Software Verification of Safety-Critical Aerospace
Systems!

César A. Mufioz
Alwyn Goodloe
{cesar.a.munoz,a.goodloe}@nasa.gov

-]

Frama-C Day 2016
June 20th, 2016

1This presentation reports joint work with F. Kirchner, L. Correnson, and G.-A.
Jaloyan.
1/15

Lifecycle of Our FM Research Activities @

@ Develop functional requirements for advanced Air Traffic
Management concepts (mainly in PVS).

@ Formally verify that those functional requirements satisfy operational
requirements (mainly in PVS).

© Formally specify algorithms that satisfy those functional requirements
and formally prove their correctness (mainly in PVS).

© Either manually write or automatically generate prototype code that
implements those algorithms (mainly for testing).

© Repeat.

2/15

Lifecycle of Our FM Research Activities @

@ Develop functional requirements for advanced Air Traffic
Management concepts (mainly in PVS).

@ Formally verify that those functional requirements satisfy operational
requirements (mainly in PVS).

© Formally specify algorithms that satisfy those functional requirements
and formally prove their correctness (mainly in PVS).

@ Either manually write or automatically generate prototype code that
implements those algorithms (mainly for integration).

© Release code under NASA's Open Source Agreement.
O Repeat.

2/15

Software Verification Of Formally Verified Algorithms @

@ Research prototypes:

e Mid- and low-fidelity simulation environments.

o Flight experiments and demonstrations.

o Reference implementation of minimum operational standards.
@ The algorithms are formally verified, but is the code correct?
e Frama-C:

e Verification of numerically intensive code.
o Verification of automatically generated monitors.

3/15

Verification of Numerical Software @

Right-of-way in air traffic

In theory (PVS): In practice (Java, C):

W Y

® ®

Solution has been proposed by T. Nguyen using Frama-C.?

2 Taking architecture and compiler into account in formal proofs of numerical
programs’, PhD. Thesis, University of Paris-Sud, 2012.
4/15

Verification of Numerical Software @

Inclusion of point in a polygon

Algorithm has been verified in PVS by A. Narkawicz and G. Hagen.3

3 Algorithms for Collision Detection Between a Point and a Moving Polygon, with
Applications to Aircraft Weather Avoidance, Proceedings of ATIO 2016.
5/15

Objective @

@ Develop techniques for lifting formally verified algorithms that use
real arithmetic into formally verified software.
@ Our algorithms:
o Formally specified and verified in PVS.
e Simple control logic, e.g., conditionals, bounded loops.
o No memory management.
o Numerically intensive: non-linear arithmetic, trig functions, etc.

e Case Study: ACCoRD's CD2D*.

T

- N

\’ S i
\
\\J/

y

X
+

*A. Goodloe, C. Munoz, F. Kirchner, L. Correnson, Verification of Numerical

Programs: From Real Numbers to Floating Point Numbers, Proceedings of NFM2013.
6/15

CD2D In A Nutshell e

cd2d(s,,v,.5;,v;) = let s =85, —8;,,v=v, —v; in [os?(s) or wis, v} < 0,
los?(s) = V 8f +s57 < D,

_{s-v if ¥ = %,

wis,v)=4 . . o
(&:v) vis* + 27(s - v) + 5, v) — D*? otherwise,

7(5,v) = min{max(0, —{s - v]), Tv*}.

Proposition 1. Given a distance D > 0 and a lookahead time T = 0, for all
VeCtOTS 8 = 8, —5; and Vv = v, — v,

(soundness) If conflict?({s, v) helds then ed2d(s,, v,,5;,v;) returns frue.
(completeness) If cd2d(s,, v,.s;,v;) returns true then conflict? (s, v) holds.

conflict?(s,v) =40 <t < T :los?(s+ tv).

7/15

Approach @

Frama-C + PVS + Gappa

o

2]

© 000

Transform PVS algorithms and specifications into C code and ACSL
annotations.

Instrument the code and its specifications with arbitrary initial bounds
to computation errors.

Use Frama-C to generate verification conditions.
Use Gappa to verify conditions.
If goals are discharged decrease bounds and go to 3.

Otherwise, increase bounds and go to 3.

8/15

Verification of Runtime Monitors @

@ Given the current state-of-the art, not all code can be formally
verified.
@ Runtime monitors detect and respond to property violation at
execution time:
e Logical specification ¢.
o Execution trace 7 of state information of the system under observation
(SU0).

o Decide if 7 satisfies ¢.

