
Institut Supérieur de l’Aéronautique et de l’Espace

From learning examples to High-Integrity Middleware
Frama-C and SPARK day 2017

Christophe Garion and Jérôme Hugues
ISAE-SUPAERO – DISC

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 1/ 20



Outline

1 The PolyORB-HI runtime

2 SPARK by Example

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 2/ 20



AADL, Ocarina and PolyORB-HI

AADL is an architectural design language
aimed at embedded systems.
It allows to define software and hardware
components.

Ocarina is an AADL model processor
targetting both C RTOS or Ada via native
or Ravenscar targets

C source Ada source
PolyORB-HI is a high-integrity runtime with
a C and an Ada implementation. runtime

c1 c2

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 3/ 20

http://www.aadl.info/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/


AADL, Ocarina and PolyORB-HI

AADL is an architectural design language
aimed at embedded systems.
It allows to define software and hardware
components.

Ocarina is an AADL model processor
targetting both C RTOS or Ada via native
or Ravenscar targets

C source Ada source

PolyORB-HI is a high-integrity runtime with
a C and an Ada implementation. runtime

c1 c2

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 3/ 20

http://www.aadl.info/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/


AADL, Ocarina and PolyORB-HI

AADL is an architectural design language
aimed at embedded systems.
It allows to define software and hardware
components.

Ocarina is an AADL model processor
targetting both C RTOS or Ada via native
or Ravenscar targets

C source Ada source
PolyORB-HI is a high-integrity runtime with
a C and an Ada implementation. runtime

c1 c2
Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 3/ 20

http://www.aadl.info/
http://www.openaadl.org/ocarina.html
http://www.openaadl.org/


PolyORB-HI services

Services offered by PolyORB-HI:
types and time management
marshalling and unmarshalling facilities
messages management
a global queue to exchange messages between components
patterns for periodic, sporadic tasks etc.

• • • … • •

c1 queue c3 queue

c4

marshall

c3

unmarshall

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 4/ 20



PolyORB-HI proof

Proof of both runtimes (C and Ada versions):
absence of runtime errors
contract correctness
using Frama-C for C and SPARK2014 for Ada

But:
the runtimes are already written (by good C and Ada programmers)
we are adding the contracts without retroengineering the code (at
least we are trying…)

Moreover, some parts of the contracts depend on the AADL model:
number of tasks, etc.

å how to fix these numbers to be representative?

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 5/ 20



PolyORB-HI proof

Proof of both runtimes (C and Ada versions):
absence of runtime errors
contract correctness
using Frama-C for C and SPARK2014 for Ada

But:
the runtimes are already written (by good C and Ada programmers)
we are adding the contracts without retroengineering the code (at
least we are trying…)

Moreover, some parts of the contracts depend on the AADL model:
number of tasks, etc.

å how to fix these numbers to be representative?

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 5/ 20



PolyORB-HI proof

Proof of both runtimes (C and Ada versions):
absence of runtime errors
contract correctness
using Frama-C for C and SPARK2014 for Ada

But:
the runtimes are already written (by good C and Ada programmers)
we are adding the contracts without retroengineering the code (at
least we are trying…)

Moreover, some parts of the contracts depend on the AADL model:
number of tasks, etc.

å how to fix these numbers to be representative?

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 5/ 20



Status of PolyORB-HI/Ada

PolyORB-HI/Ada leverages Ada 2012 High-Integrity profile
arrays as first class citizen → no pointers!
sizes of all messages known from the model → all arrays are
statically bounded, no dynamic allocation!
generics → adaptation to user-defined types made easy!
concurrency built in SPARK 2014, using Ravenscar → deterministic
and provable tasking!

Annotations generated to ensure compliance with SPARK language,
proper initialization of all elements and absence of run-time errors, and
annotation of key integrity property of core elements (message queues
and buffer management), ensuring a Gold level !

More on https://github.com/OpenAADL/polyorb-hi-ada (check the
spark2014 branch).

PS: this slide has been writing by a Ada/SPARK enthusiast ,

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 6/ 20

https://github.com/OpenAADL/polyorb-hi-ada


Status of PolyORB-HI/C

More difficult for PolyORB-HI/C:
good C programmers have implemented the runtime, so they use
void * pointers, unions etc.
absence of runtime errors can be easily discharged using correct
preconditions (see previous remark)
functional correctness is more difficult:

we have found one (minor) bug!
proof implies some major refactoring of code (for instance unions)
void * pointers are problematic
concurrency problems between tasks have not been tackled yet…
some automatic proofs are very long

More on https://github.com/OpenAADL/polyorb-hi-c (check the
various acsl branches).

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 7/ 20

https://github.com/OpenAADL/polyorb-hi-c


Outline

1 The PolyORB-HI runtime

2 SPARK by Example

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 8/ 20



Why SPARK by Example?

