
FRAMA-CLANG User Manual
version 0.0.9

for FRAMA-CLANG version 0.0.9
and FRAMA-C version 21.x Scandium

Frama-Clang Plug-in User Manual
Frama-Clang 0.0.9

David R. Cok

CEA LIST
Software Safety & Security Laboratory

Document printed 9 July 2020

©2013-2020 CEA List

CONTENTS

Contents

Foreword 7

1 Introduction 9

2 Installation 11

3 Running the plug-in 13

3.1 C++ files . 13

3.2 Frama-clang executable . 13

3.3 Frama-clang options . 14

3.4 Include directories . 15

3.5 32 and 64-bit targets . 15

3.6 Warnings, errors, and informational output 16

3.6.1 Errors . 16

3.6.2 Warnings . 16

3.6.3 Informational output . 16

4 Running the Frama-Clang front-end standalone 17

4.1 framaCIRGen specific options . 17

4.2 Clang options . 18

4.3 Default command-line . 19

5 Known Limitations 21

5.1 Implementation of C++ . 21

5.2 Implementation of ACSL++ . 21

5.3 Other frama-clang limitations . 22

6 Preprocessing 23

6.1 Frama-Clang preprocessor implementation 23

6.2 Trigraphs . 24

6.3 Digraphs . 24

5

CONTENTS

6.4 Preprocessor tokens . 24

6.5 Preprocessor directives . 25

7 Grammar and parser for ACSL++ 27

A Changes 29

Bibliography 31

6

Foreword

This is the user manual for the Frama-C plug-in Frama-Clang.1 The contents of this
document correspond to version 0.0.9 of the plug-in compatible with the 21.x Scandium version
of Frama-C [3, 4]. The development of the Frama-Clang plug-in is still ongoing. Features
described by this document will certainly evolve in the future.

Acknowledgements

We gratefully thank the people who contributed to this document: David R. Cok, Virgile
Prevosto, Armand Puccetti, Franck Védrine.

This document was initially written in the context of project VESSEDIA, which received fund-
ing from the European Union’s 2020 Research and Innovation Program under grant agreement
No. 731453.

1https://frama-c.com/frama-clang.html

7

https://frama-c.com/frama-clang.html

Chapter 1

Introduction

Frama-C [3, 4] is a modular analysis framework for the C programming language that sup-
ports the ACSL specification language [1]. This manual documents the Frama-Clang
plug-in of Frama-C, version 0.0.9. The Frama-Clang plug-in supports the ACSL++
extension of ACSL for C++ programs and specifications; it is built on the clang1 com-
piler infrastructure and uses clang for parsing C++. The plug-in extends clang to parse
ACSL++, translating source files containing C++ and ACSL++ into Frama-C’s interme-
diate language for C and ACSL.

The Frama-Clang plug-in intends to provide a full translation of C++ and ACSL++ into
the Frama-C internal representation, and from there to allow C++ programs and ACSL++
specifications to be analyzed by other Frama-C plug-ins. This is a work in progress. The
following sections describe the current status and limitations of the current implementation.

• The plug-in aims for the C++11 version of C++

• ACSL++ is described in the companion ACSL++ reference manual [2], also a part of
the Frama-C release.

• The plug-in is compatible with version 6.0-10.0 of clang. This version of clang
supports C++ versions through C++17 (cf. https://clang.llvm.prg/cxx_status.
html). However, Frama-Clang may not support all of the features of C++ within
annotations.

1https://clang.llvm.org/

9

https://clang.llvm.prg/cxx_status.html
https://clang.llvm.prg/cxx_status.html

Chapter 2

Installation

Frama-Clang is currently still experimental and not part of regular Frama-C releases. It
must be built from source and added to a Frama-C installation. The instructions for doing
so are provided at https://frama-c.com/frama-clang.html.

Frama-Clang depends on two software packages:

• A current version of Frama-C itself. It is highly recommended to install Frama-
C using opam, as described in the installation procedures for Frama-C (https://
frama-c.com/download.html). Version 0.0.9 of Frama-Clang is compatible with
version 21.x Scandium of Frama-C.

• An installation of Clang, which is available as part of LLVM, which itself is available
from http://releases.llvm.org. Version 0.0.9 of Frama-Clang is compatible with
version 6.0-10.0 of clang.

In addition, a third package is needed for compiling Frama-Clang, camlp5 (https://
camlp5.github.io/). Once Frama-Clang has been installed, camlp5 is not required any-
more. Again, the easiest way to install camlp5 itself is through opam.

