double t[], int n) {
double m; int i=0;
goto L;
do {

if (t[i] > m) { L: m = t[i]; }
/*@ invariant
@ 0 ≤ i < n ∧ m ≡ \max(0,i,\lambda integer k; t[k]);
@*/

i++;
}
while (i < n);
return m;

}

The control-flow graph of the code is as follows

invdo

i← 0

m← t[i]

i← i+ 1

i ≥ n

i < n

m < t[i]

m ≥ t[i]
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The invariant is inductively preserved by the two paths that go from node “inv” to itself.

Example 2.19 The program

int x = 0;
int y = 10;

/*@ loop invariant 0 ≤ x < 11;
@*/

while (y > 0) {
x++;
y−−;

}

is not correctly annotated, even if it is true that x remains smaller than 11 during the execution. This is
because it is not true that the property x < 11 is preserved by the execution of x++ ; y--;. A correct
loop invariant could be 0 <= x < 11 && x+y == 10. It holds at loop entrance and is preserved
(under the assumption of the loop condition y>0).

Similarly, the following general invariants are not inductive:

int x = 0;
int y = 10;

while (y > 0) {
x++;
//@ invariant 0 < x < 11;
y−−;
//@ invariant 0 ≤ y < 10;

}

since 0 <= y < 10 is not a consequence of hypothesis 0 < x < 11 after executing y--; and
0 < x < 11 cannot be deduced from 0 <= y < 10 after looping back through the condition y>0
and executing x++. Correct invariants could be:

while (y > 0) {
x++;
//@ invariant 0 < x < 11 ∧ x+y ≡ 11;
y−−;
//@ invariant 0 ≤ y < 10 ∧ x+y ≡ 10;

}

2.4.3 Built-in construct \at

Statement annotations usually need another additional construct \at(e, id) referring to the value of the
expression e in the state at label id. The label id can be either a regular C label, or a label added within
a ghost statement as described in Section 2.11. This label must be declared in the same function as the
occurrence of \at(e, id), but unlike gotos, more restrictive scoping rules must be respected:

• the label id must occur before the occurrence of \at(e, id) in the source;

• the label id must not be inside an inner block.

These rules are exactly the same rules as for the visibility of local variables within C statements (see [13],
Section A11.1)
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Default logic labels

There are three predefined logic labels: Pre, Here and Old. \old(e) is in fact syntactic sugar for
\at(e,Old).

• The label Here is visible in all statement annotations, where it refers to the state where the anno-
tation appears; and in all contracts, and refers to the pre-state for the requires clause and the
post-state for other clauses. It is also visible in data invariants, presented in Section 2.10.

• The label Old is visible in assigns and ensures clauses of all contracts (both for functions
and for statement contracts described below in Section 2.4.4), and refers to the pre-state of this
contract.

• The label Pre is visible in all statement annotations, and refers to the pre-state of the function it
occurs in.

Note that no logic label is visible in global logic declarations such as lemmas, axioms, definition of
predicate or logic functions. When such an annotation needs to refer to a given memory state, it has to
be given a label binder: this is described in Section 2.6.5.

Example 2.20 The code below implements the famous extended Euclid’s algorithm for computing the
greatest common divisor of two integers x and y, while computing at the same time two Bézout coeffi-
cients p and q such that p× x+ q × y = gcd(x, y). The loop invariant for the Bézout property needs to
refer to the value of x and y in the pre-state of the function.

/*@ requires x ≥ 0 ∧ y ≥ 0;
@ behavior bezoutProperty:
@ ensures (*p)*x+(*q)*y ≡ \result;
@*/

int extended_Euclid(int x, int y, int *p, int *q) {
int a = 1, b = 0, c = 0, d = 1;
/*@ loop invariant x ≥ 0 ∧ y ≥ 0 ;

@ for bezoutProperty: loop invariant
@ a*\at(x,Pre)+b*\at(y,Pre) ≡ x ∧
@ c*\at(x,Pre)+d*\at(y,Pre) ≡ y ;
@ loop variant y;
@*/

while (y > 0) {
int r = x % y;
int q = x / y;
int ta = a, tb = b;
x = y; y = r;
a = c; b = d;
c = ta − c * q; d = tb − d * q;

}

*p = a; *q = b;
return x;

}

ANSI/ISO C Specification Language CAT RNTL project



2.5 Termination 33

statement ::= /*@ statement-contract */ statement

statement-contract ::= (for id (, id)∗)?simple-behavior named-behavior∗ abrupt-clause∗

abrupt-clause ::= breaks predicate ;
| continues predicate ;
| returns predicate ;

Figure 2.10: Grammar for statement contracts

2.4.4 Statement contracts

The grammar for statement contracts is given in Figure 2.10. It is similar to function contracts, but
without decreases clause. Additionally, a statement contract may refer to enclosing named behaviors,
with the form for id : .... Such contracts are only valid for the corresponding behaviors, in
particular only under the corresponding assumes clause.

The clauses breaks, continues and returns state properties on the program state which
hold when the annotated statement terminates abruptly with the corresponding statement (break,
continue or return). For the returns case, the \result construct is allowed and bound to
the value returned (if not a void function).

Example 2.21 Here is an example which illustrates each of these special clauses for statement contracts.

int f(int x) {

while (x > 0) {

/*@ breaks x % 11 ≡ 0 ;
@ continues (x+1) % 11 6≡ 0 ∧ x % 7 ≡ 0;
@ returns (\result+2) % 11 6≡ 0 ∧ (\result+1) % 7 6≡ 0
@ ∧ \result % 5 ≡ 0;
@ ensures (x+3) % 11 6≡ 0 ∧ (x+2) % 7 6≡ 0 ∧ (x+1) % 5 6≡ 0;
@*/

{
if (x % 11 ≡ 0) break;
x−−;
if (x % 7 ≡ 0) continue;
x−−;
if (x % 5 ≡ 0) return x;
x−−;

}
}
return x;

}

2.5 Termination

The property of termination concerns both loops and recursive function calls. Termination is guaranteed
by attaching a measure function to each loop and each recursive function. By default, a measure is an
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integer expression, and measures are compared using the usual ordering over integers (Section 2.5.1).
It is also possible to define measures into other domains and/or using a different ordering relation (Sec-
tion 2.5.2).

2.5.1 Integer measures

Functions are annotated with integer measures with the syntax

//@ decreases e ;

and loops are annotated similarly with the syntax

//@ loop variant e;

where the logic expression e has type integer. For recursive calls, or for loops, this expression must
decrease for the relation R defined by

R(x, y) ::= x > y && x ≥ 0

In other words, the measure must be a decreasing sequence of integers which remain nonnegative, except
possibly for the last value of the sequence (See example 2.16).

Example 2.22 In Example 2.15, a loop variant u-l decreases at each iteration, and remains nonnega-
tive, except at the last iteration where it may become negative.

2.5.2 General measures

More general measures on other types can be provided, using the keyword for. For functions it becomes

//@ decreases e for R;

and for loops

//@ loop variant e for R;

In those cases, the logic expression e has some type τ and R must be relation on τ , that is a binary
predicate declared as

//@ predicate R(τ x, τ y) · · ·

(see Section 2.6 for details). Of course, to guarantee termination, it must be proved that R is a well-
founded relation.

Example 2.23 The following example illustrates a variant annotation using a pair of integers, ordered
lexicographically.

//@ ensures \result ≥ 0;
int dummy();

//@ type intpair = (integer,integer);

/*@ predicate lexico(intpair p1, intpair p2) =
@ \let (x1,y1) = p1 ;
@ \let (x2,y2) = p2 ;
@ x1 < x2 ∧ 0 ≤ x2 ∨
@ x1 ≡ x2 ∧ 0 ≤ y2 ∧ y1 < y2;
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@*/

//@ requires x ≥ 0 ∧ y ≥ 0;
void f(int x,int y) {

/*@ loop invariant x ≥ 0 ∧ y ≥ 0;
@ loop variant (x,y) for lexico;
@*/

while (x > 0 ∧ y > 0) {

if (dummy()) {
x−−; y = dummy();

}
else y−−;

}
}

2.5.3 Recursive function calls

The precise semantics of measures on recursive calls, especially in the general case of mutually recursive
functions, is given as follows. We call cluster a set of mutually recursive functions which is a strongly
connected component of the call graph. Within each cluster, each function must be annotated with a
decreases clause with the same relation R (syntactically). Then, in the body of any function f of that
cluster, any recursive call to a function g must occur in a state where the measure attached to g is smaller
(w.r.t R) than the measure of f in the pre-state of f . This also applies when g is f itself.

Example 2.24 Here are the classical factorial and Fibonacci functions:

/*@ requires n ≤ 12;
@ decreases n;
@*/

int fact(int n) {
if (n ≤ 1) return 1;
return n * fact(n−1);

}

//@ decreases n;
int fib(int n) {

if (n ≤ 1) return 1;
return fib(n−1) + fib(n−2);

}

Example 2.25 This example illustrates mutual recursion:

//@ decreases n;
int even(int n) {

if (n ≡ 0) return 1;
return odd(n−1);

}

//@ decreases x;
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int odd(int x) {
if (x ≡ 0) return 0;
return even(x−1);

}

2.5.4 Non-terminating functions

EXPERIMENTAL

There are cases where a function is not supposed to terminate. For instance, the main function
of a reactive program might be a while(1) which indefinitely waits for an event to process. More
generally, a function can be expected to terminate only if some preconditions are met. In those cases, a
terminates clause can be added to the contract of the function, under the following form:

//@ terminates p;

The semantics of such a clause is as follows: if p holds, then the function is guaranteed to terminate
(more precisely, its termination must be proved). If such a clause is not present (and in particular if there
is no function contract at all), it defaults to terminates \true; that is the function is supposed to
always terminate, which is the expected behavior of most functions.

