Formal verification of controller implementation
our experience with Frama-C

Pierre-Loïc Garoche, with the contributions from X. Thirioux (IRIT), P. Roux (Onera), T. Kahsai (NASA/CMU), E. Feron (Georgia Tech), G. Davy (Onera), H. Herencia-Zapana (ex-NIA, now GE), R. Jobredeaux (ex-GT), T. Wang (ex-GT, now UTRC)

June 20th, 2016 – Frama-C days
Context: critical embedded controllers

- Core elements of runtime systems
- Designed with dataflow models
 - validation through simulation/test
 - code generation
- Infinite behavior: endless loop

Designed by local composition:
- a linear controller
- combined with safety constructs

Most properties are analyzed locally.
Dataflow models: e.g. Lustre nodes

- Map a set of (typed) input flows to output flows.
- Not purely functional: static memory through nested pre

```plaintext
node counter(reset: bool) returns (active: bool);
var a, b: bool;
let
  a = false -> (not reset and not (pre b));
  b = false -> (not reset and pre a);
active = a and b;
```

eNode state characterized by its memories: pre a and pre b
- Similar construct in Matlab Simulink: Unit delay

![Diagram of a Lustre node counter](image-url)
TWO EXPERIENCES WITH FRAMA-C
GOAL: VALIDATE FUNCTIONAL PROPERTIES AT CODE LEVEL

Two settings:

1. **linear controller: numerical core**
 - boundedness (no overflow)
 - stability, robustness (control level properties)

2. **safety constructs: voters, alarms, counters**
 - mainly integers and booleans, few serious numerical computation
 - interested in functional soundness

Global approach

- proof at model level
- automatically validation at code level
- generating ACSL during autocoding
 - for contracts: compile specification
 - for proof artifacts: compile proofs
- WP/PVS/Coq to discharge the proofs
Modular Compilation of Models

- Node state (memories) defined by a struct

```c
struct counter_mem {
    struct counter_reg {
        _Bool __counter_1; // pre a
        _Bool __counter_2; // pre b
    } _reg;
};
```

- One step execution by a step function

```c
void counter_step (_Bool reset, // input
    _Bool (*active), // output
    struct counter_mem *self); // memory (side effect!)
```

- Reset function to initialize the struct

```c
void counter_reset (struct counter_mem *self);
```

Open-source implementation for Lustre: LUSTRE-C

Experience 1: Linear controllers

Main system

```c
float in, *out;
f_mem *mem;
f_reset(mem):
while (true) {
    in = receive_input();
    f_step(in, out, mem);
    send_output(*out);
}
```

- Boundedness: loop invariant eg. I(in, *out, mem) or I(mem)
- As function contracts

```c
/*@ ensures I(mem); */
void f_reset (...);

/*@ requires I(mem); */
@ ensures I(mem); */
void f_step (...);
```
NEED FOR SUPER-LINEAR INVARIANTS

Let A be a square matrix. Define the linear system:
\[x^{k+1} = Ax^k, \quad k \geq 0, \text{ a given } x^0 \]

A matrix P satisfies Lyapunov conditions for the system iff:
\[P - \text{Id} \succeq 0, \quad P - A^TPA \succ 0 \]

- Id is the identity matrix;
- $M \succ 0$ means $M = M^T$ and $\forall x \neq 0, x^TMx > 0$;
- $M \succeq 0$ means $M = M^T$ and $\forall x, x^TMx \geq 0$.

$P - \text{Id} \succeq 0$ implies boundedness:
\[\|x\|_2^2 \leq \beta \]
\[x^TPx \leq \alpha \]

$P - A^TPA \succ 0$ guarantees the strict decrease:
\[x^TPx \leq \alpha \]
\[x^T A^TPAx \leq \alpha \]
Need for Super-linear Invariants

Let A be a square matrix. Define the linear system:

$$x^{k+1} = Ax^k, \ k \geq 0, \ \text{a given} \ x^0$$

A matrix P satisfies Lyapunov conditions for the system iff:

$$P - \text{Id} \succeq 0, \ P - A^T PA \succ 0$$

- **Id** is the identity matrix;
- $M \succ 0$ means $M = M^T$ and $\forall \ x \neq 0, \ x^T M x > 0$;
- $M \succeq 0$ means $M = M^T$ and $\forall \ x, \ x^T M x \geq 0$.