Building and installing Frama-Clang has three effects:

• The Frama-Clang executable files are installed within the Frama-C installation. In
particular, if Frama-C has been installed using opam, then the principal executable
framaCIRGen will be installed in the opam bin directory. You must be sure that this
directory is on your $PATH. This is usually the default for standard opam installations.
In doubt, you can try the command which framaCIRGen after installation to be sure that
framaCIRGen will be correctly detected by your shell.

• The Frama-C plug-in itself is copied into the standard Frama-C plug-in directory (as
given by frama-c-config -print-plugin-path), so that it will be loaded automatically
by the main Frama-C commands at each execution.

• Include files containing ACSL++ specifications of C++ library functions are copied to
$FRAMAC_SHARE/frama-clang/libc++, where $FRAMAC_SHARE is the path given by the
command frama-c-config -print-share-path.

These include files are replacements for (a subset of) the standard system include files. They
should have the same definitions of C and C++ functions and classes, but with ACSL++

11

https://frama-c.com/frama-clang.html
https://frama-c.com/download.html
https://frama-c.com/download.html
http://releases.llvm.org
https://camlp5.github.io/
https://camlp5.github.io/

CHAPTER 2. INSTALLATION

annotations giving their specifications. Note however that this is still very much a work in
progress, except for the headers that are imported from the C standard library, which benefit
from the specifications of the headers provided by Frama-C itself.

The plugin can be built by hand from source using the following commands. Create a new
directory to which you download and unpack the source distribution. Then cd into the source
directory itself (one level down) and execute:

./ configure
make
make install

By default, Frama-Clang will install its files under the same root directory as Frama-
C itself. In particular, if Frama-C has been installed from opam, the installation will be
done under $(opam var prefix) directory. Standard autoconf-based configure options for
manipulating installation directories are available, notably --prefix.

12

Chapter 3

Running the plug-in

3.1 C++ files

Once installed the plugin is run automatically by Frama-C on any C++ files listed on
the command-line. C++ files are identified by their filename suffixes. The default suffixes
recognized as C++ are these: .cpp, .C, .cxx, .ii, .ixx, .ipp, .i++, .inl, .h, .hh

Currently this set of suffixes is compiled in the plugin (in file frama_Clang_register.ml) and
can only be changed by recompiling and reinstalling the plugin.

3.2 Frama-clang executable

The plug-in operates by invoking the executable framaCIRGen (which must be on the system
$PATH) on each file identified as C++, in turn. For each file it produces a temporary output
file containing an equivalent C AST, which is then translated and passed on as input to
Frama-C. This executable is a single-file-at-a-time command-line executable only. Various
options control its behavior.

The file-system path identifying the executable is provided by the -cxx-clang-command
<cmd> option and is framaCIRGen by default. The path may be absolute; if it is a relative
path, it is found by searching the system $PATH.

The PARSING section of the output of frama-c -kernel-h lists some options for controlling
the behavior described above. This is notably the case for:

• -cpp-extra-args which contains arguments to be passed to the preprocessor (e.g. -D
macro definitions or -I search path directives). In case the project under analysis mixes
C and C++ files which require distinct preprocessor directives, it is possible to use the
Frama-Clang-specific option -fclang-cpp-extra-args. In that case, Frama-Clang
will not consider -cpp-extra-args at all. See section 3.4 for more information.

• -machdep which indicates the architecture on which the program is supposed to run. See
section 3.5 for more information

Apart from -fclang-cpp-extra-args, and -cxx-clang-command, Frama-Clang options gov-
erning the parsing of C++ files are:

• -cxx-c++stdlib-path, the path where Frama-Clang standard C++ headers are lo-
cated.

13

CHAPTER 3. RUNNING THE PLUG-IN

• -cxx-cstdlib-path, the path where Frama-C standard C headers are located

• -cxx-nostdinc, instructs framaCIRGen not to consider Frama-Clang and Frama-C
headers (i.e. fall back to system headers).

3.3 Frama-clang options

The options controlling Frama-Clang are of four sorts:

• options known to the Frama-C kernel

• options the Frama-Clang plug-in has registered with the Frama-C kernel. These
also are recognized by the frama-c command-line.

• options known to framaCIRGen directly (and not to frama-c), These must be included
in the internal command that invokes framaCIRGen using the -cpp-extra-args option.
These options are described in §4.

• clang options, which must also be supplied using the -cpp-extra-args option, and are
passed through framaCIRGen to clang. See §4.

