
Deductive Verification in Frama-C and
SPARK2014: Past, Present and Future

Claude Marché (Inria & Université Paris-Saclay)

OSIS, Frama-C & SPARK day, May 30th, 2017

1 / 31



Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

2 / 31



Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

3 / 31



Around 1990

Deductive Verification
I Formal Specification of functional behaviors using contracts
I Generation of Verification Conditions
I Computer-Assisted Theorem Proving

I SPARK Examiner for Ada’83
I Univ. Southampton, Praxis, then Altran
I home-made VC generator, simplifier, checker

I CAVEAT, static analyzer for C code
I CEA
I home-made VC generator and solver

4 / 31



Around 2000

I The Why tool for deductive verification
I team ProVal (Inria & CNRS & Univ. Paris Sud)
I a ML-style programming language with contracts
I VC discharged using Coq

I then later with Simplify
I then with Alt-Ergo
I then with several others

I Why front-ends:
I for Java: Krakatoa

I annotations ' Java Modeling Language
I for C: Caduceus

I annotation language ' JML

5 / 31



2005-2010

I Frama-C
I CEA and ProVal
I ACSL language
I plug-in architecture to support various kind of analyses

I Jessie
I Deductive Verification plug-in
I Use Why as intermediate language
I Alias analysis using memory regions

6 / 31



2010-2014

I Why3, new generation of Why
I module system, rich standard library of theories
I region-based type system for alias control
I generic architecture to plug in back-end provers

I Jessie plug-in adapted to Why3
I WP Frama-C plug-in

I various memory models and aliasing conditions
I call provers through Why3

I SPARK 2014: SPARK new generation
I AdaCore - Altran
I Why3 as intermediate programming language
I Non-aliasing conditions to ease VC generation and proof
I call provers through Why3

7 / 31



Why3 ’ecosystem’ today

Why3

Interactive provers
Coq

Isabelle
PVS

SMT solvers
Alt-Ergo
CVC4
veriT
Z3
etc.

Other provers
E prover
Gappa
SPASS
Vampire
etc.

C programs

Frama-C

Ada programs

SPARK 2014

8 / 31



Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

9 / 31



Static versus Runtime Checking

Contracts can be used either
I for runtime assertion checking (RAC):

I assertions executed and checked valid during execution, tests
I for static verification (VC generation + theorem proving)

I code can be proved correct w.r.t. contracts

Example: Java Modeling Language
I JML RAC: turns assertions into regular Java code
I Static verification: ESC/Java, using solver Simplify

10 / 31



From JML to Krakatoa and ACSL

I JML was designed with RAC in mind
I Consequence: assertions are Java Boolean expressions
I Extensions to Java expressions: meant to be executable

I e.g. quantification must be bounded
(\forall int i; 0 <= i && i < a.length; P(i))

I Models for specifications can be designed using extra pure
classes

I methods need to be terminating
I they should not raise exceptions
I they should not have side-effects

11 / 31



Why3/Krakatoa/ACSL Specification Languages

I Specification language is classical first-order logic with
I types (polymorphism)
I equality, built-in arithmetic
I user-defined theories to design abstract models

I introducing new data-types, logic functions, predicates
I either defined or axiomatized

Specification language
I distinct from programming language
I adequate for use of external provers
I does not need to be executable

12 / 31



Example: sorting algorithms

/*@ requires \valid(a+(0..n-1));

@ assigns a[0..n-1];

@ ensures sorted(a,0,n);

@ ensures permut{Pre,Post}(a,0,n-1);

@*/

void sort(int *a, int n) {

13 / 31



Example: sorting algorithms

/*@ predicate sorted(int *a, integer l, integer h) =

@ \forall integer i j; l <= i <= j < h ==> a[i] <= a[j] ;

@*/

I Not executable a priori
I Could be executed if ranges of i and j are somehow

’computed’
I In JML, it should be written

(\forall int i; l <= i && i < h ;

(\forall int j; i <= j && j < h; a[i] <= a[j]))) ;