$P - \text{Id} \succeq 0$ implies boundedness:

$$\frac{1}{2} \|x\|^2 \leq \beta$$

$P - A^T PA \succ 0$ guarantees the strict decrease:

$$x^T P x \leq \alpha$$

$$x^T A^T P A x \leq \alpha$$

Need for quadratic invariant (at least)!
Step 1: teach linear algebra to Frama-C

/*@ axiomatic matrix {
 type LMat;
...
logic LMat transpose(LMat x0);
logic real dot(LMat x0, LMat x1);
logic LMat diag(LMat x0);
logic LMat inv(LMat x0);
...
logic real dot_inner(LMat x0, LMat x1, integer x2) =
 (((x2==(-1)))?((0.0)):(((mat_get(x0, x2, (0))*mat_get(x1, x2, (0)))+dot_inner(x0, x1, (x2-(1))))));
axiom dot_def:
 (\forall LMat A; (\forall LMat B; (((getM(A)==getN(A))==>(dot(A, B) ==dot_inner(A, B, (getM(A)-(1))))))));
logic in_ellipsoid LMat (LMat P, LMat x);
axiom in_ellipsoid_def: ...
Step 2: Generation of function contract / loop invariant

Using convex optimization tools, we synthesize the discrete Lyapunov function at model level: \(P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)

And express it at code level:

```c
#define P MatCst_2_2((a), (b), (c), (d))
```

```c
struct mem { double x1, x2; /* pre x1, pre x2 */ };
```

```c
/*@ requires in_ellipsoid(P, VectVar_2(mem->x1, mem->x2));
@ ensures in_ellipsoid(P, VectVar_2(mem->x1, mem->x2)); */
void linctl (in, *out, mem);
```

SMT solvers behind Why3 (z3, yices, alt-ergo, cvc4) do not succeed. Our solution:

- generate simple intermediate proof objectives
 - thanks to generation of local invariants
- prove them with a proof assistant (PVS)
Step 3: Local reasoning

Ellipsoids propagation in linear code: two main theorems

1. Linear transformation of an ellipsoid

 We define ξ_P as $\{x \mid x^T P x \leq 1\}$

 $$x \in \xi_P \land y = Ax \implies y \in \xi_{AP_1}$$

2. Combination of two ellipsoids (S-procedure)

 $$\exists \tau_1, \tau_2 \in \mathbb{R}^+, \begin{bmatrix} -P & 0 \\ 0 & 1 \end{bmatrix} - \tau_1 \begin{bmatrix} -P_1 & 0 \\ 0 & 1 \end{bmatrix} - \tau_2 \begin{bmatrix} -P_2 & 0 \\ 0 & 1 \end{bmatrix} \succeq 0$$

 is a sufficient condition for

 $$\left(x^T P_1 x \leq 1 \land x^T P_2 x \leq 1 \right) \implies x^T P x \leq 1$$

Used to generate local assert, propagating loop invariant:

```c
/*@ requires in_ellipsoid(P, VectVar_2(mem->x1, mem->x2)); */
@ ensures in_ellipsoid(Q, VectVat_3(mem->x1, mem->x2, v)); */
@ PROOF_TACTIC (use_strategy (AffineEllipsoid));
{
  // assignment of v
}
**Step 4: Teach Linear Algebra to PVS**

Development of an ellipsoid library in PVS

- basic datatypes: vector, matrices, ...
- specific predicates: `in_ellipsoid`
- two main theorems

```plaintext
ellipsoid_general: THEOREM
 forall (n:posnat, m:posnat, Q:SquareMat(n),
 M: Mat(m,n), x:Vector[n], y:Vector[m]):
 in_ellipsoid_Q?(n,Q,x) AND y = M*x
 IMPLIES
 in_ellipsoid_Q?(m,M*Q*transpose(M),y)
```