9/15

Copilot Language @

o Copilot is an EDSL (embedded domain specific language), embedded
in Haskell and used for writing runtime monitors for hard real-time,
distributed, reactive systems written in C.

@ A Copilot program is a list of streams defined by mutually recursive
stream equations.

@ Programs can be interpreted and analysed using proof engines, e.g.,
Z3, CVC4, dReal, Kind, ...

@ Programs can be compiled to C using two back-ends: SBV, ATOM.

@ Does the C code correspond to the original representation?

10/15

The Copilot Toolchain

Reification and
DSL-specific
type-checking

Evaluation

Interpreter

Copilot Core]—»[Pretty Printer]

proof generation ACSL gen-
Translation erationg DOT generation
QuickCheck Aol Dot
[SBV Back-End] [[]
generator generator

Compilation

ntegration

\{E‘xtraction and graph generation

11/15

Frama-C to the Rescue @

@ ACSL assertions are constructed by induction on the syntax, when
pretty-printing Copilot Core.

@ WP and CVC4 are used to verify that the C code corresponds to the
Copilot Core.

12/15

Example of Annotated Monitor Code

/%@
assigns \nothing;
ensures \result == (((ext_<ident_double_8) -
(((ext_minimal_horizontal_separation) *
(ext_minimal_horizontal_separation)))));
*/
SDouble ext_sqrt_9_argO(const SDouble ext_ident_double_8,
const SDouble ext_ownship_position_x,
const SDouble ext_intruder_position_x,
const SDouble ext_ownship_position_y,
const SDouble ext_intruder_position_y,
const SDouble ext_minimal_horizontal_separation)
{
const SDouble sO = ext_ident_double_8;
const SDouble sb5 ext_minimal_horizontal_separation;
const SDouble s6 sb * sb;
const SDouble s7 = sO0 - s6;
return s7;

}

13715

Concluding Remarks @

@ We have successfully verified C code that uses floating point
computations and C code that is automatically generated from
runtime monitors.

@ Challenges in the verification of aerospace systems:

e Even small functional programs with no loops and no memory
allocation generate very large verification conditions.

e These verification conditions are usually beyond the capabilities of
automated theorem provers, e.g., Z3, MetiTarski, etc.

e In the case of interactive theorem proving, these verification conditions
usually lead to the statement explosion problem.

14/15

Statement Explosion Problem @

[-1] eps = 1 OR eps = -1

[-2] vfy*eps <= 0

[-3] rd‘y*eps < O

[-4] ((v‘x = 0 AND v‘y = 0) IMPLIES rd‘x >= 0)

[-5] ((v‘x /= 0 OR v‘y /= 0) IMPLIES rd‘x > v‘x)

[-6] rd‘x*v‘yxeps-rd‘y*v‘x*eps <= 0

[-7] mps‘y*eps+rd‘y*eps < 0

[-8] v‘x >=0

[-9] (dv‘x /= 0 OR dv‘y /= 0)

[-10] mps‘x*rd‘y*eps-mps‘y*rd‘x*eps <= 0

[-11] -1*(dv‘x*mps‘y*eps)-dv‘x*rd‘y*eps+ dv‘y*mps‘x*eps+dv‘y*rd‘x*eps < 0

[-12] ((rd‘x*mps‘x+rd‘x*rd‘x+rd‘y*mps‘y+rd‘y*rd‘y < 0 AND
dv ‘x*rd‘y*eps-dv‘y*rd‘x*eps < 0) OR (rd‘x*mps‘x+rd‘x*rd‘x+
rd‘y*mps ‘y+rd‘y*rd‘y >= 0 AND dv‘x*mps‘x+dv‘x*rd‘x+dv‘y*mps‘y+
dvy*rd‘y > rd‘x*mps‘x+rd‘x*rd‘x+rd‘y*mps‘y+rd‘y*rd‘y
AND dv‘x#*rd‘y*eps-dv‘y*rd‘x*eps <= 0))

[1] (dv‘x /= 0 OR dv‘y /= 0) AND dv‘y*eps < O AND ((v‘x = O AND v‘y = 0)
IMPLIES dv‘x >= 0) AND ((v‘x /= 0 OR v‘y /= 0) IMPLIES dv‘x > v‘x)

AND dv‘x*v‘y*eps-dv‘y*v‘x*eps <= 0

15/15