Note that nothing is specified for the case where p does not hold: the function may terminate or
not. In particular, terminates \false; does not imply that the function loops forever. A possible
specification for a function that never terminates is the following:

/*@ ensures \false;
terminates \false;

*/
void f() { while(1); }

Example 2.26 A concrete example of a function that may not always terminate is the incr_list
function of example 2.14. In fact, another acceptable contract for this function is the following one:

struct list {
int hd;
struct list* next;

}

// We give an axiomatic definition of the reachability predicate,
// which is equivalent to the definition seen above.
/*@ predicate reachable(struct list* root, struct list* to); */
/*@ axiom reachable_self: ∀ struct list* p; reachable(p,p); */
/*@ axiom reachable_next:

∀ struct list* root,to;
\valid(root) ∧ reachable(root−>next,to) =⇒

reachable(root,to); */

// this time, the specification accepts circular lists, but does not ensure
// that the function terminates on them (as a matter of fact, it does not).
/*@ assigns { q−>hd | struct list *q ; reachable(p,q) } ;

terminates reachable(p,\null);

*/
void incr_list(struct list *p) {
while (p) { p−>hd++ ; p = p−>next; }

}
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C-global-decl ::= /*@
+
*/

logic-decl ::= logic-type-decl
| logic-const-decl | logic-const-def
| logic-predicate-decl
| logic-predicate-def
| logic-function-decl
| logic-function-def
| lemma-def

type-var ::= id

type-var-binders ::= < type-var (, type-var)∗ >

logic-type-decl ::= type logic-type ;

logic-type ::= id
| id type-var-binders polymorphic type

logic-type-expr ::= type-var type variable
| id < type-expr (, type-expr)∗ > polymorphic type

poly-id ::= id normal identifier
| id type-var-binders identifier for polymorphic object

logic-const-def ::= logic type-expr
poly-id = term ;

logic-function-def ::= logic type-expr
poly-id parameters = term ;

logic-predicate-def ::= predicate
poly-id parameters? = pred ;

logic-const-decl ::= logic type-expr poly-id ;

logic-function-decl ::= logic type-expr
poly-id parameters ;

logic-predicate-decl ::= predicate
poly-id parameters? ;

parameters ::= ( parameter (, parameter)∗ )

parameter ::= type-expr variable-ident

lemma-def ::= axiom poly-id : pred ;
| lemma poly-id : pred ;

Figure 2.11: Grammar for logic declarations

2.6 Logic specifications

The language of logic expressions used in annotations can be extended by declaration of new logic
types, and new constants, logic functions and predicates. These declarations follows the classical set-
ting of algebraic specifications. In particular new functions and predicates may be either defined by
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explicit expressions, or axiomatized by a set of axioms. The grammar for these declarations is given in
Figure 2.11.

The difference between a lemma and an axiom is that a lemma is supposed to be deductible from
axioms. Thus, while axioms are always assumed to be true, a complete verification of an ACSL speci-
fication has to provide a proof for each lemma. On the other hand, it is up to the user to ensure that the
introduction of axioms does not lead to a logical inconsistency.

2.6.1 Polymorphic logic types

EXPERIMENTAL

We consider here an algebraic specification setting based on multi-sorted logic, where types can be
polymorphic that is parametrized by other types. For example, one may declare the type of polymorphic
lists as

//@ type list<A>;

One can then consider for instance list of integers (list <integer>), list of pointers (e.g. list
<char*>), list of list of reals (list <list <real> >2), etc.

The grammar of Figure 2.11 contains rules for declaring polymorphic types and using polymorphic
type expressions.

2.6.2 Recursive logic definitions

Explicit definitions of logic functions and predicates can be recursive. Declarations in the same bunch
of logic declarations are implicitly mutually recursive, so that mutually recursive functions are possible
too.

Example 2.27 The following logic declaration

/*@ logic integer max_index{L}(int t[],integer n) =
@ (n≡0) ? 0 :
@ (t[n−1]≡0) ? n : max_index(t, n−1);
@*/

defines a logic function which returns the maximal index i between 0 and n− 1 such that t[i] = 0.

Notice that there is no syntactic condition on such recursive definitions, such as limitation to prim-
itive recursion like e.g. in Coq [7]. In essence, a recursive definition of the form f(args) = e;
where f occurs in expression e is just a shorcut for a declaration of f followed by an axiom
\forall args; f(args) = e. In other words, recursive definitions are not guaranteed to be
consistent, in the same way that axioms may introduce inconsistency. Of course, tools might provide a
way to check consistency.

2.6.3 Higher-order logic constructions

EXPERIMENTAL

Figure 2.12 introduces new term constructs for higher-order logic.

Abstraction The term \lambda τ1 x1, . . . , τn xn ; t denotes the n-ary logic function which maps
x1, . . . , xn to t. It has the same precedence as \forall and \exists

2In this latter case, note that the two ’>’ must be separated by a space, to avoid confusion with the shift operator.
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term ::= \lambda binders ; term abstraction
| extended-quantifier ( term , term , term )

extended-quantifier ::= \max | \min | \sum | \product | \numof

Figure 2.12: Grammar for higher-order constructs

Extended quantifiers Terms \quant(t1, t2, t3) where quant is max min sum product or numof
are extended quantifications. t1 and t2 must have type integer, and t3 must be a unary function
with an integer argument, and a numeric value (integer or real) except for \numof for which it
should have a boolean value. Their meanings are given as follows:

\max(i, j, f) = max{f(i), f(i+ 1), . . . , f(j)}
\min(i, j, f) = min{f(i), f(i+ 1), . . . , f(j)}
\sum(i, j, f) = f(i) + f(i+ 1) + · · ·+ f(j)

\product(i, j, f) = f(i)× f(i+ 1)× · · · × f(j)
\numof(i, j, f) = #{k | i ≤ k ≤ j && f(k)}

= \sum(i, j,\lambda integer k; f(k)?1 : 0)

If i > j then \sum and \numof above are 0, \product is 1, and \max and \min are unspeci-
fied (see Section 2.2.2).

Example 2.28 Function that sums the element of an array of doubles.

/*@ requires n ≥ 0 ∧ \valid(t+(0..n−1)) ;
@ ensures \result ≡ \sum(0,n−1,\lambda int k; t[k]);
@*/

double array_sum(double t[],int n) {
int i;
double s = 0.0;
/*@ loop invariant 0 ≤ i ≤ n;
@ loop invariant s ≡ \sum(0,i−1,\lambda int k; t[k]);
@ loop variant n−i;

*/
for(i=0; i < n; i++) s += t[i];
return s;

}

2.6.4 Concrete logic types

EXPERIMENTAL

Logic types may not only be declared but also be given a definition. Defined logic types can be either
under record types, or sum types. These definitions may be recursive. For record types, the field access
notation t.id can be used, and for sum types, a pattern-matching construction is available. The grammar
rules for these additional constructions are given in Figure 2.13

Example 2.29 The declaration

//@ type list<A> = Nil | Cons(A,list<A>);
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logic-type-decl ::= type logic-type = logic-type-def ;

logic-type-def ::= record-type | sum-type
| type-expr type abbreviation

record-type ::= { type-expr id (; type-expr id)∗ ;? }

sum-type ::= |? constructor (| constructor)∗

constructor ::= id constant constructor
| id ( type-expr (, type-expr)∗ ) non-constant constructor

type-expr ::= ( type-expr (, type-expr)+ ) product type

term ::= term . id record field access
| \match term { match-cases } pattern-matching
| ( term (, term)+ ) tuples
| { (. id = term ;)+ } records
| \let ( id (, id)+ ) = term ; term

match-cases ::= match-case+

match-case ::= case pat : term

pat ::= id constant constructor
| id ( pat (, pat)∗ ) non-constant constructor
| pat | pat or pattern
| _ any pattern
| cst numeric constant
| { (. id = pat)∗ } record pattern
| ( pat (, pat)∗ ) tuple pattern
| pat as id pattern binding

Figure 2.13: Grammar for concrete logic types and pattern-matching

introduces a concrete definition of finite lists. The logic definition

/*@ logic integer list_length<A>(list<A> l) =
@ \match l {
@ case Nil : 0
@ case Cons(h,t) : 1+list_length(t)
@ };
@*/

defines the length of a list by recursion and pattern-matching.