The options in the first two categories are processed by the frama-c kernel when listed on the
frama-c command-line. The use of the frama-c command-line is described in the core frama-c
user guide. There are many kernel options that affect all plugins and many options specific
to Frama-Clang. The command

frama-c -kernel-h
shows all kernel options; the command

frama-c -fclang-h
shows all frama-clang-specific options.

The most important of the options are these:

• --help or -h – introduction to Frama-C help

• -kernel-h, -fclang-h – help information about frama-c, the frama-c kernel and the
frama-clang plug-in

• -print – prints out the input file seen by frama-c; when frama-clang is being used this
is the input file after pre-processing and translation from C++ to C. Thus this output
can be useful to see (and debug) the results of frama-clang’s transformations.

• -kernel-warn-key=annot-error=<val> sets the behavior of Frama-C, including Frama-
Clang, when a parsing error is encountered. The default value (set by the kernel) is
abort, which terminates processing upon the first error; a more useful alternative is
active, which reports errors but continues processing further annotations.

• -machdep <arg> – sets the target machine architecture, cf. §3.5

• -kernel-msg-key <categories> – sets the amount of informational messages according
to different categories of messages. See -kernel-msg-key help for a list of informational
categories.

• -kernel-warn-key <categories> – sets the amount and behavior of warnings.
See -kernel-warn-key help for a list of warning categories.

14

3.4. INCLUDE DIRECTORIES

• -fclang-msg-key <categories> – sets the amount of informational messages according
to different categories of messages. See -fclang-msg-key help for a list of informational
categories.

• -fclang-warn-key <categories> – sets the amount and behavior of warnings.
See -fclang-warn-key help for a list of warning categories.

• -fclang-verbose <n> – sets the amount of information from the Frama-Clang plug-in

• -fclang-debug <n> – sets the amount of debug information from the Frama-Clang
plug-in

• -annot – enables processing ACSL++ annotations (enabled by default)

• -no-annot – disables processing ACSL++ annotations

Note that the Frama-C option -no-pp-annot is ignored by Frama-Clang. Preprocess-
ing is always performed on the source input (unless annotations are ignored entirely using
-no-annot).

3.4 Include directories

By default framaCIRGen is given the paths to the two directories containing the frama-clang
and frama-c header files, which include ACSL++ specifications for the C++ library func-
tions. The default paths ($FRAMAC_SHARE/libc++ and $FRAMAC_SHARE/libc respectively) to
these directories can be overriden by the frama-clang options -cxx-c++stdlib-path and
-cxx-cstdlib-path options.

Users typically have additional header files for their own projects. These are supplied to the
frama-clang preprocessor using the option -cpp-extra-args.

You can use -fclang-cpp-extra-args instead of cpp-extra-args; multiple such options also
have a cumulative effect. The frama-clang option only affects the frama-clang plugin, whereas
-cpp-extra-args may be seen by other plugins as well, if such plugins do their own prepro-
cessing. Also note that the presence of any instance of -fclang-cpp-extra-args will cause
uses of -cpp-extra-args to be ignored.

The system header files supplied by frama-clang does not include all C++ system files.
Omissions should be reported to the frama-c team.

As an example, to perform wp checking of files a.cpp and inc/a.h, one might use the command-
line

frama-c -cpp-extra-args="-Iinc" -wp a.cpp

3.5 32 and 64-bit targets

ACSL++ is for the most part machine-independent. There are some features of C++ that
can be environment-dependent, such as the sizes of fundamental datatypes. Consequently,
Frama-C has some options that allow the user to state what machine target is intended.

• The -machdep option to Frama-C. See the allowed values using the command
frama-c -machdep help.

For example, with a value of x86_32, sizeof (long) has a value of 4, whereas with the
option -machdep x86_64, sizeof (long) has a value of 8.

15

CHAPTER 3. RUNNING THE PLUG-IN

3.6 Warnings, errors, and informational output

Output messages arise from multiple places: from the frama-clang plugin, from the framaCIRGen
lexer and parser, from the clang parser, and from the Frama-C kernel (as well as from any
other plugins that may be invoked, such as the wp plug-in). They are controlled by a number of
options within the Frama-C kernel and each plugin. Remember that clang and framaCIRGen
options must be put in the -cpp-extra-args option.

Output messages, including errors, are written to standard out, not to standard error.

3.6.1 Errors

Error messages are always output. The key question is whether processing stops or continues
upon encountering an error. Continuing can result in a cascade of unhelpful error messages,
but stopping immediately can hide errors that occur later in source files.

