
© 2016 GrammaTech, Inc. All rights reserved

GrammaTech, Inc.

531 Esty Street

Ithaca, NY 14850

Tel: 607-273-7340

E-mail: info@grammatech.com

Specification Editing and Discovery Assistant

for C/C++ Software Development (SPEEDY) and

related verification projects

Frama-C Day – June 20, 2016, Paris

Presented by: David Cok, PI

Contributors: Gunjan Aggarwal, Andreas Stahlbauer, Scott Johnson

Pilot use: Ian Blissard, Joshua Robbins, external users

Support

 This work was supported by NASA contract NNX14CL05C

 A portion of this material is based upon work supported by the

National Science Foundation under Grant No. ACI-1314674.

 Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science

Foundation or NASA.

 Permission to distribute this presentation verbatim is granted;

reproduction or distribution of portions or removing copyright

or support markings is expressly prohibitied.

2
© GrammaTech 2016. All rights reserved.

Original NASA Solicitation

 Solicitation topic: A1.06: Aviation Safety

 Key elements:
› rigorous, systematic, scalable, and repeatable V&V

› “Techniques, tools and policies to enable efficient and accurate
analysis of safety aspects of software-intensive systems,
ultimately reducing the cost of software V&V” …

› “Tools and techniques that can facilitate the use of formal
methods in V&V throughout the lifecycle such as graphical-
based development environments (e.g., Eclipse plug-ins for static
analyzers, model checkers, or theorem provers)”…

 Ended 4/2016 – Eclipse plugin incorporating formal
methods technology (Frama-C)

3
© GrammaTech 2016. All rights reserved.

http://sbir.gsfc.nasa.gov/SBIR/sbirsttr2012/solicitation/SBIR/TOPIC_A1.html#A1.06

© GrammaTech 2016. All rights reserved.Page 4

The (long-term) vision:

formal methods behind the curtain

A Programmer’s workbench (for multiple languages):

 Thoroughly integrated with commonly used SW development IDE(s)

 Makes thinking/acting about correctness a natural part of the process, via
specification checking, bug-finding, code style checking tools

 Provides UI assists in generating, editing, refactoring, checking, …
specifications in concert with code

 Automatic tools to generate specifications and check specs+code, seamless
combination of sound(-ish) verification and bug-finding

 Plug-in interfaces to add new back-end tools as technology improves (or
customization is desired)

 Means to connect specifications with other kinds of design information and
development processes (e.g., from model checking, proof by construction)

GrammaTech provides commercial static analysis tools for bug-finding.
This vision extends our current capabilities in additional directions.

GrammaTech Confidential and ProprietaryPage 5

Background - GrammaTech

 GrammaTech produces commercial tools
› Heuristic flaw-finding tools (CodeSonar/C, x86, [Ada])

› Reverse engineering tools (CodeSurfer/C, x86)

› Integrates research prototypes (e.g., visualization tools, new analyses)

› Incorporating more sound/verification techniques where automated analysis is
possible, at industrial scale

 GrammaTech does contract research in program analysis
› safety (assurance) and security

› commercial and government

› static and dynamic analysis

 David Cok, PI
› 15+ years history in Java specification (e.g., JML, ESC/Java2, OpenJML) and use of SMT solvers (e.g.,

contributed to SMT-LIBv2; jSMTLIB, SMT-COMP 2012, SMT-EVAL 2013)

› Focused on application to industrial-scale problems, everyday use

› [Prior research: automated reasoning for intelligent (imaging) systems, image processing, research
leadership, leading commercial SW development teams]

© GrammaTech 2016. All rights reserved.Page 6

Random Related points

 Connection of verified algorithms to actual implementations in code is
sometimes (often?) missing

 Specifications serve as an aid to code understanding

 Automatically derived specifications serve as an aid to reverse engineering,
debugging, code understanding

 Non-verification oriented engineers find specifications a nuisance, and more
time-consuming than thinking and debugging – the goal has to be to
minimize this overhead and objection

› automate

› integrate

› low performance overhead

 All of this is needed regardless of the underlying logic
Hoare triples, separation logic, matching logic, temporal logic, abstract interpretation,
symbolic execution, …

› Every technique needs induction and/or user input to go beyond straight line or
bounded path exploration – loops, recursive calls, gotos

© GrammaTech 2016. All rights reserved.Page 7

Context

Bottom-up:

Apply formal

methods to code

Top-down:

Correct by construction

Get the algorithms right

Need both approaches

working together

Complex algorithms need

to be ‘got right’ before

implementation begins

A lot of implementation is more

conveniently designed & partially

implemented before the work

of annotating and proving begins

© GrammaTech 2016. All rights reserved.Page 8

Context

Bottom-up:

Apply formal

methods to code

Top-down:

Correct by construction

Get the algorithms right

Need both approaches

working together

Complex algorithms need

to be ‘got right’ before

implementation begins

A lot of implementation is more

conveniently designed & partially

implemented before the work

of annotating and proving begins

And need a hierarchy of abstractions

(expressed in logical annotations)

that connects high- and low level specs.