2.6.5 Hybrid functions and predicates

Logic functions and predicates may take both (pure) C types and logic types arguments. Such an hybrid
predicate (or function) can either be defined with the same syntax as before, or simply declared, but in the
latter case the declaration should usually be augmented with a reads clause, with the syntax given in
Figure 2.14, which extends the one of Figure 2.11. This feature is useful when a function or a predicate
is not easily definable, but can be more easily axiomatized.
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logic-function-decl ::= logic type-expr poly-id
parameters reads-clause ;

logic-predicate-decl ::= predicate poly-id
parameters? reads-clause ;

reads-clause ::= reads locations

logic-function-def ::= logic type-expr poly-id
parameters reads-clause = term ;

logic-predicate-def ::= predicate poly-id
parameters? reads-clause = pred ;

poly-id ::= id normal identifier
| id type-var-binders identifier for polymorphic object
| id label-binders normal identifier with labels
| id label-binders type-var-binders polymorphic identifier with labels

label-binders ::= { id (, id)∗ }

Figure 2.14: Grammar for logic declarations with reads clauses

Be it defined either directly by an expression or through a set of axioms, an hybrid function (or
predicate) usually depends on one or more program points, because it depends upon memory states, via
expressions such as:

• pointer dereferencing: *p, p->f;

• array access: t[i];

• address-of operator: &x;

• built-in predicate depending on memory: \valid

To make such a definition safe, it is mandatory to add after the declared identifier a set of labels, between
curly braces. Expressions as above must then be enclosed into the \at construct to refer to a given label.
However, to ease reading of such logic expressions, it is allowed to omit a label whenever there is only
one label in the context.

Example 2.30 The following annotations declare a function which returns the number of occurrences
of a given double in an array of doubles between the given indexes, together with the related axioms.
It should be noted that without the reads clauses, this axiomatization would be inconsistent, since the
function would not depend on the values stored in t, hence the two last axioms would say both that
a = b+ 1 and a = b for some a and b.

/* nb_occ(t,i,j,e) gives the number of occurrences of e in t[i..j]
* (in a given memory state labelled L)
*/

/*@ logic integer nb_occ{L}(double t[], integer i, integer j,
@ double e)
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@ reads t[..];
@*/

/* Notice that without label {L}, t[..] would be rejected.
* With {L}, it is indeed a shortcut for \at (t[..],L).
*/

/*@ axiom nb_occ_empty{L} :
@ ∀ double t[], integer i, integer j, double e;
@ i > j =⇒ nb_occ(t,i,j,e) ≡ 0;
@*/

// without {L}, term nb_occ(t,i,j,e) would be rejected

/*@ axiom nb_occ_true{L} :
@ ∀ double t[], integer i, integer j, double e;
@ i ≤ j ∧ t[i] ≡ e =⇒
@ nb_occ(t,i,j,e) ≡ nb_occ(t,i,j−1,e) + 1;
@*/

// without {L}, term ti would be rejected, here it is \at (ti,L)

/*@ axiom nb_occ_false{L} :
@ ∀ double t[], integer i, integer j, double e;
@ i ≤ j ∧ t[i] 6≡ e =⇒
@ nb_occ(t,i,j,e) ≡ nb_occ(t,i,j−1,e);
@*/

Example 2.31 This second example defines a predicate which indicates whether two arrays of the same
size are a permutation of each other. It illustrates the use of more than a single label. Thus, the \at
operator is mandatory here. Indeed the two arrays may come from two distinct memory states. Typically,
one of the post condition of a sorting function would be permut{Pre,Here}(t,t).

/* permut{L1,L2}(t1,t2,n) is true whenever t1[0..n−1] in state L1
* is a permutation of t2[0..n−1] in state L2
*/

/*@ predicate permut{L1,L2}(double t1[], double t2[], integer n)
@ reads \at(t1[..],L1), \at(t2[..],L2);
@*/

/*@ axiom permut_refl{L} :
@ ∀ double t[], integer n; permut{L,L}(t,t,n);
@*/

/*@ axiom permut_sym{L1,L2} :
@ ∀ double t1[], double t2[], integer n;
@ permut{L1,L2}(t1,t2,n) =⇒ permut{L2,L1}(t2,t1,n) ;
@*/
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/*@ axiom permut_trans{L1,L2,L3} :
@ ∀ double t1[], double t2[], double t3[], integer n;
@ permut{L1,L2}(t1,t2,n) ∧ permut{L2,L3}(t2,t3,n)
@ =⇒ permut{L1,L3}(t1,t3,n) ;
@*/

/*@ axiom permut_exchange{L1,L2} :
@ ∀ double t1[], double t2[], integer i, integer j, integer n;
@ \at(t1[i],L1) ≡ \at(t2[j],L2) ∧
@ \at(t1[j],L1) ≡ \at(t2[i],L2) ∧
@ (∀ integer k; 0 ≤ k < n ∧ k 6≡ i ∧ k 6≡ j =⇒
@ \at(t1[k],L1) ≡ \at(t2[k],L2))
@ =⇒ permut{L1,L2}(t1,t2,n);
@*/

2.6.6 Specification Modules

Specification modules can be provided to encapsulate several logic definitions, for example

/*@ module List {
@
@ type list<A> = Nil | Cons(A , list<A>);
@
@ logic integer length<A>(list<A> l) =
@ \match l {
@ case Nil : 0
@ case Cons(h,t) : 1+length(t) } ;
@
@ logic A fold_right<A,B>((A −> B −> B) f, list<A> l, B acc) =
@ \match l {
@ case Nil : acc
@ case Cons(h,t) : f(h,fold(f,t,acc)) } ;
@
@ logic list<A> filter<A>((A −> boolean) f, list<A> l) =
@ fold_right((\lambda A x, list<A> acc;
@ f(x) ? Cons(x,acc) : acc), Nil) ;
@
@ }
@*/

Module components are then accessible using a qualified notation like List::length .
Predefined algebraic specifications can be provided as libraries (see section 3), and imported using a

construct like

//@ open List;

where the file list.acsl contains logic definitions, like the List module above.
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2.7 Pointers and physical adressing

2.7.1 Memory blocks and pointer dereferencing

The following built-in functions and predicate allows to deal with the memory state:

• \base_addr returns the base address of an allocated pointer

\base_addr : ‘a *→ char*

• \block_length returns the length of the allocated block of a pointer

\block_length : ‘a *→ size_t

• \valid applies to a set of terms (see Section 2.3.4) of some pointer type. \valid(s) holds if
and only if dereferencing any p ∈ s is safe. In particular, \valid(\empty) holds.

Some shortcuts are provided:

• \null is an extra notation for the null pointer (i.e. a shortcut for (void*)0)

• \offset(p) returns the offset between p and its base address

\offset : ‘a *→ size_t

\offset(p) = (char*)p− \base_addr(p)

the following property holds: for any set of pointers s, \valid(s) if and only if for all p ∈ s:

\offset(p) ≥ 0 ∧ \offset(p) + sizeof(∗p) ≤ \block_length(p)

2.7.2 Separation

EXPERIMENTAL

\separated(loc1, .., locn) means that for each i 6= j, the intersection of loci and locj is empty.
Each loci is a set of terms as defined in Section 2.3.4.

Locations as first-class values

Locations, as defined in Section 2.3.4, can be used as first-class values in annotations. They have the
built-in type loc < A > where A is the type of values in that locations.

Example 2.32 Here is an example where we defined the footprint of a structure.

struct S {
char *x;
int *y;

};

//@ logic loc<void*> footprint(struct S s) = union (s.x,s.y) ;

This logic function can be used as argument of \separated.

Note that a clause assigns l1, .., ln is equivalent to the postcondition

∀char ∗ p;\separated(union(l1, .., ln), ∗p) ==> ∗p == \old(∗p)
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assigns-clause ::= assigns locations (\from locations)? ;
| assigns term \from locations = term ;

Figure 2.15: Grammar for dependencies information

2.7.3 Allocation and deallocation

EXPERIMENTAL

The following built-in predicates allow to deal with allocation and deallocation of memory blocks.
They can be used in a postcondition

• \fresh(p) indicates that p was not allocated in the pre-state.

• \freed(p) , indicates that p was allocated in the pre-state but that it is not the case in the post-
state.

2.8 Abnormal termination

EXPERIMENTAL

It is used to give behavioral properties to the main function or to any function that may exit the
program, e.g. by calling the exit function. Such a behavior can be written under the following form:

exit-behavior ::= exit_behavior :
(assumes-clause | assigns-clause | ensures-clause)∗

In an ensures-clause, \result is bound to the return code, e.g the value returned by main or the
argument passed to exit.

2.9 Dependencies information

EXPERIMENTAL

An extended syntax of assigns clauses, described in Figure 2.15 allows to specify data dependen-
cies and functional expressions.

Such a clause indicates that the assigned values can only depend upon the locations mentioned in
the \from part of the clause. Again, this is an over-approximation: all of the locations involved in the
computation of the modified values must be present, but some of locations might not be used in practice.
If the from clause is absent, all of the locations reachable at the given point of the program are supposed
to be used. Moreover, for a single location, it is possible to give the precise relation between its final
value and the value of its dependencies. This expression is evaluated in the pre-state of the corresponding
contract.

Example 2.33 The following example is a variation over the array_sum function in example 2.28, in
which the values of the array are added to a global variable total.

double total = 0.0;

/*@ requires n ≥ 0 ∧ \valid(t+(0..n−1)) ;
@ assigns total

\from t[0..n−1] = total + \sum(0,n−1,\lambda int k; t[k]);
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declaration ::= /*@ data-inv-decl */

data-inv-decl ::= data-invariant | type-invariant

data-invariant ::= inv-strength ? global invariant id : pred ;

type-invariant ::= inv-strength ? type invariant id ( C-type-expr id ) = pred ;

inv-strength ::= weak | strong

Figure 2.16: Grammar for declarations of data invariants

@*/
void array_sum(double t[],int n) {
int i;
for(i=0; i < n; i++) total += t[i];
return;

}

Example 2.34 The composite element modifier operators are useful additional constructs for such func-
tional expressions.

struct buffer { int pos ; char buf[80]; } line;

/*@ requires 80 > line.pos ≥ 0 ;
@ assigns line

\from line = { line for buf = { line.buf for [line.pos] = ’\0’ };
@*/

void add_eol() {
line.buf[line.pos] = ’\0’ ;

}

2.10 Data invariants

Data invariants are properties on data that are supposed to hold permanently during the lifetime of these
data. In ACSL, we distinguish between:

• global invariants and type invariants: the former only apply to specified global variables, whereas
the latter are associated to a static type, and apply to any variables of the corresponding type;

• strong invariants and weak invariants: strong invariants must be valid at any time during program
execution (more precisely at any sequence point as defined in the C standard), whereas weak
invariants must be valid at function boundaries (function entrance and exit) but can be violated in
between.

