module Formula: sig
.. end
Logic Formulae
Logic Formulae
Logic types
type
tau =
type
kind =
Pure types
type
m_boolean
The set of two elements {true,false}
.
type
m_integer
Natural signed integers (Z).
type
m_real
Real numbers (R).
type
m_abstract
Abstract Data Types (user-defined WHY-types).
type
m_name
type name data_lib.why
type
m_pointer
type pointer data_lib.why
type
m_array
type 'a farray array.why
type
m_record
type record data_lib.why
type
m_urecord
type urecord data_lib.why
type
m_set
type 'a set data_lib.why
type
m_zone
type of elementary regions
Arithmetics Operators
type
int_op =
| |
Iadd |
| |
Isub |
| |
Imul |
| |
Idiv |
| |
Imod |
type
real_op =
| |
Radd |
| |
Rsub |
| |
Rmul |
| |
Rdiv |
type
cmp_op =
| |
Ceq |
| |
Cneq |
| |
Clt |
| |
Cleq |
Declarations
type
section =
| |
S_Type |
| |
S_Cons |
| |
S_Logic_Sig |
| |
S_Logic_Def |
| |
S_Logic_Prop |
| |
S_Model_Sig |
| |
S_Model_Def |
| |
S_Model_Prop |
| |
S_User_Sig |
| |
S_User_Prop |
type ('a, 'b, 'c)
item =
| |
Type of int |
| |
Cons of int |
| |
Function of tau list * tau |
| |
Predicate of tau list |
| |
FunctionDef of 'a list * tau * 'b |
| |
PredicateDef of 'a list * 'c |
| |
Axiom of 'c |
| |
Trecord of Cil_types.compinfo |
type ('a, 'b, 'c)
declaration = {
}
Signature for logic formulae
module type S = sig
.. end
module type Logic = sig
.. end