© GrammaTech 2016. All rights reserved.Page 9

Programming productivity research

Michael Ernst’s (and Todd Schiller) work on programmer productivity (VeriWeb):
› Drag and drop editing interface <<< SPEEDY: templates and content assist,

keyboard short cuts

› Concrete counterexamples (from execution traces) <<< SPEEDY: from static analysis, displayed
directly in source code editor

› Specification inlining (in Web interface) <<< SPEEDY: in source code editor

› Context clues <<< SPEEDY: suggested spec locations

› Specification suggestions from Daikon <<< SPEEDY: from various tools

› Active guidance <<< SPEEDY: using Eclipse cheatsheets,
quick fixes, …

SPEEDY Architecture

10

Eclipse/CDT

UI Enhancements

- Show, check,

manipulate specs.

- Guide user in

managing specs

Lightweight IR for

expressing specs

External tools to suggest

specifications

Internal and External tools

to check specifications
Integrated

into the working

environment

ASTs

Algorithms to suggest

specifications

AST generators

(Build monitors

and parsers)

Specification

suggestion

algorithms and

techniquesCommand-line

instantiation

GrammaTech Confidential and ProprietaryPage 11

1a. Technical underpinnings

– Specification language

 Choice: ACSL (ANSI-C Specification Language)
› A BISL in the style of JML (Java), SPARK (Ada), Spec# (C#),

CodeContracts (.NET), …

› Effort led by CEA-LIST (France)

› More readily understandable than logic languages (such as Coq)

 Characteristics:
› Classic invariant/precondition/postcondition/frame condition form

› Expressions include first-order-logic (quantification)

› Additional primitives to express memory allocation, frame conditions

› Substantial user base, applications to safety-critical code

› Connection to Coq for interactive/assisted proof

 We contributed bugs, fixes, documentation, discussion

© GrammaTech 2016. All rights reserved.Page 12

1a. Technical underpinnings

– Specification language: C++

 C++ : No C++ specification language yet
[Project goal was to follow/study external work and
experiment with any artifacts produced.]

› CEA participated in the EC STANCE project to develop SL for C++

• STANCE is an international, multi-partner project, with commercialization
goals – so not feasible to just join in

• STANCE project concluded, with some tools, but without a clear definition of
a C++ specification language

• SPEEDY project held discussions but there was no path to collaboration

› Still looking for ways to advance this goal

• [Beyond the scope and time-frame of SPEEDY]

© GrammaTech 2016. All rights reserved.Page 13

1b. Technical underpinnings

– Parsing infrastructure

 Built a standalone AST, parsing, typechecking, error reporting
infrastructure for ACSL

› Java-based (Antlr)

• for easy integration into Eclipse

• for ease of deployment across platforms

› Independent of Eclipse

• supports standalone tools as well

• supports other tools (e.g., a specification translator being built in another
project; support for Fortran for an about-to-start AF project)

 Status: met SPEEDY goals with a few corners of the
ACSL grammar left for future work:

› ghost program elements, preprocessing annotations, modules,
sum types and patterns

2. GUI – Support for ACSL in Eclipse

Key goal: Integrate specifications as first-class elements of an IDE

Lots of ‘little/moderate’ features, built on Eclipse capabilities:

14

 Showing counterexample paths and values
• Prototype for built-in SMT solving

• Not feasible in Phase II for Frama-C

 Refactoring

 Renaming within specs

 Specification and expression

manipulation
• More refactorings possible

• Internationalization
• structure in place; more strings to localize; process to

document

 Code completion (based on indexing),

keyboard shortcuts

 Various informational hovers

 Low priorities or not needed: Context-

sensitive help, project nature, project

decoration, project builder

• Syntax and semantic coloring of ACSL

• As-you-type syntax and type errors

• Autoindenting

• Problems and markers

• Semantic searching (based on indexing)

• Commands with keyboard bindings

• Menu items

• Quick Fixes

• Icons

• Custom Console

• Preference and property pages

• Custom views, perspectives, folding

• Help (a view on the external

documentation); help documentation index;

cheat sheets
• reasonable start on material, but always more to write

and more examples to produce

 Various specification checking technologies
› Frama-C WP (weakest precondition) checks of consistency of

modular ACSL specs and C implementation

› Frama-C + Why (above plan)