We want our students to work on the PolyORB-HI projects, but time
dedicated to research projects is short at ISAE-SUPAERO (roughly 2
months).

Good complete references are available for both languages:

ACSL Frama-C
implementation
Frama-C user Manual
WP manual

SPARK 2014 User’s Guide
Building High Integrity
Applications with SPARK

We offer to 3rd year students attending the Critical Embedded Systems
track a course on formal methods in which they have to develop a small
string library.

å they use “ACSL by Example” a lot to learn ACSL through classical
algorithms!
See https://gitlab.fokus.fraunhofer.de/verification/
open-acslbyexample

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 9/ 20

https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample


Why SPARK by Example?

We want our students to work on the PolyORB-HI projects, but time
dedicated to research projects is short at ISAE-SUPAERO (roughly 2
months).

Good complete references are available for both languages:

ACSL Frama-C
implementation
Frama-C user Manual
WP manual

SPARK 2014 User’s Guide
Building High Integrity
Applications with SPARK

We offer to 3rd year students attending the Critical Embedded Systems
track a course on formal methods in which they have to develop a small
string library.

å they use “ACSL by Example” a lot to learn ACSL through classical
algorithms!
See https://gitlab.fokus.fraunhofer.de/verification/
open-acslbyexample

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 9/ 20

https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample


SPARK by Example: the contract

The idea:
provide a booklet in the spirit of “ACSL by Example” in which
students can find classical algorithms and learn SPARK “hands-on”
start from each function presented in “ACSL by Example”
write a SPARK version of this function, first by translating the C
function signature and then by trying to “SPARKify” the function
compare both approaches

A good guinea pig: me!
minimal knowledge of Ada
rather good knowledge of C and Frama-C
will do/have done all possible mistakes and clumsiness in SPARK

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 10/ 20



SPARK by Example: an example

The Equal and the Mismatch functions are defined as follows:
Equal verifies if two arrays are equal
Mismatch returns the first index at which two arrays differ

Let us look at their specification and implementation in ACSL by
example.

First, a predicate is specified to define what means “array a and array b
are equal”:

predicate
EqualRanges{K,L}(value_type* a, integer m, integer n,

value_type* b, integer p) =
\let s = n - m;
\forall integer i; 0 <= i < s ==> \at(a[m+i],K) == \at(b[p+i],L);

Several overloaded versions of the predicate are also defined.

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 11/ 20



C: Mismatch specification

Mismatch can be easily specified using EqualRanges:

requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..n-1));

assigns \nothing;

behavior all_equal:
assumes EqualRanges{Here,Here}(a, n, b);
ensures result: \result == n;

behavior some_not_equal:
assumes !EqualRanges{Here,Here}(a, n, b);
ensures bound: 0 <= \result < n;
ensures result: a[\result] != b[\result];
ensures first: EqualRanges{Here,Here}(a, \result, b);

complete behaviors;
disjoint behaviors;

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 12/ 20



C: mismatch implementation

Finally, Mismatch is implemented straightforwardly:

size_type
mismatch(const value_type* a, size_type n, const value_type* b)
{
/*@
loop invariant bound: 0 <= i <= n;
loop invariant equal: EqualRanges{Here,Here}(a, i, b);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++) {
if (a[i] != b[i]) {
return i;

}
}

return n;
}

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 13/ 20



Defining predicates with SPARK
To define predicates with SPARK, ghost functions and expressions can be
used:

function Equal_Ranges (A : T_Arr; Offset_A : Natural; Size_A : Natural;
B : T_Arr; Offset_B : Natural)

return Boolean is
(for all I in 0 .. Size_A - Offset_A - 1 =>

A(A'First + I) = B(B'First + Offset_B + I));

but as such functions are also verified by gnatprove, preconditions must
be added to prove that no overflow or index check may fail:

function Equal_Ranges (A : T_Arr; Offset_A : Natural; Size_A : Natural;
B : T_Arr; Offset_B : Natural) return Boolean is

(for all I in 0 .. Size_A - Offset_A - 1 =>
A(A'First + Offset_A + I) = B(B'First + Offset_B + I))

with Pre => Size_A <= A'Length and then
Offset_A < A'Length and then
B'Length >= Size_A and then
Offset_B <= B'Length - Size_A + Offset_A and then
Offset_B < B'Length;



Defining predicates with SPARK
Easier: use equality on arrays with no limited types provided by Ada:

function Equal_Ranges (A : T_Arr; B : T_Arr) return Boolean is
(A = B);