The syntax for declaring data invariants is given in Figure 2.16. The strength modifier defaults to
weak.

Example 2.35 In the following example, we declare

1. a weak global invariant a_is_positive which specifies that global variable a should remain
positive (weakly, so this property might be violated temporarily between functions calls);

ANSI/ISO C Specification Language CAT RNTL project



2.10 Data invariants 47

2. a strong type invariant for variables of type temperature;

3. a weak type invariant for variables of type struct S.

int a;
//@ global invariant a_is_positive: a ≥ 0 ;

typedef double temperature;
/*@ strong type invariant temp_in_celsius(temperature t) =
@ t ≥ −273.15 ;
@*/

struct S {
int f;

};
//@ type invariant S_f_is_positive(struct S s) = s.f ≥ 0 ;

2.10.1 Semantics

The distinction between strong and weak invariants has to do with the sequence points where the property
is supposed to hold. The distinction between global and type invariants has to do with the set of values
on which they are supposed to hold.

• Weak global invariants are properties which apply to global data and hold at any function entrance
and function exit.

• Strong global invariants are properties which apply to global data and hold at any step during
execution (starting after initialization of these data).

• A weak type invariant on type τ must hold at any function entrance and exit, and applies to any
global variable or formal parameter which has static type τ . If the result of the function is of type
τ , the result must also satisfy its weak invariant at function exit. Notice that it says nothing of
fields, array elements, memory locations, etc. of type τ .

• A strong type invariant on type τ must hold at any step during execution, and applies to any global
variable, local variable, or formal parameter which has static type τ . If the result of the function is
of type τ , the result must also satisfy its strong invariant at function exit. Again, it says nothing of
fields, array elements, memory locations, etc. of type τ .

Example 2.36 The following example illustrates the use of a data invariant on a local static variable.

void out_char(char c) {

static int col = 0;
//@ global invariant I : 0 ≤ col ≤ 79;

col++;
if (col ≥ 80) col = 0;

}

Example 2.37 Here is a longer example, the famous Dijkstra’s Dutch flag algorithm.
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typedef enum { BLUE, WHITE, RED } color;
/*@ type invariant isColor(color c) =
@ c ≡ BLUE ∨ c ≡ WHITE ∨ c ≡ RED ;
@*/

/*@ predicate permut{L1,L2}(color t1[], color t2[], integer n)
@ reads \at(t1[..],L1), \at(t2[..],L2);
@*/

/*@ requires \valid(t+i) ∧ \valid(t+j);
@ assigns t[i],t[j];
@ ensures t[i] ≡ \old(t[j]) ∧ t[j] ≡ \old(t[i]);
@*/

void swap(color t[], int i, int j) {
int tmp = t[i];
t[i] = t[j];
t[j] = tmp;

}

typedef struct flag {
int n;
color *colors;

} flag;
/*@ type invariant is_colored(flag f) =
@ f.n ≥ 0 ∧ \valid(f.colors+(0..f.n−1)) ∧
@ ∀ integer k; 0 ≤ k < f.n =⇒ isColor(f.colors[k]) ;
@*/

/*@ predicate isMonochrome{L}(color t[], integer i, integer j,
@ color c) =
@ ∀ integer k; i ≤ k ≤ j =⇒ t[k] ≡ c ;
@*/

/*@ assigns f.colors[0..f.n−1];
@ ensures
@ ∃ integer b, integer r;
@ isMonochrome(f.colors,0,b−1,BLUE) ∧
@ isMonochrome(f.colors,b,r−1,WHITE) ∧
@ isMonochrome(f.colors,r,f.n−1,RED) ∧
@ permut{Old,Here}(f.colors,f.colors,f.n−1);
@*/

void dutch_flag(flag f) {
color *t = f.colors;
int b = 0;
int i = 0;
int r = f.n;
/*@ loop invariant
@ (∀ integer k; 0 ≤ k < f.n =⇒ isColor(t[k])) ∧
@ 0 ≤ b ≤ i ≤ r ≤ f.n ∧
@ isMonochrome(t,0,b−1,BLUE) ∧
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@ isMonochrome(t,b,i−1,WHITE) ∧
@ isMonochrome(t,r,f.n−1,RED) ∧
@ permut{Pre,Here}(t,t,f.n−1);
@ loop assigns b,i,r,t[0 .. f.n−1];
@ loop variant r − i;
@*/

while (i < r) {
switch (t[i]) {
case BLUE:
swap(t, b++, i++);
break;

case WHITE:
i++;
break;

case RED:
swap(t, −−r, i);
break;

}
}

}

2.10.2 Model variables and model fields

A model variable is a variable introduced in the specification with the keyword model . Its type must
be a logic type. Analogously, structures may have model fields . These are used to provide abstract
specifications to functions whose concrete implementation must remain private.

The precise syntax for declaring model variables and fields is given in Figure 2.17. It is presented as
additions to the regular C grammar for variable declarations and structure field declarations.

Informal semantics of model variables is as follows.

• Model variables can only appear in specifications. They are not lvalues, thus they cannot be
assigned directly (unlike ghost variables, see below).

• Nevertheless, a function contract might say that a model variable is assigned.

• When a function contract mentions model variables:

– the precondition is implicitly existentially quantified over those variables;

– the postconditions are universally quantified over the old values of model variables, and
existentially quantified over the new values.

Thus, in practice, the only way to prove that a function body satisfies a contract with model variables is
to provide an invariant relating model variables and concrete variables, as in the example below.

declaration ::= C-declaration
| /*@ model C-declaration */ model variable

struct-declaration ::= C-struct-declaration
| /*@ model C-struct-declaration */ model field

Figure 2.17: Grammar for declarations of model variables and fields
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Example 2.38 Here is an example of a specification for a function which generates fresh integers. The
contract is given in term of a model variable which is intended to represent the set of “forbidden” values,
e.g. the values that have already been generated.

/* public interface */

//@ open Set;

//@ model set<integer> forbidden = emptyset;

/*@ assigns forbidden;
@ ensures ¬ in(\result,\old(forbidden)
@ ∧ in(\result,forbidden) ∧ subset(\old(forbidden),forbidden);
@*/

int gen();

The contract is expressed abstractly, telling that

• the forbidden set of values is modified;

• the value returned is not in the set of forbidden values, thus it is “fresh”;

• the new set of forbidden values contains both the value returned and the previous forbidden values.

An implementation of this function might be as follows, where a decision has been made to generate
values in increasing order, so that it is sufficient to record the last value generated. This decision is made
explicit by an invariant.

/* implementation */

int gen() {
static int x = 0;
/*@ global invariant I: ∀ integer k;
@ Set::mem(k,forbidden) =⇒ x > k;
@*/

return x++;
}

Remarks Although the syntax of model variables is close to JML model variables, they differ in the
sense that the type of a model variable is a logic type, not a C type. Also, the semantics above is closer
to the one of B machines [1]. It has to be noticed that program verification with model variables does
not have a well-established theoretical background [19, 17], so we deliberately do not provide a precise
semantics in this document .

2.11 Ghost variables and statements

Ghost variables and statements are like C variables and statements, but visible only in the spec-
ifications. They are introduced by the ghost keyword at the beginning of the annotation (i.e.
/*@ ghost ... */ or //@ ghost ... for a one-line ghost code, as mentionned in section 1.2).
The grammar is given in Figure 2.18, in which only the first form of annotation is used. In this figure,
the C-* non-terminals refer to the corresponding grammar rules of the ISO standard, without any ACSL
extension. Any non terminal of the form ghost-non-term for which no definition is given in the figure
represents the corresponding C-non-term entry, in which any entry is substituted by ghost-entry.

The variations with respect to the C grammar are the following:
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• Comments must be introduced by // and extend until the end of the line (the ghost code itself is
placed inside a C comment. /* ... */ would thus lead to incorrect C code).

• It is however possible to write multi-line annotations for ghost code. These annotations are en-
closed between /@ and @/ . As in normal annotations, @s at the beginning of a line and at the end
of the comment (before the final @/) are considered as blank.

• Logical types, such as integer or real are authorized in ghost code .

• A non-ghost function can take ghost parameters . If such a ghost clause is present in the declarator,
then the list of ghost parameters must be non-empty and fixed (no vararg ghost). The call to the
function must then provide the appropriate number of ghost parameters.

• Any non-ghost if-statement which does not have a non-ghost else clause
can be augmented with a ghost one . Similarly, a non-ghost switch can have
a ghost default: clause if it does not have a non-ghost one (there are however semanti-
cal restrictions for valid ghost labelled statements in a switch, see next paragraph for details).

Semantics of Ghost Code The question of semantics is essential for ghost code.
Informally, the semantics requires that ghost statements do not change the regular program execution 3

This implies several conditions, including e.g:

• Ghost code cannot modify a non-ghost C variable.