• --stop-annot-error is a framaCIRGen option that causes prompt termination on anno-
tations errors (the framaCIRGen default is to continue); this does not respond to errors
in C++ code

• -kernel-warn-key=annot-error=abort is a frama-clang plug-in option that will invoke
framaCIRGen with --stop-annot-error. error and error_once (instead of abort) have
the same effect; other values for the key will allow continuing after errors. The default
is abort.

3.6.2 Warnings

Warning messages from framaCIRGen can be controlled with the -warn option of framaCIRGen.

• -Werror is a clang and framaCIRGen option that causes any parser warnings to be treated
as errors

• -w is a clang and framaCIRGen option that causes any parser warnings to be ignored

• the framaCIRGen option --no-warn or --warn=0 turns off framaCIRGen warning messages

• the framaCIRGen option --warn=<n>, with n > 0 turns on framaCIRGen warning messages;
the higher the value n the more messages

• the framaCIRGen option --warn is the same as --warn=1

The clang options are not currently integrated with the frama-c warning and error key sys-
tem.

3.6.3 Informational output

This section is not yet written

The clang informational output is not currently integrated with the frama-c warning and error
key system.

16

Chapter 4

Running the Frama-Clang front-end
standalone

In normal use within Frama-C, the framaCIRGen executable is invoked automatically. How-
ever, it can also be run standalone. In this mode it accepts command-line options and a single
input file; it produces a C AST representing the translated C++, in a text format similar to
Cabs.

The exit code from framaCIRGen is

• 0 if processing is successful, including if only warnings or informational messages are
emitted

• 0 if there are some non-fatal errors but --no-exit-code is enabled (the default)

• 1 if there are some non-fatal errors but --exit-code is enabled, or if there are warnings
and -Werror is enabled, but -w is not.

• 2 if there are fatal errors

Fatal errors are those resulting from misconfiguration of the system; non-fatal errors are the
result of errors in the user input (e.g. parsing errors).

The -Werror option causes warnings to be treated as errors.

All output is sent to the standard output.1

4.1 framaCIRGen specific options

These options are specific to framaCIRGen.

• -h – print help information

• -help – print more help information

• --version – print version information

1Currently clang output goes to std err.

17

CHAPTER 4. RUNNING THE FRAMA-CLANG FRONT-END STANDALONE

• -o <file> – specifies the name and location of the output file (that is, the file to contain
the generated AST). The output path may be absolute or relative to the current working
directory. This option is required.

• -w – suppress warnings (overrides -Werror)

• -Werror – treat warnings as errors

• --info=<n> – sets the level of informational messages to n; 0 is completely quiet; in-
creasing values are more verbose.
--info sets the level to 1
--no-info sets the level to 0
The frama-c option -fclang-msg-key=parse is equivalent to setting a value of 1.

• --warn=<n> – sets the level of parser warning messages to n; 0 is completely quiet;
increasing values are more verbose.
--warn sets the level to 1
--no-warn sets the level to 0
The frama-c option -fclang-warn-key=parse is equivalent to setting a value of 1.

• --debug=<n> – sets the level of parser debug messages to n; 0 is completely quiet; in-
creasing values are more verbose
--debug sets the level to 1
--no-debug sets the level to 0
The frama-c option -fclang-debug=<n> is equivalent to setting a value of n. In partic-
ular, a debug value of 1 shows the command-line that invokes framaCIRGen.

• --stop-annot-error – if set, then parsing stops on the first error; default is off

• --exit-code – if set, then the exit code of framaCIRGen is 1 if errors occur; this is not
the default because then frama-c would terminate upon any error in framaCIRGen

• --no-exit-code – disables --exit-code, so that the exit code is always 0 for non-fatal
errors.

• --annot – enables processing ACSL++ annotations (enabled by default)

• --no-annot – disables processing ACSL++ annotations

4.2 Clang options

Frama-Clang is built on the clang C++ parser. As such, the framaCIRGen executable accepts
the clang compiler options and passes them on to clang. There are many of these. Many of
these are irrelevant to frama-clang as they relate to code generation, whereas frama-clang
only uses clang for parsing, name and type resolution, and producing the AST. You can see
a list of options by running framaCIRGen -help

The most significant clang options are these:

• -I <dir> – adds a directory to the include file search path. Using absolute paths is
recommended; relative paths are relative to the current working directory.