Consequence: no predicate is needed, simply use = or a simplified version
of Equal_Ranges with a slice (with SPARK Pro 17):

function Equal_Ranges (A : T_Arr; B : T_Arr; Offset : Natural)
return Boolean is
(A(A'First .. A'First + Offset) = B(B'First .. B'First + Offset))

with
Pre => Offset < A'Length and then

Offset < B'Length;



SPARK: specifying Mismatch

Mismatch is specified with contract cases, completeness and disjointness
is automatically checked:

function Mismatch (A : T_Arr; B : T_Arr) return Natural with
Pre => A'Length <= B'Length,
Contract_Cases => (
A = B (B'First .. B'First - 1 + A'Length) =>
Mismatch'Result = A'Length,

others =>
(A (A'First + Mismatch'Result) /= B (B'First + Mismatch'Result))
and then
(if (Mismatch'Result /= 0) then
Equal_Ranges.Equal_Ranges(A, B, Mismatch'Result - 1)));

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 15/ 20



SPARK: implementing Mismatch

Mismatch is classically implemented. Notice that we do not need to
specify an invariant for variable bounds or frame condition:

function Mismatch (A : T_Arr; B : T_Arr) return Natural is
begin

for I in 0 .. A'Length - 1 loop
if (A (A'First + I) /= B (B'First + I)) then

return I;
end if;

pragma Loop_Invariant
(Equal_Ranges.Equal_Ranges (A, B, I));

pragma Loop_Variant
(Increases => I);

end loop;

return A'Length;
end Mismatch;

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 16/ 20



VC verifications for Mismatch

Some results for Mismatch:

Frama-C Silicon
postconditions 4 AE
loop invariants 4 AE
loop variant 2 AE + Qed
assigns 5 Qed
behaviors 2 Qed
RTE 2 AE

SPARK Pro 17
contract cases 2
loop invariant 2
loop variant 1
preconditions 2

RTE 31

for functional correctness proof, time is quasi equivalent
overflow, index and ranges checks are numerous in SPARK due to
the language
“extra specifications” in Frama-C are easily discharged by Qed

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 17/ 20



Writing Equal using Mismatch

In ACSL by Example, Equal is written using Mismatch. We can use
Mismatch as an implementation or a specification:

function Direct_Equal (A : T_Arr; B : T_Arr) return Boolean is
(A = B (B'First .. B'First - 1 + A'Length))

with
Pre => A'Length <= B'Length,
Post => (Direct_Equal'Result =

(Mismatch.Mismatch (A, B) = A'Length));

function Equal (A : T_Arr; B : T_Arr) return Boolean is
(Mismatch.Mismatch (A, B) = A'Length)

with
Pre => A'Length <= B'Length,
Post => (Equal'Result =

(A = B (B'First .. B'First - 1 + A'Length)));

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 18/ 20



Adding Option

An « option » type can be easily defined to avoid using length of the first
array when the two arrays mismatch:

type Option is record
Exists : Boolean;
Value : Natural;

end record;

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 19/ 20



Adding Option

Specification is straightforward:

function Mismatch (A : T_Arr; B : T_Arr) return Option with
Pre => A'Length <= B'Length,
Contract_Cases => (
A = B (B'First .. B'First - 1 + A'Length) =>
not Mismatch'Result.Exists,

others =>
Mismatch'Result.Exists and then
(A (A'First + Mismatch'Result.Value) /=
B (B'First + Mismatch'Result.Value))

and then
(if (Mismatch'Result.Value /= 0) then
Equal_Ranges.Equal_Ranges(A, B, Mismatch'Result.Value - 1)));

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 19/ 20



Adding Option

Implementation is immediate:

function Mismatch (A : T_Arr; B : T_Arr) return Option is
Result : Option := (Exists => False, Value => 0);

begin
for I in 0 .. A'Length - 1 loop

if (A (A'First + I) /= B (B'First + I)) then
Result.Exists := True;
Result.Value := I;

return Result;
end if;

pragma Loop_Invariant
(not Result.Exists);

pragma Loop_Invariant
(Equal_Ranges.Equal_Ranges (A, B, I));

pragma Loop_Variant
(Increases => I);

end loop;

return Result;
end Mismatch;

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 19/ 20



Conclusion on SPARK by Example

What has been done:
Jérôme has already tackled first chapters from ACSL by Example
11.1, but in “C style”
chapter on non-mutating algorithms is OK, but needs SPARK Pro
2017 as it uses array slices

What remains to do:
“SPARKify” the current specifications/implementations
add the new implementations from ACSL by Example 14.1
do not hesitate to contribute to
https://github.com/tofgarion/spark_examples (GPL2016 or
PRO2017 branches)

Christophe Garion and Jérôme Hugues Frama-C/SPARK 17 20/ 20

https://github.com/tofgarion/spark_examples

	The PolyORB-HI runtime
	SPARK by Example