• Ghost code cannot modify a non-ghost structure field.

• If p is a ghost pointer pointing to a non-ghost memory location, then it is forbidden to assign ∗p.

• Body of a ghost function is ghost code, hence do not modify non-ghost variables or fields.

• If a non-ghost C function is called in ghost code, it must not modify non-ghost variables or fields.

• If a structure has ghost fields, the sizeof of the structure is the same has the structure without
ghost fields. Also, alignment of fields remains unchanged.

• The control-flow graph of a function must not be altered by ghost statements. In particular, no
ghost return can appear in the body of a non-ghost function. Similarly, ghost goto, break,
and continue continue cannot jump outside of the innermost non-ghost enclosing block.

Semantics is specified as follows. First, one has to think that program execution with ghost code
involves a ghost memory heap and a ghost stack, disjoint from the regular heap and stack. Ghost variables
lie in the ghost heap, so as the ghost field of structures. Thus, every memory side-effect can be classified
as ghost or non-ghost. Then, the semantics is that memory side-effects of ghost code must always be in
the ghost heap or the ghost stack.

Notice that this semantics is not statically decidable. It is left to tools to provide approximations ,
correct in the sense that any code statically detected as ghost must be semantically ghost.

Example 2.39 The following example shows some invalid assignments of ghost pointers:

void f(int x, int *q) {
//@ ghost int *p = q;
//@ ghost *p = 0;

3Not checked in the current implementation
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ghost-type-specifier ::= C-type-specifier
| logic-type-name

declaration ::= C-declaration
| /*@ ghost ghost-declaration */

direct-declarator ::= C-direct-declarator
| direct-declarator
( parameter-type-list? )
/*@ ghost
( parameter-list )
*/ declare fun with ghost args

postfix-expression ::= C-postfix-expression
| postfix-expression
( argument-expression-list? )
/*@ ghost
( argument-expression-list )
*/ call fun with ghost args

statement ::= C-statement | statements-ghost

statements-ghost ::= /*@ ghost ghost-statement+ */

ghost-selection-statement ::= C-selection-statement
| if ( expression ) statement
/*@ ghost else
C-statement+

*/

struct-declaration ::= C-struct-declaration
| /*@ ghost C-struct-declaration */ ghost field

Figure 2.18: Grammar for ghost statements

// above assignment is wrong: it modifies *q which lies
// in regular memory heap

//@ ghost p = &x;
//@ ghost *p = 0;
// above assignment is wrong: it modifies x which lies
// in regular memory stack

}

Example 2.40 The following example shows some invalid ghost statements:

int f (int x, int y) {
//@ ghost int z = x + y;
switch (x) {
case 0: return y;
//@ ghost 1: z=y;
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// above statement is correct.
//@ ghost 2: { z++; break; }
// invalid, would bypass the non−ghost default
default: y++;
}
return y;

}

int g(int x) {
//@ ghost int z = x;
if (x > 0) { return x; }
//@ ghost else { z++; return x; }
// invalid, would bypass the non−ghost return
return x+1;

}

Differences between model variables and ghost variables A ghost variable is an additional specifi-
cation variable which is assigned in ghost code like any C variable. On the other hand, a model variable
cannot be assigned, but one can state it is modified and can express properties about the new value, in a
non-deterministic way, using logic assertions and invariants. In other words, one can say that specifica-
tions using ghost variables modifications are executable.

Example 2.41 The example 2.38 can also be specified with a ghost variable instead of a model variable:

//@ ghost set<integer> forbidden = emptyset;

/*@ assigns forbidden;
@ ensures ¬ Set::in(\result,\old(forbidden)
@ ∧ Set::in(\result,forbidden)

∧ Set::subset(\old(forbidden),forbidden);
@*/

int gen() {
static int x = 0;
/*@ global invariant I: ∀ integer k;
@ Set::mem(k,forbidden) =⇒ x > k;
@*/

x++;
//@ ghost forbidden = Set::union(Set::single(x),forbidden);
return x;

}

2.11.1 Volatile variables

EXPERIMENTAL

Volatile variables can not be used in logic terms, since reading such a variable may have a side effect,
in particular two successive reads may return different values.

Specifying properties of a volatile variable may be done via a specific construct to attach two ghost
functions to it. This construct, described by the grammar of Figure 2.19, has the following shape:

volatile τ x;
//@ volatile x reads f writes g;
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declaration ::= //@ volatile tset reads id writes id

Figure 2.19: Grammar for volatile constructs

where f and g are ghost functions with the following prototypes:

τ f(volatile τ* p);
τ g(volatile τ* p, τ v);

This must be understood as a special construct to instrument the C code, where each access to the variable
x is replaced by a call to f(&x), and each assignment to x of a value v is replaced by g(&x,v).

Example 2.42 The following code is instrumented in order to inject fixed values at each read of variable
x, and collect written values.

volatile int x;

/*@ ghost //@ requires p ≡ &x;
@ int reads_x(volatile int *p) {
@ static int injector_x[] = { 1, 2, 3 };
@ static int injector_count = 0;
@ if (p ≡ &x)
@ return injector_x[injector_count++];
@ else
@ return 0; // should not happen
@ }
@*/

//@ ghost int collector_x[3];
//@ ghost int collector_count = 0;

/*@ ghost //@ requires p ≡ &x;
@ int writes_x(volatile int *p, int v) {
@ if (p ≡ &x)
@ return collector_x[collector_count++] = v;
@ else
@ return 0; // should not happen
@ }
@*/

//@ volatile x reads reads_x writes writes_x;

/*@ ensures collector_count ≡ 3 ∧ collector_x[2] ≡ 2;
@ ensures \result ≡ 6;
@*/

int main () {
int i, sum = 0;
for (i=0 ; i < 3; i++) {

sum += x;
x = i;
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}
return sum;

}

2.12 Undefined values, dangling pointers

2.12.1 Initialization

\initialized is a predicate taking a set of l-values as argument and means that each l-value in this
set is initialized.

Example 2.43 In the following, the assertion is true.

int f(int n) {
int x;

if (n > 0) x = n ; else x = −n;
//@ assert \initialized(x);
return x;

}

2.12.2 Unspecified values

\specified is a predicate taking a set of l-values as argument and means that each l-value in this set
has a specified value: its value is not a dangling pointer (that is the address of a local variable which is
not in the scope anymore)

Example 2.44 In the following, the assertion is not true.

int* f() {
int a;
return &a;

}

int* g() {
int* p = f();
//@ assert \specified(p);
return p+1;

}

ANSI/ISO C Specification Language CAT RNTL project



56 Specification language

ANSI/ISO C Specification Language CAT RNTL project



Chapter 3

Libraries

Disclaimer: this chapter is unfinished, it is left here to give an idea of what it will look like in the final
document.

This chapter is devoted to librairies of specification, built upon the ACSL specification language.
Section 3.2 describes additional predicates introduced by the Jessie plugin of Frama-C, to propose a
slightly higher level of annotation.

3.1 Libraries of logic specifications

A standard library is provided, in the spirit of the List module of Section 2.6.6

3.1.1 Real numbers

A library of general purpose functions and predicate over real numbers, floats and doubles.
Includes

• abs, exp, power, log, sin, cos, atan, etc. over reals

• isFinite predicate over floats and doubles (means not NaN nor infinity)

• rounding reals to floats or doubles with specific rounding modes.

3.1.2 Finite lists

• pure functions nil, cons, append, fold, etc.

• Path, Reachable, isFiniteList, isCyclic, etc. on C linked-lists.

3.1.3 Sets and Maps

Finite sets, finite maps, in ZB-style.

3.2 Jessie library: logical adressing of memory blocks

The Jessie library is a collection of logic specifications whose semantics is well-defined only on source
codes free from architecture-dependent features. In particular it is currently incompatible with pointer
casts or unions (although there is ongoing work to support some of them [20]). As a consequence, in this
particular setting, a valid pointer of some type τ∗ necessarily points to a memory block which contains
values of type τ .
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3.2.1 Abstract level of pointer validity

Int the particular setting described above, it is possible to introduce the following logic functions:

integer \offset_min (‘a *p) ;
integer \offset_max (‘a *p) ;

• \offset_min(p) is the minimum integer i such that (p+ i) is a valid pointer.

• \offset_max(p): the maximum integer i such that (p+ i) is a valid pointer

The following properties hold:

\offset_min(p+ i) = \offset_min(p)− i
\offset_max(p+ i) = \offset_max(p)− i

It also introduce syntactic sugar:

\valid_range(p, i, j) := \offset_min(p) <= i ∧ \offset_max(p) >= j

and the ACSL built-in predicate \valid(p) is now equivalent to \valid_range(p, 0, 0).

3.2.2 Strings

EXPERIMENTAL

The logic function
integer \strlen(char ∗ p)

denotes the length of a 0-terminated C string. It is total function, whose value is non-negative if and only
if the pointer in argument is really a string.

Example 3.1 Here is a contract for the strcpy function:

/*@ // src and dest cannot overlap
@ requires \base_addr(src) 6≡ \base_addr(dest);
@ // src is a valid C string
@ requires \strlen(src) ≥ 0 ;
@ // dest is large enough to store a copy of src up to the 0
@ requires \valid_range(dest,0,\strlen(src));
@ ensures
@ ∀ integer k; 0 ≤ k ≤ \strlen(src) =⇒ dest[k] ≡ src[k]
@*/

void str_cpy(char *dest, const char *src);

3.3 Memory leaks

EXPERIMENTAL

Verification of absence of memory leak is outside the scope of the specification language. On the
other hand, various models could be set up, using for example ghost variables.