• -w – suppress clang warnings

18

4.3. DEFAULT COMMAND-LINE

• -Werror – treat warnings as errors

Although clang can process languages other than C++, C++ is the only one usable with
Frama-Clang.

4.3 Default command-line

The launching of framaCIRGen by Frama-C includes the following options by default. The
frama-c option -fclang-msg-key=clang will show (among other information) the internal
command-line being invoked.

• -target <target> with the target being set according to the -machdep and -target
options given to Frama-C (cf. §3.5)

• -D__FC_MACHDEP_86_32 – also set according to the chosen architecture. The correspond-
ing __FC_MACHDEP_* macro is used in Frama-C- and frama-clang- provided standard
headers for architecture-specific features.

• -std=c++11 – target C++11 features

• -nostdinc – use frama-clang and Frama-C system header files, and not the compiler’s
own header files

• -I$FRAMAC_SHARE/frama-clangs/libc++ -I$FRAMAC_SHARE/libc – include the Frama-
Clang and Frama-C header files, which contain system library definitions with ACSL++
annotations (the paths used are controlled by the frama-c options -cxx-c++stdlib-path
and -cxx-cstdlib-path).

• --annot or --no-annot according to the -annot or -no-annot Frama-C kernel option

• -stop-annot-error if the corresponding option (-fclang-warn-key=annot-error=abort)
is given to Frama-C

• options to set the level of info messages and warning messages, based on options on the
frama-c command-line

19

Chapter 5

Known Limitations

The development of the Frama-Clang plug-in is still ongoing. Frama-Clang does not
implement all of current C++ nor all of ACSL++ as defined in its language definition [2].
The most important such limitations are listed in this section.

These lists are not (nearly) complete

5.1 Implementation of C++

The following C++ features are not implemented in ACSL++.

• preprocessing is restricted within ACSL++ annotations (cf. §6)

• uses of typename

• uses of templates are not robust

• uses of typeid

• implementation of the standard library is very rudimentary

• main target of frama-clang is C++11

5.2 Implementation of ACSL++

These ACSL++ features are not yet implemented

• Frama-Clang cannot process annotations that are separate from the source file

• ACSL++ specifications for standard C++ library functions are still quite limited

• ACSL++ definitions within template declarations

• ghost code is not yet implemented

• model declarations

• set comprehensions

• using (namespace) declarations (parsed but has no effect)

21

CHAPTER 5. KNOWN LIMITATIONS

• pure functions (parsed but incompletely implemented)

• throws clause (parsed but not implemented in Frama-C)

• interaction of throws and noexcept

• parallel \let

• \count and \data are parsed but not yet implemented in Frama-C

• formal parameters that are references have pre and post states

• dynamic casting not yet implemented in Frama-C

• rounding mode and related builtin functions

• builtin types list and \set and related builtin functions

• \valid_function \allocable \freeable \fresh are not yet implemented by Frama-C

• extended quantifiers are not yet implemented by Frama-C

• global invariants are not yet implemented by Frama-C

• generalized invariants are not yet implemented by Frama-C

• assigns with both \from and = is not yet implemented

5.3 Other frama-clang limitations

• -fclang-version is not implemented

• parsing routines need work to improve robustness, to improve accuracy of locations, and
to guard against leaking memory when parses fail

• the term/predicate parsing methods should be refactored to avoid deep call stacks

• resolve issues of tset representations

• cannot change the set of C++ suffixes

• frama-clang info/warn/error messages are not yet properly categorized and integrated
with -fclang-log, -fclang-msg-key, fclang-warn-key. In particular, clang messages are
completely independent of the Frama-C logging framework

22

Chapter 6

Preprocessing

This section describes the implementation of the C++ preprocessor for ACSL++ annota-
tions. Recall that the C++ preprocessor replaces comments (including ACSL++ comments)
by white space, without operations such as handling preprocessor directives. Accordingly,
Frama-Clang must handle standard preprocessing within ACSL++ annotations itself.

As a refresher, the C/C++ preprocessor (CPP) (cf. https://gcc.gnu.org/onlinedocs/
cpp/) conceptually implements the following operations on a C++ source file:

• The input is translated into a basic set of characters, including replacing trigraph se-
quences by their source character set equivalents

• Any backslash-whitespace-line-terminator sequence is removed and the line that it ends
is combined with the following line, producing a sequence of logical lines.

• Comments are replaced by single spaces. This requires tokenizing the input to avoid
recognizing comment markers within strings as indicating a comment. Note that this
allows block comments to hide line terminations.