```plaintext
ellipsoid_combination: THEOREM ..
```

Local contract are proved thanks to

- computation of proof objective by Frama-C
- appropriate choice of proof strategies generated when propagating ellipsoids.
Compute the Lyapunov function: (semi-)automatic

In the code generator
- embedded C code
- function contracts with loop invariant
- statement-local annotations with
  - propagated ellipsoid
  - proof strategy annotation

In Frama-C
- a plugin that
  - declare the grammar extension
  - calls WP/Why3/PVS with the appropriate strategy

Implemented in Geneauto+ by Tim Wang and Romain Jobredeaux.
**Linear controller analysis – summary**

1. computation of a Lyapunov function, a quadratic invariant
2. compilation of the invariant along the code as ACSL contracts
3. inductiveness proof on the code using Frama-C WP/Why /PVS

We also check externally (outside Frama-C) that the floating point errors generated in one loop iteration do not break inductiveness.

\[ A^tPA - P + |noise| \leq 0 \]

Current extensions include

- analysis at model and code level of closed loop properties
  - express the plant semantics in ACSL ghost code
  - robustness through vector margins
  - performance properties, eg. overshot, related to output $H_\infty$ norm

- more sophisticated systems and properties thanks to the integration of SOS programming in Alt-Ergo.

\[ \Rightarrow \text{do not require PVS and the statement level annotations.} \]
Experience 2: Safety Constructs

Node semantics expressed by another node: a synchronous observer

```plaintext
node counter_spec(reset, active: bool)
 returns (safe: bool);
var cpt: int;
let
cpt = 0 -> if (pre cpt = 3) or reset then 0 else pre cpt+1;
safe = active = (cpt = 2);
tel
```

Annotate the node with observers:

```plaintext
--@ ensures reset => not active;
--@ ensures counter_spec(reset, active);
node counter(reset: bool) returns (active: bool);
```

SMT-based model-checking proves these properties invariant:

- **node and spec** expressed as SMT predicates: $I(s)$, $T(s, s')$ and $P(s)$
- **Induction proof**: $I(s) \models P(s)$ and $P(s) \land T(s, s') \models P(s')$
ISSUE #1: EXPRESS SEMANTICS AT CODE LEVEL
SYNCHRONOUS OBSERVERS AS HOARE TRIPLES

Simple observers (no memory) directly expressed as ensures statements

    //@ ensures reset => not *active;
    void counter_step (_Bool reset,
                       _Bool *active,
                       counter_mem *self) {
        ...
    }

More complex observers may have their own memories: Stateful observers.
Stateful observers are expressed as code level through:
1. observer memory, attached to the node memory definition
2. computation of the observer output using node signals and observer memory
3. side-effect update of the observer memory, performed at each node step execution
STATEFUL OBSERVERS: EXPRESSING MEMORY

For the following contracts,

```plaintext
--@ ensures counter_spec(reset, active);
--@ ensures reset or pre(reset) => not active
node counter(reset: bool) returns (active: bool);
```

need of additional memories:

- **pre** cpt **for** counter_spec and
- **pre** reset **for** reset or pre(reset) => not active

Additional ghost fields:

```plaintext
struct counter_mem {
 struct counter_reg {
 _Bool __counter_1;
 _Bool __counter_2;
 /*@ ghost int cpt; int cpt_s; // pre cpt
 _Bool init1; _Bool init1_s; // initial state of cpt
 _Bool reset; _Bool reset_s; // pre reset
 _Bool init2; _Bool init2_s; // initial state of reset
 */
 } _reg;
};
```
Stateful observers as ACSL predicates

ACSL expression of the Lustre node `counter_spec` semantics.

```plaintext
/*@ predicate counter_spec
 (int reset, int active, struct counter_mem *self)=
 \let cond = ((self->_reg.cpt_s == 3) || reset);
 \let cpt = (self->_reg.init1_s?(0):
 ((cond?(0):((self->_reg.cpt_s + 1)))));
 (active == (cpt == 2)); */
```

ACSL expression of the second `ensures`.