ANSI/ISO C Specification Language CAT RNTL project



Chapter 4

Conclusion

This document presents a Behavioral Interface Specification Language for ANSI C source code. It
provides a common basis that could be shared among several tools. The specification language described
here is intended to evolve in the future, and remain open to additional constructions. One interesting
possible extension regards “temporal” properties in a large sense, such as liveness properties, which can
sometimes be simulated by regular specifications with ghost variables [11], or properties on evolution of
data over the time, such as the history constraints of JML, or in the Lustre assertion language.
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Appendix A

Appendices

A.1 Glossary

pure expressions In ACSL setting, a pure expression is a C expression which contains no assignments,
no incrementation operator ++ or --, no function call, and no access to a volatile object. The set
of pure expression is a subset of the set of C expressions without side effect (C standard [13, 12],
§5.1.2.3, alinea 2).

left-values A left-value (lvalue for short) is an expression which denotes some place in the memory
during program execution, either on the stack, on the heap, or in the static data segment. It can
be either a variable identifier or an expression of the form ∗e, e[e], e.id or e->id, where e is any
expression and id a field name. See C standard, §6.3.2.1 for a more detailed description of lvalues.

A modifiable lvalue is an lvalue allowed in the left part of an assignment. In essence, all lvalues
are modifiable except variables declared as const or of some array type with explicit length.

pre-state and post-state For a given function call, the pre-state denotes the program state at the begin-
ning of the call, including the current values for the function parameters. The post-state denotes
the program state at the return of the call.

function behavior A function behavior (behavior for short) is a set of properties relating the pre-state
and the post-state for a possibly restricted set of pre-states (behavior assumptions).

function contract A function contract (contract for short) forms a specification of a function, consisting
of the combination of a precondition (a requirement on the pre-state for any caller to that function),
a collection of behaviors, and possibly a measure in case of a recursive function.

A.2 Comparison with JML

Although we took our inspiration in the Java Modeling Language (aka JML [15]), ACSL is notably
different from JML in two crucial aspects:

• ACSL is a BISL for C, a low-level structured language, while JML is a BISL for Java, an object-
oriented inheritance-based high-level language. Not only the language features are not the same
but the programming styles and idioms are very different, which entails also different ways of
specifying behaviors. In particular, C has no inheritance nor exceptions, and no language support
for the simplest properties on memory (e.g, the size of an allocated memory block).

• JML relies on runtime assertion checking (RAC) when typing, static analysis and automatic de-
ductive verification fail. The example of CCured [21, 5], that adds strong typing to C by relying on
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RAC too, shows that it is not possible to do it in a modular way. Indeed, it is necessary to modify
the layout of C data structures for RAC, which is not modular. The follow-up project Deputy [6]
thus reduces the checking power of annotations in order to preserve modularity. On the contrary,
we choose not to restrain the power of annotations (e.g., all first order logic formulas are allowed).
To that end, we rely on manual deductive verification using an interactive theorem prover (e.g.,
Coq) when every other technique failed.

In the remainder of this chapter, we describe these differences in further details.

A.2.1 Low-level language vs. inheritance-based one

No inherited specifications

JML has a core notion of inheritance of specifications, that duplicates in specifications the inheritance
feature of Java. Inheritance combined with visibility and modularity account for a number of complex
features in JML (e.g, spec_public modifier, data groups, represents clauses, etc), that are necessary
to express the desired inheritance-related specifications while respecting visibility and modularity. Since
C has no inheritance, these intricacies are avoided in ACSL.

Error handling without exceptions

The usual way of signaling errors in Java is through exceptions. Therefore, JML specifications are
tailored to express exceptional postconditions, depending on the exception raised. Since C has no excep-
tions, ACSL does not use exceptional specifications. Instead, C programmers are used to signal errors
by returning special values, like mandated in various ways in the C standard.

Example A.1 In §7.12.1 of the standard, it is said that functions in <math.h> signal errors as follows:
“On a domain error, [...] the integer expression errno acquires the value EDOM.”

Example A.2 In §7.19.5.1 of the standard, it is said that function fclose signals errors as follows: “The
fclose function returns [...] EOF if any errors were detected.”

Example A.3 In §7.19.6.1 of the standard, it is said that function fprintf signals errors as follows: “The
fprintf function returns [...] a negative value if an output or encoding error occured.”

Example A.4 In §7.20.3 of the standard, it is said that memory management functions signal errors as
follows: “If the space cannot be allocated, a null pointer is returned.”

As shown by these few examples, there is no unique way to signal errors in the C standard library,
not mentioning user-defined functions. But since errors are signaled by returning special values, it is
sufficient to write an appropriate postcondition:

/*@ ensures \result == error_value || normal_postcondition; */

C contracts are not Java ones

In Java, the precondition of the following function that nullifies an array of characters is always true.
Even if there was a precondition on the length of array a, it could easily be expressed using the Java
expression a.length that gives the dynamic length of array a.
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public static void Java_nullify(char[] a) {
if (a == null) return;
for (int i = 0; i < a.length; ++i) {

a[i] = 0;
}

}

On the contrary, the precondition of the same function in C, whose definition follows, is more in-
volved. First, remark that the C programmer has to add an extra argument for the size of the array, or
rather a lower bound on this array size.

void C_nullify(char* a, unsigned int n) {
int i;
if (n == 0) return;
for (i = 0; i < n; ++i) {
a[i] = 0;

}
}

A correct precondition for this function is the following:

/*@ requires \valid(a + 0 ..(n − 1 )); */

where predicate \valid is the one defined in Section 2.7.1. (note that \valid(a + 0..(−1)) is
the same as \valid(\empty) and thus is true regardless of the validity of a itself). When n is null, a
does not need to be valid at all, and when n is strictly positive, a must point to an array of size at least
n. To make it more obvious, the C programmer adopted a defensive programming style, which returns
immediately when n is null. We can duplicate this in the specification:

/*@ requires n == 0 || \valid(a + 0 ..(n − 1 )); */

Usually, many memory requirements are only necessary for some paths through the function, which
correspond to some particular behaviors, selected according to some tests performed along the corre-
sponding paths. Since C has no memory primitives, these tests involve other variables that the C pro-
grammer added to track additional information, like n in our example.

To make it easier, it is possible in ACSL to distinguish between the assume part of a behavior, that
specifies the tests that need to succeed for this behavior to apply, and the requires part that specifies
the additional preconditions that must be true when a behavior applies. The specification for our example
can then be translated into:

/*@ behavior n_is_null:
@ assumes n == 0;
@ behavior n_is_not_null:
@ assumes n > 0;
@ requires \valid(a + 0 ..(n − 1 ));
@*/

This is equivalent to the previous requirement, except here behaviors can be completed with post-
conditions that belong to one behavior only. Contrary to JML, the set of behaviors for a function do not
necessarily cover all cases of use for this function, as mentioned in Section 2.3.3. This allows for partial
specifications, whereas JML behaviors cannot offer such flexibility. Here, Our two behaviors are clearly
mutually exclusive, and, since n is an unsigned int, our they cover all the possible cases. We could
have specified that as well, by adding the following lines in the contract (see Section 2.3.3).
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/*@ ...
@ disjoint behaviors;
@ complete behaviors;
@*/

ACSL contracts vs. JML ones

To fully understand the difference between specifications in ACSL and JML, we detail in below the
requirement on the pre-state and the guarantee on the post-state given by behaviors in JML and ACSL.

A JML contract is either lightweight or heavyweight. For the purpose of our comparison, it is suf-
ficient to know that a lightweight contract has requires and ensures clauses all at the same level,
while an heavyweight contract has multiple behaviors, each consisting of requires and ensures
clauses. Although it is not possible in JML to mix both styles, we can define here what it would mean
to have both, by conjoining the conditions on the pre- and the post-state. Here is an hypothetical JML
contract mixing lightweight and heavyweight styles:

/*@ requires P1;
@ requires P2;
@ ensures Q1;
@ ensures Q2;
@ behavior x1:
@ requires A1;
@ requires R1;
@ ensures E1;
@ behavior x2:
@ requires A2;
@ requires R2;
@ ensures E2;
@*/

It assumes from the pre-state the condition:

P1 && P2 && ((A1 && R1) || (A2 && R2))

and guarantees that the following condition holds in post-state:

Q1 && Q2 && (\old(A1 && R1) ==> E1) && (\old(A2 && R2) ==> E2)

Here is now an ACSL specification:

/*@ requires P1;
@ requires P2;
@ ensures Q1;
@ ensures Q2;
@ behavior x1:
@ assumes A1;
@ requires R1;
@ ensures E1;
@ behavior x2:
@ assumes A2;
@ requires R2;
@ ensures E2;
@*/
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Syntactically, the only difference with the JML specification is the addition of the assumes clauses. Its
translation to assume-guarantee is however quite different. It assumes from the pre-state the condition:

P1 && P2 && (A1 ==> R1) && (A2 ==> R2)

and guarantees that the following condition holds in the post-state:

Q1 && Q2 && (\old(A1) ==> E1) && (\old(A2) ==> E2)

Thus, ACSL allows to distinguish between the clauses that control which behavior is active
(the assumes clauses) and the clauses that are preconditions for a particular behavior (the internal
requires clauses). In addition, as mentioned above, there is by default no requirement in ACSL for
the specification to be complete (The last part of the JML condition on the pre-state). If desired, this has
to be precised explicitely with a complete behaviors clause as seen in Section 2.3.3.

