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Lifecycle of Our FM Research Activities

1 Develop functional requirements for advanced Air Traffic
Management concepts (mainly in PVS).

2 Formally verify that those functional requirements satisfy operational
requirements (mainly in PVS).

3 Formally specify algorithms that satisfy those functional requirements
and formally prove their correctness (mainly in PVS).

4 Either manually write or automatically generate prototype code that
implements those algorithms (mainly for testing).

5 Repeat.
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Lifecycle of Our FM Research Activities

1 Develop functional requirements for advanced Air Traffic
Management concepts (mainly in PVS).

2 Formally verify that those functional requirements satisfy operational
requirements (mainly in PVS).

3 Formally specify algorithms that satisfy those functional requirements
and formally prove their correctness (mainly in PVS).

4 Either manually write or automatically generate prototype code that
implements those algorithms (mainly for integration).

5 Release code under NASA’s Open Source Agreement.

6 Repeat.
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Software Verification Of Formally Verified Algorithms

Research prototypes:

Mid- and low-fidelity simulation environments.
Flight experiments and demonstrations.
Reference implementation of minimum operational standards.

The algorithms are formally verified, but is the code correct?

Frama-C:

Verification of numerically intensive code.
Verification of automatically generated monitors.
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Verification of Numerical Software
Right-of-way in air traffic

Solution has been proposed by T. Nguyen using Frama-C.2

2Taking architecture and compiler into account in formal proofs of numerical
programs’, PhD. Thesis, University of Paris-Sud, 2012.
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Verification of Numerical Software
Inclusion of point in a polygon

Algorithm has been verified in PVS by A. Narkawicz and G. Hagen.3

3Algorithms for Collision Detection Between a Point and a Moving Polygon, with
Applications to Aircraft Weather Avoidance, Proceedings of ATIO 2016.
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Objective

Develop techniques for lifting formally verified algorithms that use
real arithmetic into formally verified software.
Our algorithms:

Formally specified and verified in PVS.
Simple control logic, e.g., conditionals, bounded loops.
No memory management.
Numerically intensive: non-linear arithmetic, trig functions, etc.

Case Study: ACCoRD’s CD2D4.

4A. Goodloe, C. Munoz, F. Kirchner, L. Correnson, Verification of Numerical
Programs: From Real Numbers to Floating Point Numbers, Proceedings of NFM2013.
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CD2D In A Nutshell

7/15



Approach
Frama-C + PVS + Gappa

1 Transform PVS algorithms and specifications into C code and ACSL
annotations.

2 Instrument the code and its specifications with arbitrary initial bounds
to computation errors.

3 Use Frama-C to generate verification conditions.

4 Use Gappa to verify conditions.

5 If goals are discharged decrease bounds and go to 3.

6 Otherwise, increase bounds and go to 3.
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Verification of Runtime Monitors

Given the current state-of-the art, not all code can be formally
verified.

Runtime monitors detect and respond to property violation at
execution time:

Logical specification φ.
Execution trace τ of state information of the system under observation
(SUO).
Decide if τ satisfies φ.
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Copilot Language

Copilot is an EDSL (embedded domain specific language), embedded
in Haskell and used for writing runtime monitors for hard real-time,
distributed, reactive systems written in C.

A Copilot program is a list of streams defined by mutually recursive
stream equations.

Programs can be interpreted and analysed using proof engines, e.g.,
Z3, CVC4, dReal, Kind, . . .

Programs can be compiled to C using two back-ends: SBV, ATOM.

Does the C code correspond to the original representation?
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The Copilot Toolchain

Interpreter

Copilot Libraries

Copilot Language

Copilot Core Pretty Printer

ACSL
generator

DOT
generator

SBV Back-End
SMT Lib

DOT

ACSL

C99

DOT/graphviz
CompCertAssembly code

Reification and
DSL-specific
type-checking

Translation

Evaluation

Integration

QuickCheck

ACSL gen-
eration

DOT generation

make

proof generation

Cross Compilation

Verification with Frama-C WP plugin

Extraction and graph generation

Compilation
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Frama-C to the Rescue

ACSL assertions are constructed by induction on the syntax, when
pretty-printing Copilot Core.

WP and CVC4 are used to verify that the C code corresponds to the
Copilot Core.
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Example of Annotated Monitor Code

/*@

assigns \nothing;

ensures \result == ((( ext_ident_double_8) -

((( ext_minimal_horizontal_separation) *

(ext_minimal_horizontal_separation )))));

*/

SDouble ext_sqrt_9_arg0(const SDouble ext_ident_double_8 ,

const SDouble ext_ownship_position_x ,

const SDouble ext_intruder_position_x ,

const SDouble ext_ownship_position_y ,

const SDouble ext_intruder_position_y ,

const SDouble ext_minimal_horizontal_separation)

{

const SDouble s0 = ext_ident_double_8;

const SDouble s5 = ext_minimal_horizontal_separation;

const SDouble s6 = s5 * s5;

const SDouble s7 = s0 - s6;

return s7;

}
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Concluding Remarks

We have successfully verified C code that uses floating point
computations and C code that is automatically generated from
runtime monitors.

Challenges in the verification of aerospace systems:

Even small functional programs with no loops and no memory
allocation generate very large verification conditions.
These verification conditions are usually beyond the capabilities of
automated theorem provers, e.g., Z3, MetiTarski, etc.
In the case of interactive theorem proving, these verification conditions
usually lead to the statement explosion problem.
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Statement Explosion Problem
[-1] eps = 1 OR eps = -1

[-2] v‘y*eps <= 0

[-3] rd‘y*eps < 0

[-4] ((v‘x = 0 AND v‘y = 0) IMPLIES rd‘x >= 0)

[-5] ((v‘x /= 0 OR v‘y /= 0) IMPLIES rd‘x > v‘x)

[-6] rd‘x*v‘y*eps-rd‘y*v‘x*eps <= 0

[-7] mps‘y*eps+rd‘y*eps < 0

[-8] v‘x >= 0

[-9] (dv‘x /= 0 OR dv‘y /= 0)

[-10] mps‘x*rd‘y*eps-mps‘y*rd‘x*eps <= 0

[-11] -1*(dv‘x*mps‘y*eps)-dv‘x*rd‘y*eps+ dv‘y*mps‘x*eps+dv‘y*rd‘x*eps < 0

[-12] ((rd‘x*mps‘x+rd‘x*rd‘x+rd‘y*mps‘y+rd‘y*rd‘y < 0 AND

dv‘x*rd‘y*eps-dv‘y*rd‘x*eps < 0) OR (rd‘x*mps‘x+rd‘x*rd‘x+

rd‘y*mps‘y+rd‘y*rd‘y >= 0 AND dv‘x*mps‘x+dv‘x*rd‘x+dv‘y*mps‘y+

dv‘y*rd‘y > rd‘x*mps‘x+rd‘x*rd‘x+rd‘y*mps‘y+rd‘y*rd‘y

AND dv‘x*rd‘y*eps-dv‘y*rd‘x*eps <= 0))

|-------

[1] (dv‘x /= 0 OR dv‘y /= 0) AND dv‘y*eps < 0 AND ((v‘x = 0 AND v‘y = 0)

IMPLIES dv‘x >= 0) AND ((v‘x /= 0 OR v‘y /= 0) IMPLIES dv‘x > v‘x)

AND dv‘x*v‘y*eps-dv‘y*v‘x*eps <= 0
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