```plaintext
/*@ predicate prop
 (int reset, int active, struct counter_mem *self)=
 (self->_reg.init2_s?(1):
 (((reset || self->_reg.reset_s) ==> (!active)))); */
```

Only `reads` memory. No update yet yet.
STATEFUL OBSERVERS SEMANTICS: UPDATE OF GHOST FIELDS

**Ghost code to update ghost fields**

```c
void counter_step (_Bool reset, _Bool (*active),
 struct counter_mem *self) {

 counter_reg _pre = self->_reg;
 _Bool a = _pre.__counter_2;
 _Bool b = !_pre.__counter_1;
 *active = (a && b);
 self->_reg.__counter_2 = a;
 self->_reg.__counter_1 = b;

 /*@ ghost _Bool cond; int cpt;
 cond = ((self->_reg.cpt == 3) || reset);
 if (self->_reg.init1 || cond) { cpt = 0; } else {
 cpt = (self->_reg.cpt + 1);
 }
}

self->_reg.init1_s = self->_reg.init1;
self->_reg.init1 = 0;
...
self->_reg.reset_s = self->_reg.reset;
self->_reg.reset = reset;
*/
return;
}
```
Stateful Observers: Summary

- New memory fields:
  ```c
 struct node_mem { struct node_reg {
 ... existing fields ...
 //@ ghost ghost_fields */
 } _reg;
 }
  ```

- Predicates to denote specification
  ```c
 //@ predicate node_spec(input, output, ext_memory) = ... */
  ```

- Function body: side effects in observer memories
  ```c
 void node_step (input, *output , *ext_memory) {
 ... existing code ...
 //@ ghost ghost_fields update */
 return; }
  ```

- Function contract
  ```c
 //@ ensures node_spec(input, *output, *ext_memory); */
 void node_step (input, *output , *ext_memory) { ... }
  ```
ISSUE #2: VERIFICATION WITH FRAMA-C
ACSL used to verify the code with respect to specification

Runtime evaluation: dynamic analysis

C code instrumented to evaluate the annotations at runtime. When applied to a test bench it evaluates that all tests satisfy the property.
⇒ E-ACSL plugin of Frama-C


Formal verification using weakest precondition (WP analysis)

Proofs performed at model levels using model-checking can be replayed at code/ACSL level.

k-induction proofs in Lustre ⇒ expression as WP objectives

Proving code, attach ACSL semantics to code

- Frama-C/WP is not able to discharge the PO:
  1. $P$ is not inductive over $T$
     (eg. $k$-induction, or need of additional invariants)
  2. function $N_{\text{step}}$ was optimized or too complex
Proving code, attach ACSL semantics to code

- Frama-C/WP is not able to discharge the PO:
  1. \( P \) is not inductive over \( T \)
     (eg. \( k \)-induction, or need of additional invariants)
  2. function \( \text{N\_step} \) was optimized or too complex

- Solution #2: we generate ACSL encoding of function semantics

  predicates

  \( \text{Init} \) for \( \text{counter\_init} \) and
  \( \text{Step} \) for \( \text{counter\_step} \)

We define the two additional ensure statements:

(i) \( \text{//@ensures Init(mem)} \)
    \( \text{void N\_init (mem* )} \)

(ii) \( \text{/*@ensures Step(s1,s2, in ,out)} \)
    \( \text{ensures node\_spec(input, *output, *ext\_memory); */} \)
    \( \text{void N\_step (mem1, mem2, in , out)} \)
Proving code, attach ACSL semantics to code

- Frama-C/WP is not able to discharge the PO:
  1. $P$ is not inductive over $T$
     (eg. $k$-induction, or need of additional invariants)
  2. function $N_{\text{step}}$ was optimized or too complex

- Solution #2: we generate ACSL encoding of function semantics
  predicates $\text{Init}$ for $\text{counter\_init}$ and
  $\text{Step}$ for $\text{counter\_step}$

We define the two additional ensure statements:

(i) //\@ensures Init(mem)
    void N_init (mem*)

(ii) /*\@ensures Step(s1,s2, in ,out)
     ensures node_spec(input, *output, *ext_memory); */
     void N_step (mem1, mem2, in , out)

Two main proof objectives:
1. Prove $\text{node\_spec}$ wrt $\text{Init}$ and $\text{Spec}$
   Was done with similar predicates at model level with the same SMT solvers
2. Prove that $N_{\text{step}}$ refines $\text{Spec}$
In case of optimized code, difficulties to prove