ACSL assigns clause

Beware that in assigns clauses, the given locations refer to the post-state, whereas in JML, they refer
to the pre-state. The JML semantics can be obtained using \old construct.

A.2.2 Deductive verification vs. RAC

Sugar-free behaviors

As explained in details in [22], JML heavyweight behaviors can be viewed as syntactic sugar (however
complex it is) that can be translated automatically into more basic contracts consisting mostly of pre-
and postconditions and frame conditions. This allows complex nesting of behaviors from the user point
of view, while tools only have to deal with basic contracts. In particular, the major tools on JML use this
desugaring process, like the Common JML tools to do assertion checking, unit testing, etc. (see [18])
and the tool ESC/Java2 for automatic deductive verification of JML specifications (see [4]).

One issue with such a desugaring approach is the complexity of the transformations involved, as e.g.
for desugaring assignable clauses between multiple spec-cases in JML [22]. Another issue is precisely
that tools only see one global contract, instead of multiple independent behaviors, that could be analyzed
separately in more detail. Instead, we favor the view that a function implements multiple behaviors, that
can be analyzed separately if a tool feels like it. Therefore, we do not intend to provide a desugaring
process.

Axiomatized functions in specifications

JML only allows pure Java methods to be called in specifications [16]. This is certainly understandable
when relying on RAC: methods called should be defined so that the runtime can call them, and they
should not have side-effects in order not to pollute the program they are supposed to annotate.

In our setting, it is desirable to allow calls to logical functions in specifications. These functions may
be defined, like program ones, but they may also be only declared (with a suitable declaration of reads
clause) and defined through an axiomatization. This makes for richer specifications that may be useful
either in automatic or in manual deductive verification.

A.2.3 Syntactic differences

The following table summarizes the difference between JML keywords and ACSL ones, when the intent
is the same, although minor differences might exist.
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JML ACSL
modifiable,assignable assigns
measured_by decreases
loop_invariant loop invariant
decreases loop variant
(\forall τ x;P ;Q) (\forall τ x;P==>Q)
(\exists τ x;P ;Q) (\exists τ x;P&&Q)
(\max τ x; a<=x<=b; f) \max(a, b,\lambda τ x; f)

A.3 Typing rules

Disclaimer: this section is unfinished, it is left here just to give an idea of what it will look like in the
final document.

A.3.1 Rules for terms

Integer promotion:
Γ ` e : τ

Γ ` e : integer
if τ is any C integer type char, short, int, or long, whatever attribute they have, in particular signed
or unsigned

Variables:

Γ ` id : τ
if id : τ ∈ Γ

Unary integer operations:

Γ ` t : integer
Γ ` op t : integer

if op ∈ {+,−,∼}

Boolean negation:
Γ ` t : boolean
Γ `! t : boolean

Pointer dereferencing:
Γ ` t : τ∗
Γ ` ∗t : τ

Address operator:
Γ ` t : τ

Γ ` &t : τ∗
Binary

Γ ` t1 : integer Γ ` t2 : integer
Γ ` t1 op t2 : integer

if op ∈ {+,−, ∗, /,%}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : real

if op ∈ {+,−, ∗, /}

Γ ` t1 : integer Γ ` t2 : integer
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}

Γ ` t1 : real Γ ` t2 : real
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}

Γ ` t1 : τ ∗ Γ ` t2 : τ∗
Γ ` t1 op t2 : boolean

if op ∈ {==, ! =, <=, <,>=, >}

(to be continued)

ANSI/ISO C Specification Language CAT RNTL project



A.4 Illustrative example 67

A.3.2 Typing rules for locations

We consider the typing judgement Γ,Λ ` s : τ, b meaning that s is a set of terms of type tau, which is
moreover a set of locations if the boolean b is true. Γ is the C environment and Λ is the logic environment.

Rules:

Γ,Λ ` id : τ, true
if id : τ ∈ Γ

Γ,Λ ` id : τ, true
if id : τ ∈ Λ

Γ,Λ ` s : τ∗, b
Γ,Λ ` ∗s : τ, true

Γ, b ∪ Λ ` e : tsetτ
Γ,Λ ` {e | b;P} : tsetτ

Γ,Λ ` e1 : τ, b Γ,Λ ` e2 : τ, b
Γ,Λ ` e1, e2 : τ, b

A.4 Illustrative example

This is an attempt to define an example for ACSL, much as the Purse example in JML description
papers. It is a memory allocator, whose main functions are memory_alloc and memory_free, to
respectively allocate and deallocate memory. The goal is to exercise as much as possible of ACSL.

#include <stdlib.h>

#define DEFAULT_BLOCK_SIZE 1000

typedef enum _bool { false = 0, true = 1 } bool;

/*@ predicate finite_list<A>((A* −> A*) next_elem, A* ptr) =
@ ptr ≡ \null ∨
@ (\valid(ptr) ∧ finite_list(next_elem,next_elem(ptr))) ;
@
@ logic integer list_length<A>((A* −> A*) next_elem, A* ptr) =
@ (ptr ≡ \null) ? 0 :
@ 1 + list_length(next_elem,next_elem(ptr)) ;
@
@
@ predicate lower_length<A>((A* −> A*) next_elem,
@ A* ptr1, A* ptr2) =
@ finite_list(next_elem, ptr1) ∧ finite_list(next_elem, ptr2)
@ ∧ list_length(next_elem, ptr1) < list_length(next_elem, ptr2) ;
@*/

// forward reference
struct _memory_slice;

/* A memory block holds a pointer to a raw block of memory allocated by
* calling malloc. It is sliced into chunks, which are maintained by
* the slice structure. It maintains additional information such as
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* the size of the memory block, the number of bytes used and the next
* index at which to put a chunk.
*/
typedef struct _memory_block {
//@ ghost boolean packed;

// ghost field packed is meant to be used as a guard that tells when
// the invariant of a structure of type memory_block holds

unsigned int size;
// size of the array data

unsigned int next;
// next index in data at which to put a chunk

unsigned int used;
// how many bytes are used in data, not necessarily contiguous ones

char* data;
// raw memory block allocated by malloc

struct _memory_slice* slice;
// structure that describes the slicing of a block into chunks

} memory_block;

/*@ strong type invariant inv_memory_block(memory_block mb) =
@ mb.packed =⇒
@ (0 < mb.size ∧ mb.used ≤ mb.next ≤ mb.size
@ ∧ \offset (mb.data) ≡ 0
@ ∧ \block_length(mb.data) ≡ mb.size) ;
@
@ predicate valid_memory_block(memory_block* mb) =
@ \valid(mb) ∧ mb−>packed ;
@*/

/* A memory chunk holds a pointer data to some part of a memory block
* block. It maintains the offset at which it points in the block, as well
* as the size of the block it is allowed to access. A field free tells
* whether the chunk is used or not.
*/
typedef struct _memory_chunk {
//@ ghost boolean packed;

// ghost field packed is meant to be used as a guard that tells when
// the invariant of a structure of type memory_chunk holds

unsigned int offset;
// offset at which data points into [block−>data]

unsigned int size;
// size of the chunk

bool free;
// true if the chunk is not used, false otherwise

memory_block* block;
// block of memory into which the chunk points

char* data;
// shortcut for [block−>data + offset]

} memory_chunk;
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/*@ strong type invariant inv_memory_chunk(memory_chunk mc) =
@ mc.packed =⇒
@ (0 < mc.size ∧ valid_memory_block(mc.block)
@ ∧ mc.offset + mc.size ≤ mc.block−>next) ;
@
@ predicate valid_memory_chunk(memory_chunk* mc, int s) =
@ \valid(mc) ∧ mc−>packed ∧ mc−>size ≡ s ;
@
@ predicate used_memory_chunk(memory_chunk mc) =
@ mc.free ≡ false ;
@
@ predicate freed_memory_chunk(memory_chunk mc) =
@ mc.free ≡ true ;
@*/

/* A memory chunk list links memory chunks in the same memory block.
* Newly allocated chunks are put first, so that the offset of chunks
* decreases when following the next pointer. Allocated chunks should
* fill the memory block up to its own next index.
*/
typedef struct _memory_chunk_list {
memory_chunk* chunk;

// current list element
struct _memory_chunk_list* next;

// tail of the list
} memory_chunk_list;

/*@ logic memory_chunk_list* next_chunk(memory_chunk_list* ptr) =
@ ptr−>next ;
@
@ predicate valid_memory_chunk_list
@ (memory_chunk_list* mcl, memory_block* mb) =
@ \valid(mcl) ∧ valid_memory_chunk(mcl−>chunk,mcl−>chunk−>size)
@ ∧ mcl−>chunk−>block ≡ mb
@ ∧ (mcl−>next ≡ \null ∨
@ valid_memory_chunk_list(mcl−>next, mb))
@ ∧ mcl−>offset ≡ mcl−>chunk−>offset
@ ∧ (
@ // it is the last chunk in the list
@ (mcl−>next ≡ \null ∧ mcl−>chunk−>offset ≡ 0)
@ ∨
@ // it is a chunk in the middle of the list
@ (mcl−>next 6≡ \null
@ ∧ mcl−>next−>chunk−>offset + mcl−>next−>chunk−>size
@ ≡ mcl−>chunk−>offset)
@ )
@ ∧ finite_list(next_chunk, mcl) ;
@
@ predicate valid_complete_chunk_list
@ (memory_chunk_list* mcl, memory_block* mb) =
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@ valid_memory_chunk_list(mcl,mb)
@ ∧ mcl−>next−>chunk−>offset +
@ mcl−>next−>chunk−>size ≡ mb−>next ;
@
@ predicate chunk_lower_length(memory_chunk_list* ptr1,
@ memory_chunk_list* ptr2) =
@ lower_length(next_chunk, ptr1, ptr2) ;
@*/