• The input text is divided into preprocessing tokens grouped in logical lines. Each
preprocessor token becomes a compiler token (except where ## concatenation occurs).
However, ACSL/ACSL++ tokens are slightly different, as described below.

• The source text is transformed according to any preprocessing directives contained
within it. Each preprocessing directive must be contained within one logical line. The
result has no preprocessing directives remaining.

• Adjacent string literals (separated only by white-space or line-endings) are concatenated
into a single string literal.

The result is a sequence of preprocessing tokens that is passed on to the remaining compiler
phases.

6.1 Frama-Clang preprocessor implementation

The Frama-Clang implementation operates as follows, on each ACSL++ annotation com-
ment in turn:

23

https://gcc.gnu.org/onlinedocs/cpp/
https://gcc.gnu.org/onlinedocs/cpp/

CHAPTER 6. PREPROCESSING

• A simplified custom lexer converts the text into preprocessor tokens, without doing
macro substitution, to find instances of forbidden preprocessor directives. If possible
and reasonable, these are elided from the input text and processing continues.

• The text is then submitted to clang to obtain the complete sequence of preprocessor
tokens, now with full preprocessing (except for adjacent string concatenation).

• frama-clang transforms the clang preprocessor tokens into ACSL++ tokens, which are
then passed on to the ACSL++ parser to produce the desired AST.

6.2 Trigraphs

Trigraphs are defined for C++ but will currently be removed in C++17. Since trigraph
processing by clang occurs before any recognition of comments, trigraphs in ACSL++ anno-
tations are translated, if enabled in clang. As they will be removed from C++, they are
not recommended for use in ACSL++ annotations. Preprocessing of trigraphs is enabled by
default.

6.3 Digraphs

Digraphs are alternate spellings of preprocessor tokens, in particular, of punctuation character
sequences. Digraphs in ACSL++ annotations are translated just as they are in C++ (by
clang). Using digraphs is not recommended.

6.4 Preprocessor tokens

Preprocessor tokens (per CPP) belong to one of several categories: identifiers, literals (includ-
ing numeric, character and string literals), header names, operators, punctuation, and single
other characters. White space (space, tab) serves only to separate tokens; it is not needed
between tokens whose concatenation is not a single token. Line terminators also separate
tokens and also delineate certain features: preprocessing directives and string literals do not
extend over more than one (logical) line.

Dollar signs are also allowed as non-digit identifier characters if the clang option
-fdollars-in-identifiers is enabled, which it is by default.
Enable with -fdollars-in-identifiers ;
disable with -fno-dollars-in-identifiers .

Numeric literals are more general than a C++ or ACSL number. Nevertheless, aside from
token concatenation, each preprocessing token becomes a compiler token, which then may be
an illegal compiler token.

The token definitions imply that arbitrary text can always be broken into legitimate prepro-
cessor tokens, with the exception of a few characters and of badly formed unicode sequences.

Note that not all preprocessor tokens are valid C/C++ parser tokens. Tokens in the other
category have no meaning to C/C++ and the number category allows many sequences that
are not legal C/C++ numeric tokens. These tokens will generally provoke compiler errors.
For example in C/C++, 0..2 is one token and is not interpreted as two consecutive numeric
tokens.

24

6.5. PREPROCESSOR DIRECTIVES

ACSL and ACSL++ have slightly different tokens than the preprocessor, so the preprocessor
tokens need to be re-tokenized in some cases:

• The @ token is a whitespace character in the interior of a ACSL/ACSL++ annotation.

• There are some ACSL/ACSL++ multi-character punctuator tokens that are not single
preprocessor tokens:

– all ACSL/ACSL++ keywords that begin with a backslash, such as \result.

– ==> (logical implies)

– --> (bit-wise implies)

– <==> (logical equality)

– <--> (bit-wise equality)

– ^^ (logical inequality)

– ^* (list repetition)

– [| and |] (list creation)

These ACSL/ACSL++ tokens need to be assembled from multiple CPP tokens (and
those CPP tokens must not be separated by white space)

• A CPP numeric token that contains .. will not be a legal C/C++ number, but may be a
sequence of legal ACSL/ACSL++ tokens with the .. representing the range operator.
For example, the single CPP token 0..last is retokenized for ACSL/ACSL++ as if
it were written 0 .. last .

• ACSL/ACSL++ allows certain built-in non-ASCII symbols. An example is ∀ (unicode
0x2200) to designate a universal quantifier, which is an alternative form of \forall. A
complete list of such tokens is given in the ACSL/ACSL++ language definition.