I Notice also the type integer for mathematical, unbounded
integers

14 / 31



Example: sorting algorithms
/*@ predicate swap{L1,L2}(int *a, integer i, integer j) =

@ \at(a[i],L1) == \at(a[j],L2) && \at(a[j],L1) == \at(a[i],L2) &&

@ \forall integer k; k != i && k != j ==> \at(a[k],L1) == \at(a[k],L2);

@

@ inductive permut{L1,L2}(int *a, integer l, integer h) {

@ case permut_refl{L}:

@ \forall int *a, integer l h; permut{L,L}(a, l, h) ;

@ case permut_sym{L1,L2}:

@ \forall int *a, integer l h;

@ permut{L1,L2}(a, l, h) ==> permut{L2,L1}(a, l, h) ;

@ case permut_trans{L1,L2,L3}:

@ \forall int *a, integer l h;

@ permut{L1,L2}(a, l, h) && permut{L2,L3}(a, l, h) ==> permut{L1,L3}(a, l, h);

@ case permut_swap{L1,L2}:

@ \forall int *a, integer l h i j;

@ l <= i < h && l <= j < h && swap{L1,L2}(a, i, j) ==> permut{L1,L2}(a, l, h) ;

@ }

@*/

Important points
I Why3/ACSL spec. lang. significantly diverged from JML
I Spec. language can be more powerful when RAC is not

intended
I Yet, RAC may be useful to complement proofs

15 / 31



Design of E-ACSL
E-ACSL:

I Need for run-time checking in Frama-C
I Executable subset of ACSL
I assertions turned into regular C code:

I mathematical integers handled using GMP
I built-in memory-related predicates (\valid, \initialized)

handled using a specific memory management library
I axiomatic models not supported

ACSL and E-ACSL have slightly different semantics
Undefined expressions:

assert { 1/0 == 1/0 }

assert { *p == *p } // when p == NULL

I valid in ACSL (logic of total functions)
I raise errors in E-ACSL

Note: similar differences between JML RAC and ESC/Java
16 / 31



Ada contracts and SPARK 2014

Ada 2012:
I add contracts as part of regular Ada
I assertions are Boolean expressions
I Expression-functions can be used in assertions
I Bounded quantification now part of Ada expressions:

for all I in <range> => P(I)

I Ada compiler generates corresponding run-time checks for pre-
and post-conditions

17 / 31



Static Verification in SPARK 2014

Important design choice
Semantics of annotations is fixed by the execution semantics

I VC are generated for well-definedness: 1/0, array index in
bounds, etc.

I abstract models, unbounded integers:
I not possible since it would forbids RAC
I indeed possible via an SPARK-specific extension

(“external axiomatization”)

18 / 31



Summary
Why3 Frama-C SPARK

ACSL E-ACSL 2014
Executable contracts no no yes yes
Only total functions in logic yes yes no1 no2

Unbounded integers in logic yes yes yes no3

Unbounded quantification yes yes no no
Ghost code yes yes4 yes4 yes

1 run-time checks for well-definedness are generated
2 run-time checks and VCs for well-definedness are generated
3 possible through external axiomatization
4 restrictions: only executable C code, and non-interference
with regular code is not checked

(See [Kosmatov et al., ISOLA’2016] for more details)

19 / 31



Advertisement: be Afraid of no Ghost!
I ghost variable: added to the regular, for the purpose of formal

specification
I ghost code, subprograms: extra code added to operate on

ghost variables

Ghost code
Commonly used in most non-trivial examples

I keeping track of previous values of variables
I attach some abstract state (a kind of data refinement)
I etc.