/* A memory slice holds together a memory block block and a list of chunks
* chunks on this memory block.
*/
typedef struct _memory_slice {
//@ ghost boolean packed;

// ghost field packed is meant to be used as a guard that tells when
// the invariant of a structure of type memory_slice holds

memory_block* block;
memory_chunk_list* chunks;

} memory_slice;

/*@ strong type invariant inv_memory_slice(memory_slice* ms) =
@ ms.packed =⇒
@ (valid_memory_block(ms−>block) ∧ ms−>block−>slice ≡ ms
@ ∧ (ms−>chunks ≡ \null
@ ∨ valid_complete_chunk_list(ms−>chunks, ms−>block))) ;
@
@ predicate valid_memory_slice(memory_slice* ms) =
@ \valid(ms) ∧ ms−>packed ;
@*/

/* A memory slice list links memory slices, to form a memory pool.
*/
typedef struct _memory_slice_list {
//@ ghost boolean packed;

// ghost field packed is meant to be used as a guard that tells when
// the invariant of a structure of type memory_slice_list holds

memory_slice* slice;
// current list element

struct _memory_slice_list* next;
// tail of the list

} memory_slice_list;

/*@ logic memory_slice_list* next_slice(memory_slice_list* ptr) =
@ ptr−>next ;
@
@ strong type invariant inv_memory_slice_list(memory_slice_list* msl) =
@ msl.packed =⇒
@ (valid_memory_slice(msl−>slice)
@ ∧ (msl−>next ≡ \null ∨
@ valid_memory_slice_list(msl−>next))
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@ ∧ finite_list(next_slice, msl)) ;
@
@ predicate valid_memory_slice_list(memory_slice_list* msl) =
@ \valid(msl) ∧ msl−>packed ;
@
@ predicate slice_lower_length(memory_slice_list* ptr1,
@ memory_slice_list* ptr2) =
@ lower_length(next_slice, ptr1, ptr2)
@ } */

typedef memory_slice_list* memory_pool;

/*@ type invariant valid_memory_pool(memory_pool *mp) =
@ \valid(mp) ∧ valid_memory_slice_list(*mp) ;
@*/

/*@ behavior zero_size:
@ assumes s ≡ 0;
@ assigns \nothing;
@ ensures \result ≡ 0;
@
@ behavior positive_size:
@ assumes s > 0;
@ requires valid_memory_pool(arena);
@ ensures \result ≡ 0
@ ∨ (valid_memory_chunk(\result,s) ∧
@ used_memory_chunk(*\result));
@ */

memory_chunk* memory_alloc(memory_pool* arena, unsigned int s) {
memory_slice_list *msl = *arena;
memory_chunk_list *mcl;
memory_slice *ms;
memory_block *mb;
memory_chunk *mc;
unsigned int mb_size;
//@ ghost unsigned int mcl_offset;
char *mb_data;
// guard condition
if (s ≡ 0) return 0;
// iterate through memory blocks (or slices)
/*@
@ loop invariant valid_memory_slice_list(msl);
@ loop variant msl for slice_lower_length;
@ */

while (msl 6≡ 0) {
ms = msl−>slice;
mb = ms−>block;
mcl = ms−>chunks;
// does mb contain enough free space?
if (s ≤ mb−>size − mb−>next) {
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//@ ghost ms−>ghost = false; // unpack the slice
// allocate a new chunk
mc = (memory_chunk*)malloc(sizeof(memory_chunk));
if (mc ≡ 0) return 0;
mc−>offset = mb−>next;
mc−>size = s;
mc−>free = false;
mc−>block = mb;
//@ ghost mc−>ghost = true; // pack the chunk
// update block accordingly
//@ ghost mb−>ghost = false; // unpack the block
mb−>next += s;
mb−>used += s;
//@ ghost mb−>ghost = true; // pack the block
// add the new chunk to the list
mcl = (memory_chunk_list*)malloc(sizeof(memory_chunk_list));
if (mcl ≡ 0) return 0;
mcl−>chunk = mc;
mcl−>next = ms−>chunks;
ms−>chunks = mcl;
//@ ghost ms−>ghost = true; // pack the slice
return mc;

}
// iterate through memory chunks
/*@
@ loop invariant valid_memory_chunk_list(mcl,mb);
@ loop variant mcl for chunk_lower_length;
@ */

while (mcl 6≡ 0) {
mc = mcl−>chunk;
// is mc free and large enough?
if (mc−>free ∧ s ≤ mc−>size) {
mc−>free = false;
mb−>used += mc−>size;
return mc;

}
// try next chunk
mcl = mcl−>next;

}
msl = msl−>next;

}
// allocate a new block
mb_size = (DEFAULT_BLOCK_SIZE < s) ? s : DEFAULT_BLOCK_SIZE;
mb_data = (char*)malloc(mb_size);
if (mb_data ≡ 0) return 0;
mb = (memory_block*)malloc(sizeof(memory_block));
if (mb ≡ 0) return 0;
mb−>size = mb_size;
mb−>next = s;
mb−>used = s;
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mb−>data = mb_data;
//@ ghost mb−>ghost = true; // pack the block
// allocate a new chunk
mc = (memory_chunk*)malloc(sizeof(memory_chunk));
if (mc ≡ 0) return 0;
mc−>offset = 0;
mc−>size = s;
mc−>free = false;
mc−>block = mb;
//@ ghost mc−>ghost = true; // pack the chunk
// allocate a new chunk list
mcl = (memory_chunk_list*)malloc(sizeof(memory_chunk_list));
if (mcl ≡ 0) return 0;
//@ ghost mcl−>offset = 0;
mcl−>chunk = mc;
mcl−>next = 0;
// allocate a new slice
ms = (memory_slice*)malloc(sizeof(memory_slice));
if (ms ≡ 0) return 0;
ms−>block = mb;
ms−>chunks = mcl;
//@ ghost ms−>ghost = true; // pack the slice
// update the block accordingly
mb−>slice = ms;
// add the new slice to the list
msl = (memory_slice_list*)malloc(sizeof(memory_slice_list));
if (msl ≡ 0) return 0;
msl−>slice = ms;
msl−>next = *arena;
//@ ghost msl−>ghost = true; // pack the slice list
*arena = msl;
return mc;

}

/*@ behavior null_chunk:
@ assumes chunk ≡ \null;
@ assigns \nothing;
@
@ behavior valid_chunk:
@ assumes chunk 6≡ \null;
@ requires valid_memory_pool(arena);
@ requires valid_memory_chunk(chunk,chunk−>size);
@ requires used_memory_chunk(chunk);
@ ensures
@ // if it is not the last chunk in the block, mark it as free
@ (valid_memory_chunk(chunk,chunk−>size)
@ ∧ freed_memory_chunk(chunk))
@ ∨
@ // if it is the last chunk in the block, deallocate the block
@ ¬ \valid(chunk);
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@ */
void memory_free(memory_pool* arena, memory_chunk* chunk) {

memory_slice_list *msl = *arena;
memory_block *mb = chunk−>block;
memory_slice *ms = mb−>slice;
memory_chunk_list *mcl;
memory_chunk *mc;
// is it the last chunk in use in the block?
if (mb−>used ≡ chunk−>size) {

// remove the corresponding slice from the memory pool
// case it is the first slice
if (msl−>slice ≡ ms) {

*arena = msl−>next;
//@ ghost msl−>ghost = false; // unpack the slice list
free(msl);

}
// case it is not the first slice
while (msl 6≡ 0) {
if (msl−>next 6≡ 0 ∧ msl−>next−>slice ≡ ms) {
memory_slice_list* msl_next = msl−>next;
msl−>next = msl−>next−>next;
// unpack the slice list
//@ ghost msl_next−>ghost = false;
free(msl_next);
break;

}
msl = msl−>next;

}
//@ ghost ms−>ghost = false; // unpack the slice
// deallocate all chunks in the block
mcl = ms−>chunks;
// iterate through memory chunks
/*@
@ loop invariant valid_memory_chunk_list(mcl,mb);
@ loop variant mcl for chunk_lower_length;
@ */

while (mcl 6≡ 0) {
memory_chunk_list *mcl_next = mcl−>next;
mc = mcl−>chunk;
//@ ghost mc−>ghost = false; // unpack the chunk
free(mc);
free(mcl);
mcl = mcl_next;

}
mb−>next = 0;
mb−>used = 0;
// deallocate the memory block and its data
//@ ghost mb−>ghost = false; // unpack the block
free(mb−>data);
free(mb);
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// deallocate the corresponding slice
free(ms);
return;

}
// mark the chunk as freed
chunk−>free = true;
// update the block accordingly
mb−>used −= chunk−>size;
return;

}

A.5 Changes

A.5.1 Version 1.3

• Functional update of structures

• Terminates clause in function behaviors

• Typos reported by David Mentre

A.5.2 Version 1.2

This is the first public release of this document.
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