```c
//@ensures Step(s1,s2, in ,out)
void N_step (mem1, mem2, in , out)
```

Eg. limit the number of stack allocation through variable reuse ⇒ makes the WP relationship less tractable.

- variable liveness analysis
  - minimize the memory footprint wrt a given instruction scheduling
  - maintain shared sub-expressions

Additional statement local asserts are introduced to keep track of relationships

- (automatic) generation of supporting ACSL annotations
  - introduce simpler pointer-less struct
  - maintain relationship between live variables
  - ease the automatic proof of (i) and (ii)
SAFETY CONSTRUCTS ANALYSIS – SUMMARY

1. compilation of specifications (synchronous observers) as
   * ACSL predicates
   * ghost fields (stateful observers)
   * ghost code (side effects on observers memory)

2. compilation of models as ACSL predicates

3. additional statement level annotations for optimized code

4. proof with Frama-C/WP of
   * (k-)inductiveness on model and specification ACSL predicates
   * refinement between code and ACSL predicates

Current extensions include

- complete implementation of the approach
- extension to stateflow (hierarchical states automata)
- adapt the proof strategy at code level to the ones performed at model level
  * PDR proof as induction proof
  * k-induction
  * export of additional invariants
VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

- Simulink
- CocoSim
- Lustre
- LUSTRE-C
- C code
- frama-C
- WPE-ACSL
- Large use of Frama-C at C level:
  - generation of ACSL (predicates, axioms)
  - development of plugins
  - grammar extensions
  - proof strategies for PVS

High level properties (stability/robustness)
Synchronous observers
Counter-example traces
Zustre/PKind/Riny/SMT-AI
Test generation
WP E-ACSL
VISION: INTEGRATE FORMAL METHODS IN THE DEV. CYCLE

- Simulink
- CocoSim
- Lustre
- LUSTRE-C
- C code

High level properties (stability/robustness)
Synchronous observers
Counter-example traces

Zustre/PKind/Riny/SMT-AI
Test generation

WPE-ACSL

Large use of Frama-C at C level:
- generation of ACSL (predicates, axioms)
- development of plugins
- grammar extensions
- proof strategies for PVS

Thank you.
Any question?
Optimized code 1/2

Pointer-less structs

/* Struct definitions */
struct f_mem {struct f_reg {int __f_2; } _reg; struct _arrow_mem *ni_2; };
//@ ghost struct f_mem_pack {struct f_reg _reg; struct _arrow_mem_pack ni_2; };

Keeping track of live variables

```c
//@ assert \forall struct f_mem_pack mem1; \forall struct f_mem_pack mem2; \at(f_pack2(mem1, self), Pre) ==> f_pack0 (mem2, self) ==> trans_fA(x, mem1, mem2, *y);
*y = (x + 1);
//@ assert \forall struct f_mem_pack mem1; \forall struct f_mem_pack mem2; \at(f_pack2(mem1, self), Pre) ==> f_pack0 (mem2, self) ==> trans_fB(x, mem1, mem2, *y);
```

with

```c
/*@ predicate trans_fy(int x_in, struct f_mem_pack mem_in, struct f_mem_pack mem_out, int y_out) = (y_out == x_in + 1); */
/*@ predicate trans_fB(int x_in, struct f_mem_pack mem_in, struct f_mem_pack mem_out, int y_out) = trans_fA(x_in, mem_in, mem_out, y_out) && (clock_fy(x_in, mem_in, mem_out) ==> trans_fy(x_in, mem_in, mem_out, y_out)); */
```