Example: a sorting algorithm may return a ghost array of indices,
giving the permutation of elements done by sorting.
procedure sort(a:array) returns (ghost p:array of integer)

assigns a

ensures \forall integer i; a[i]=\old(a)[p[i]]

20 / 31



Ghost code in Why3, Frama-C and SPARK 2014

Ghost code is possible in all of them

Pros
I Very useful in practice/for complex cases
I A kind of ’executable’ specification
I Compatible with both static and run-time checking

Cons
Tools should check non-interference between ghost code and
regular code

I Why3, SPARK 2014 do it thanks to strong non-aliasing policy
I Frama-C doesn’t do it yet

21 / 31



Bonus: Lemma Functions

Proving theorems using ghost code!

ghost f (x1 : τ1, . . . , xn : τn) returns r : τ
requires Pre
ensures Post

if this function has no side-effect and is proved terminating then it
is a constructive proof of

∀x1, . . . , xn,∃r ,Pre ⇒ Post

Examples:
I proving lemmas by induction (with automated provers only!)
I proving existential properties

Note: similar feature exists in other environments, e.g. Dafny

22 / 31



Outline

Why this joint Frama-C and SPARK day?
common history of Frama-C and SPARK

ACSL and SPARK 2014: how they differ?
static versus runtime checking
specification languages: design choices
advertisement: ghost code

Recent and Future Trends
bit-wise, floating-point computations
proof debugging, counterexamples
interactively discharging VCs

23 / 31



The ProofInUse project

Joint Lab
between Inria
and AdaCore

Main Goal
Spread the use of formal proof in SPARK users’ community

I Help for “debugging” when proof fails
I Counterexamples
I Simple interactive prover

I Enlarge language support
I Bit-wise operators
I Floating-point arithmetic

I Increase automation
I Better exploit SMT solvers

24 / 31



Bit-Wise Operators

I New Why3 theory for bit-wise operations
I Use of SMT-LIB bit-vector theory (CVC4, Z3)
I Case study: BitWalker

I Original C code by Siemens, ITEA 2 project OpenETCS
I Rewritten by Jens Gerlach for Frama-C/WP

I Formal specification in ACSL
I proved with Alt-Ergo+Coq

I Version in SPARK 2014
I proved with Alt-Ergo+CVC4+Z3

See [Fumex et al., NFM’2016]

25 / 31



Counterexample Generation in SPARK

26 / 31



Counterexample Generation in SPARK

I Instrumentation of VC generation for tracing variables
I Query a model when SMT solver answers ’SAT’
I Reinterpret the model in the source code
I Display counterexample in the graphical interface

See [Hauzar et al., SEFM’2016]

27 / 31



Proof Debugging (Frama-C plug-in StaDy)
C code + annotations

Transformation A
(non-compliance)

Transformation B
(contract weakness)

C code

Dynamic Symbolic Execution

Report on annotations failures

I Non-compliance: code does not satisfy annotations
I subcontract weakness:

contracts of called functions, loop invariants, not powerful
enough to prove the annotations correct

See [Petiot et al., TAP’2016]
28 / 31



Discharging VCs interactively

Goal
(hopefully simple) user interactions to assist automatic provers
when proof fails

I On-going work for SPARK within ProofInUse joint lab
I Recently available in Frama-C/WP

See the talk by Loïc Correnson today!

29 / 31



Floating-Point Computations

Goals
I better handling Floating-Point in specifications and VC

generation
I improve success rate of automated provers

I SOPRANO project
I involves both Frama-C and SPARK developers
I solvers Alt-Ergo FP and COLIBRI

I recent progress in SPARK
I support for FP in SPARK 17.1, using

I CodePeer interval analysis
I FP support in prover Z3

I on-going: use of Alt-Ergo FP and COLIBRI

See the talk by François Bobot today!

30 / 31



Conclusions

I Frama-C and SPARK share not only a common history but
I A will to transfer academic research to the industry of critical

software
I Common challenges, approaches, technical solutions

OSIS Frama-C and SPARK day
Enjoy the talks, exchange ideas during breaks!

31 / 31


	Why this joint Frama-C and SPARK day?
	common history of Frama-C and SPARK

	ACSL and SPARK 2014: how they differ?
	static versus runtime checking
	specification languages: design choices
	advertisement: ghost code

	Recent and Future Trends
	bit-wise, floating-point computations
	proof debugging, counterexamples
	interactively discharging VCs