› Frama-C Value set plug-in

› CodeSonar

› CpaChecker (above plan)

› Direct translation to SMT

• allows experimentation with different representations

• allows for easier specification debugging

• Goal met: proof-of-concept and demonstration, as a fall-back
alternative to Frama-C

• Future work: complete all of ACSL and a memory model

 Evaluation of scalability and performance on realistic code

© GrammaTech 2016. All rights reserved.Page 15

3. Specification Checking

© GrammaTech 2016. All rights reserved.Page 16

3. Specification Checking – Frama-C WP

© GrammaTech 2016. All rights reserved.Page 17

3. Specification Checking –

Frama-C Value Analysis

© GrammaTech 2016. All rights reserved.Page 18

3. Specification Checking - SMT

Postcondition is false when

the input is the most

negative integer (which

does not have a

corresponding positive

value in machine integers)

 Specify and check publicly reported bugs

 Task:
› Find reported bugs of significance/interest

› Obtain code before and after fix

› Is it possible to specify the code so that it fails to check before and
does validate afterwards

› i.e. – if specification-style development had been used, would the
bug have been noted in development

› Some small modification to code needed for features not
supported (e.g. variadic argument lists)

 Several examples – two shown here

› arp (BusyBox) : busybox arp -Ainet in version 1.6.2 results in

Segmentation fault

› pr (CoreUtils) : crashed when too many backspaces were typed
before a tab character was entered

© GrammaTech 2016. All rights reserved.Page 19

3'. Specification Checking – scaling up

GrammaTech Confidential and ProprietaryPage 20

3'. Specification Checking – arp (BusyBox)

Bug present since 2007

Fixed 2008

GrammaTech Confidential and ProprietaryPage 21

3'. Specification Checking – arp

© GrammaTech 2016. All rights reserved.Page 22

3'. Specification Checking – pr (CoreUtils)

Bug present since 1992

Fixed 2008

© GrammaTech 2016. All rights reserved.Page 23

3'. Specification Checking – pr

© GrammaTech 2016. All rights reserved.Page 24

4. Specification Assistance

Programming productivity research

Michael Ernst’s (and Todd Schiller) work on programmer productivity (VeriWeb):
› Drag and drop editing interface <<< SPEEDY: templates and content assist,

keyboard short cuts

› Concrete counterexamples (from execution traces) <<< SPEEDY: from static analysis, displayed
directly in source code editor

› Specification inlining (in Web interface) <<< SPEEDY: in source code editor

› Context clues <<< SPEEDY: suggested spec locations

› Specification suggestions from Daikon <<< SPEEDY: from various tools

› Active guidance <<< SPEEDY: using Eclipse cheatsheets,
quick fixes,

© GrammaTech 2016. All rights reserved.Page 25

4. Specification Assistance

Documentation resources

 Online User guide/Reference manual

› Standalone web pages using GrammaTech’s commercial-grade manual
production

› Integrated as Eclipse Help

› Future Work: Tutorial (with help of NSF grant)

 Guide to writing specifications

› Step-by-step tasks as Eclipse “cheatsheets”

 Guide to ACSL in the GUI

› Keyword/feature descriptions using Eclipse dynamic help

© GrammaTech 2016. All rights reserved.Page 26

4. Specification Assistance

IDE assistance

Key goal: Present needed information about specifications in
the engineer’s development environment

 Code completion (that works within specifications)

 Semantics-aware searching (finding declarations and uses)

 Context-sensitive information/help in the IDE

 Refactoring. Future Work: Even more refactoring

© GrammaTech 2016. All rights reserved.Page 27

4. Specification Assistance

Debugging resources

Key goal: Present information about specification/code
inconsistency in the engineer’s development environment

 Parsing/typechecking errors in ACSL are just like compiler errors

 Specification inconsistencies are presented as Eclipse ‘markers’

 Going beyond ‘proof failed’ : Counterexample values presented in the
context of the source code as Eclipse hovers and dialogs

› Future Work: Frama-C counterexamples

› Direct SMT checking. Future Work: Fill out features

© GrammaTech 2016. All rights reserved.Page 28

5. Automated Specification Discovery

What is needed?

Prior to implementing a bunch of algorithms…

 Took time to assess what kinds of code structures might be encountered

 Academic work tends to focus on a particular kind of code structure (say, nested
array indexing) and develop and algorithm for that (perhaps difficult) situation,
without reference to how common that situation is.