6.5 Preprocessor directives

A preprocessing directive consists of a single logical line (after the previous preprocessing
phases have been completed) that begins with optional white space, the # character, additional
optional white space, and a preprocessor directive identifier. The preprocessing language
contains a fixed set of preprocessing directive identifiers:

• define, undef

• if, ifdef, ifndef, elif, else, endif

• warning, error

• include

• line

• pragma

25

CHAPTER 6. PREPROCESSING

In addition, identifiers that have been defined (by a #define directive) as macros are expanded
according to the macro expansion rules (not described here).

Because ACSL/ACSL++ annotations are contained in C/C++ comments, any directives
contained in the annotation are not seen when the source file is processed simply as a C/C++
source file. However, the effect of some directives lasts until the end of the source file. Accord-
ingly, ACSL++ imposes constraints on the directives that may be present within annotations:

• define and undef are not permitted in an annotation. (If they were to be allowed, their
scope would have to extend only to the end of the annotation, which could be confusing
to readers.)

• macros occurring in an annotation but defined by define statements prior to the an-
notation are expanded according to the normal rules, including concatenation by ##
operators. The context of macro definitions corresponds to the textual location of the
annotation, as would be the case if the annotation were not embedded in a comment.

• if, ifdef, ifndef, elif, else, endif are permitted but must be completely nested
within the annotation in which they appear (an endif and its corresponding if, ifdef,
ifndef, or elif must both be in the same annotation comment.)

• warning and error are permitted

• include is permitted, but will cause errors if it contains, as is almost always the case,
other disallowed directives

• line is not permitted

• pragma and the _Pragma operator are not permitted

• stringizing (#) and string concatenation (##) operators are permitted

• the defined operator is permitted

• the standard predefined macro names are permitted: __cpluscplus (in C++ compil-
ers), __DATE__, __TIME__, __FILE__, __LINE__, __STDC_HOSTED__

26

Chapter 7

Grammar and parser for ACSL++

This section summarizes some of the technical implementation considerations in writing a
parser for ACSL++ within Frama-Clang. This material may be useful for developers and
maintainers of Frama-Clang; it is not needed by users of Frama-Clang.

Recall that Frama-Clang uses clang to parse C++ and a custom parser to parse ACSL++
annotations, jointly producing a representation of the C++ and ACSL++ source input in the
Frama-C intermediate language. The first version of the ACSL++ custom parser, written
during the STANCE project, used a hand-written bison-like parser, but with function pointers
to record state and actions rather than using a tool-generated table to drive the parsing.
This design proved to be too brittle and difficult to efficiently evolve as new features were
added to ACSL++. Consequently during the VESSEDIA project, the scanner and parser
were completely rewritten, largely retaining the previous design’s connections to clang, token
definitions, name lookup and type resolution, and AST generation.

The new parser uses a recursive descent design in which the names of functions doing the
parsing can match the names of non-terminals in the grammar. Consequently the implemen-
tation of the parser is much more readable, human checkable, and modifiable as the ACSL++
language evolves. The drawback of this design is that ACSL++ is not LL(1); it is not even
LL(k) for fixed k. Thus some amount of lookahead and backtracking is required. The bulleted
paragraphs below describe the problematic aspects of ACSL++ and how they are addressed.

The principal goal of an LL(k) formulation of a grammar is to be able to predict which
grammar production is being seen in the input stream from a small amount of look-ahead.
Most ACSL++ constructs start with a unique keyword (e.g., clauses begin with requires ,
ensures etc.) which serves this purpopse. But the constructs inherited from C++ pose some
challenges.

• Left recursion. Expression grammars are typically left recursive, which is problem-
atic for recursive descent parsers. However, it is well-known how to factor out left
recursion. The precedence order of operators is largely hard-coded into the grammar
implementation; the usual left recursion poses no particular challenge.

• terms vs. predicates. ACSL++ distinguishes terms and predicates, following the
distinction between propositional and predicate logic. However, terms and predicates
have very similar grammars. Furthermore, ACSL++ allows boolean-value terms to be
implicitly converted to predicates and allows predicates to be used within terms (such as
for the conditional sub-expression in a ternary expression). This makes it not possible to
distinguish terms and predicates in top-down parsing. However, Frama-C has different

27

CHAPTER 7. GRAMMAR AND PARSER FOR ACSL++

AST nodes for the two, so it would require a very significant refactoring of Frama-C and
all its plugins to unify terms and predicates (as other specification languages have done).
Note that this problem is a challenge for any parser design. The previous and current
parser designs adopted the same solution: maintain two parallel parses of expressions
— one as a term and one as a predicate. Error messages are emitted only when both
parses fail or when a particular grammar production calls for a particular type of AST
(term or predicate) and that one is not available.