 Survey

› Examples in literature: most loops are not that complicated

› Our results as well: Most loops
• simple indexing by 1 from fixed lower to upper bound

• pointer equivalent

• pointer indexing along a string to null terminator

• [pointer indexing along a linked structure]

› Loop content is often
• array processing (do same thing to every element)

• accumulator (compute some summary value while not changing array)

© GrammaTech 2016. All rights reserved.Page 29

5. Automated Specification Discovery

Tool & algorithm integrations

[specification discovery === invariant inference === function summarization]

Key goal: Infer specs from code for the user to review/edit

- gives a head start in writing specifications

- serves as an assistant in code review and understanding

Tools

 CodeSonar’s function summarization as preconditions

 CodeSurfer’s analysis as frame conditions

 Frama-C val: frame conditions

 Daikon: spec suggestion from analysis of runtime traces

 CpaChecker for predicate abstraction

© GrammaTech 2016. All rights reserved.Page 30

5. Automated Specification Discovery

Tool & algorithm integrations

Algorithms

 Symbolic execution for simple pre/frame/post conditions

 Loop invariants for the index and variant

 Other algorithms …

© GrammaTech 2016. All rights reserved.Page 31

Automated Specification Discovery

- Algorithms: Symbolic execution

 Symbolic execution for simple pre/frame/post conditions

 Fast way to derive specs for simple functions (no loops, not
too many branches)

 Key question: how much simplification is needed to make
the derived expressions human-readable (and how
intelligent must the simplification be)

© GrammaTech 2016. All rights reserved.Page 32

More Algorithms for suggesting specs

[Note: All techniques will need ability to simplify and present automatically generated formulae]

[Note 2: It is still helpful if ‘easy’ cases are handled automatically leaving a small number to be completed by hand.]

 Daikon with custom predicates; use later work to help select predicates for
precondition-postcondition implications

› Variation: Daikon with inputs from concolic execution (Grace)

 Symbolic execution (many variations)

› Simple, for simple procedures

› Axiom Meister algorithm (Tillman et al.) – simplification in terms of observers

 Dynamic Symbolic Execution

› For polynomial invariants and array relationships (Nguyen, Kapur, Weimer, Forrest)

› “Universal Symbolic Execution” (Kannan and Sen)

› DySy (Csallner et al.)

 Template-based Predicate abstraction (Srivastava & Gulwani, 2009)
› Uses an SMT solver to solve for satisfying values that are predicates

› Also: VS3 (Srivastava, Fulwani, Foster, 2009)

 Loop invariants for loops with parallelizable state updates (Gedell, Hähnle)

 Quantified abstract domains for loop invariants (Gulwani et al.)

 Inferred type annotations with the Checker framework

 Houdini-style static analysis with Daikon’s approach to selecting predicates

There is LOTS

of active

literature

© GrammaTech 2016. All rights reserved.Page 33

7. Assessment – Pilot use

Key goal: Use teams outside of the principal developers as
pilot users

 Internal use on other projects within GrammaTech

 External users (academic or industrial)
› concentrated on IDE and Frama-C integration
› regular users of Frama-C
› academic users less familiar with Frama-C

 Future Work
› External user evaluation is ongoing and we are seeking

additional participants

GrammaTech Confidential and ProprietaryPage 34

Related projects

 SPEEDY is being incorporated into a follow-on project
wanting tools to review critical code
(and we’re going to sneak in some verification)

 An important impediment to wider use of modular bottom-
up verification is the need for specifications of libraries
(as well as more robust and scalable tools).

Have an NSF grant with which we are trying to address both
the tool and specification aspects.

The NSF project is OpenSource << contributors welcome.

© GrammaTech 2016. All rights reserved.Page 35

Key needs regarding ACSL & Frama-C

ACSL

 Common base of library specifications.

› An earlier call for requesting information had little response.

› I would like to propose a common (open source) repository of library
specifications in ACSL (or is the community going to go with Coq instead…?)

 Clearer definition of ACSL than is in the current description document

› I propose joint collaborative work on resolving ambiguities in the
description and omissions in the language.

Frama-C

 Clear statements regarding what ACSL is supported by plugins (such as
WP) and plans toward closinsg gaps.

 Counterexample information returned from subsidiary SMT solvers

© GrammaTech 2016. All rights reserved.Page 36

Summary

 Put verification (‘formal methods’) tools in the hands of software developers
(especially if they do not know they are using it)

 Make tools robust, scalable and highly automated

› rely on decision procedures and automated heuristics as much as possible

Specification inference can help greatly

› takes care of simple cases without needing engineer input

› provides a starting point for complex specifications

› is an aid to understanding

 Need extensive libraries with verified specifications

 Make correct-by-construction and verification of legacy code approaches work
together

© GrammaTech 2016. All rights reserved.Page 37

Questions?