• terms vs. tsets. Similarly, the ACSL++ language definition defines tsets (sets of
locations) with grammar productions separately from terms. However, the grammars
for the two are very similar. ACSL++ is much easier to parse and to implement if tsets
are seen as terms with a specific type, namely sets. Many operations on a data type
are also simply element-by-element operations on sets of such data types. Also, errors
found during type-checking can be associated with more readable error messages than
those found during parsing.

• cast vs. parenthesized expression To determine whether an input like (T)-x is (a)
the difference of the parenthesized expression (T) and x or (b) a cast of -x to the type
T, one must know whether T is a variable or type. This is a classic problem in parsing
C++; it requires that identifiers be known to be either type names or variable names in
the scanner. In addition, T here can be an arbitrary type expression. For example, in
C++, a type expression can contain pointer operators that can look, at least initially
like multiplications and they can contain template instantiations that look initially
like comparisons. Frama-Clang handles this situation by allowing a backtrackable
parse. When a left parenthesis is parsed in an expression context, the parser proceeds
by attempting a parse of a cast expression. If the contents of the parenthesis pair is
successfully parsed as a type expression, it is assumed to be a cast expression.

If such a parse fails, no error messages are emitted; rather the parse is rewound and
proceeds again assuming the token sequence to be a parenthesized expression.

• set comprehension. The syntax of the set comprehension expression follows tradi-
tional mathematics: { expr | binders ; predicate }. This structure poses two diffi-
culties for parsers. First, the expression expr may contain bitwise-or operators, so it
is not known to the parser whether an occurence of | is the beginning of the binders
or is just a bitwise-or operator. Second, the expression will use the variables declared
in the binders section. However, the binders are not seen until after the expression is
scanned. Note that these problems are not unique to a recursive descent design; they
would challenge a LR parser just as much. This particular feature is not yet imple-
mented in Frama-Clang, nor in Frama-C and so is not yet resolved in the parser
implementation.

• labeled expressions. ACSL++ allows expressions to have labels, designated by a
id : prefix. So the parser cannot know whether an initial id is a variable or just a
label until the colon is parsed. Thus this situation requires a lookahead of 2 tokens.

Ambiguity arises with the use of a colon for the else part of a conditional expression. So
in an expression such as a ? b ? c : d : e : f, it is ambiguous whether c or d or e is
a label. Parenthesizing must be used to solve this problem. frama-clang presumes that
if the then part of a conditional expression is being parsed, a following colon is always
the colon introducing the else part. That is, the binding to a conditional expression has
tighter precedence than to a naming expression.

28

AppendixA

Changes

This chapter summarizes the changes in Frama-Clang and its documentation between each
release, with the most recent releases first.

Version 0.0.9

• compatibility with clang 10.0

• compatibility with Frama-C 21.x

• support for implicit initialization of POD objects.

Version 0.0.8

• compatibility with clang 9.0

• compatibility with Frama-C 20.0

• proper conversion of ghost statements

• support for ACSL++ \exit_status

• C++-part of the plug-in is now free from g++ warnings

• move away from camlp4 in favor of camlp5

Version 0.0.7

• First release of this manual.

29

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language.

[2] David R. Cok. ACSL++: ANSI/ISO C++ Specification Language.

[3] Loïc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Ar-
mand Puccetti, Julien Signoles, and Boris Yakobowski. Frama-C User Manual. http:
//frama-c.cea.fr/download/user-manual.pdf.

[4] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A Software Analysis Perspective. Formal Aspects of Computing,
pages 1–37, jan 2015.

31

http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf

	Foreword
	Introduction
	Installation
	Running the plug-in
	C++ files
	Frama-clang executable
	Frama-clang options
	Include directories
	32 and 64-bit targets
	Warnings, errors, and informational output
	Errors
	Warnings
	Informational output

	Running the Frama-Clang front-end standalone
	|framaCIRGen| specific options
	Clang options
	Default command-line

	Known Limitations
	Implementation of C++
	Implementation of ACSL++
	Other |frama-clang| limitations

	Preprocessing
	Frama-Clang preprocessor implementation
	Trigraphs
	Digraphs
	Preprocessor tokens
	Preprocessor directives

	Grammar and parser for ACSL++
	Changes
	Bibliography

