Automatic Software Verification of
BSPlib-programs:
Replicated Synchronization

Arvid Jakobsson

2017-05-31

Supervisors: G. Hains, W. Suijlen, F. Loulergue, F. Dabrowski, W.

Bousdira
LIEe QD)
HUAVVvEI

Context

vV v vV

Huawei: World-leading provider of ICT-solutions
Huawei has an increasing need for embedded parallel software
Successful software must be safe and efficient

Formal method gives mathematical guarantees of safety and
efficiency

Université d’Orléans (Laboratoire d'Informatique Fondamental):
Strong research focus on formal methods and parallel computing

Overview of AVSBSP

» Goal of the project: develop a basis for efficient and secure,
statically verified BSPlib programming

» Bulk Synchronous Parallel (BSP): simple but powerful model for
parallel programming,

» BSPIib: a library for BSP-programming in C

Overview of AVSBSP

» Main track: Developing automatic tools for verification of BSPIlib
programs based on formal methods.
» Correct synchronization
» Correct communication
> Correct API usage
= Automatic verification of safety

» Side-track: Automatic Cost Analysis

» Automatic BSP cost formula derivation
= Automatic verification of performance

Main-track: Verification

» Main track: Developing automatic tools for verification of BSPIib
programs based on formal methods.
» Correct synchronization
» Correct communication
> Correct API usage
= Automatic verification of safety

Motivating example (1)

» Long scientific calculations on cluster in parallel.
» But come Monday: calculation crashed after 10 hours :(
» What went wrong? Let's look at the code!

Motivating example (2)

» Single Program, Multiple data: same program c is run in parallel on
p processes:

clpid :==0] || c[pid :=1] | ... || c[pid :==p—1]

Motivating example (2)

» Single Program, Multiple data: same program c is run in parallel on
p processes:

clpid :==0] || c[pid :=1] | ... || c[pid :==p—1]

doui).lt.ax=00
for (int i =0; i< 100; ++i) {
f(x);
/o
}

Figure: Parallel SPMD program: lterative calculation

Motivating example (2)

double t0 = bsp_time();
double x = 0.0;

i =0; i < 100; ++i) {
f(x

for (int
):
double tl1 = bsp_ time();
if (t1 - t0 > 1.0) {
print_progress(x);
t0 = tl;
}
3

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

void print_ progress(double x) {
int p = bsp_nprocs();
// Print progress for process 0, 1, 2,
for (int s = 0; s < p; ++p) {
if (bsp_pid() = s) {
printf("progressy(%d): %g\n", s, x);
}

bsp _sync();

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time();
double x = 0.0;

|:O|<100;-{—|—i){
f(x

for (int
)i
double tl1 = bsp_ time();
if (t1 - t0 > 1.0) {
print_progress(x); // synchronizing
t0 = tl;
}
b

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time();

double x
for (int

=0§)
|:0|<100;-{—|—i){
f(x);

double tl1 = bsp_ time();

if (t1-t0>1.0) { // Processes agree on this condition?
print _progress(x); // synchronizing.
t0 = tl;

Figure: Buggy parallel SPMD program: Processes agree?

Motivating example (3): Conclusion

» Source of bug: Program hangs since synchronization choice depends
on a value local to each process (bsp_time()).

» Possible solution: To synchronize or not must only depend on
conditions with the same value on all processes.

» Goal: Enforce solution statically.

Background: Bulk synchronous parallel (1)

» Bulk synchronous parallel (BSP): model of parallel computing

» BSP computation: sequence of super-steps executed by a fixed
number of p processes.
» A super-step is composed of:

1. Local computation by each process

2. Communication between processes

3. A synchronization barrier. Go back to Step 1 or terminate.
Asynchronous computations Communications Next superstep

local computation 0

local computation 1

local computation 2

local computation 3

Figure: A BSP superstep

Background: Bulk synchronous parallel (2)

> Invented in the 80’s by Leslie Valiant. Several implementations,
notably: BSPIlib, BSML, most linear algebra packages. ..

» Domain specific languages such as Pregel and MapReduce embody
BSP principles.
» Benefits of BSP compared to other models of parallel computation:

» Deadlock and data race free
> Simple but realistic cost model
> Simplifies algorithm design

Background: BSPlib

v

BSPIib: library and interface specification for BSP in C.
BSPIlib follows the Single Program Multiple Data-model (SPMD).
Small set of primitives (20):

v

v

> bsp_begin, bsp_end, bsp_pid, bsp_nprocs, bsp_get, bsp_put,
bsp_sync, ...

v

Several implementations exists: The Oxford BSP Toolset, Paderborn
University BSP, MulticoreBSP, Epiphany BSP. ..

BSPlite

» Toy-language “BSPlite": WHILE-language with parallel primitives
(nprocs, pid and sync).

» Grammar of BSPlite:
expr > e nprocs | pid | x| n|et+ele—e|exe
bexpr > b = true|false|e<e|e=e|borb|bandb]|!b

ecmd > ¢ = x:=e|skip|sync]|c;c|if bthencelsecend
| while bdo cend

> pid, returns local process id from P = {0...p — 1}: it allows
processes with different id to evaluate the same program differently.

BSPlite local semantics

» Local semantics for local computation in each process:

-l iemd x X - TxX
>=X—=>N
T = {0k} U {Wait(c) | c € cmd}

» (c,0) = (t,o’) denotes one step of local-computation with
termination state t by process with id /.

» Local semantics are standard (big-step, operational), except sync
which stops local computation and returns the rest of the program
as a continuation.

BSPlite global semantics

» Global semantics moves the computation forward globally from one
super-step to the next when all p local processes has completed:

— 1 emd? x £P x (ZPU{Q})

» Global computation either:
1. terminates correctly: (C, E) — E’
2. synchronizes incorrectly: (C,E) — Q

» BSP meaning of program c in a Single Program Multiple Data
(SPMD) context: ([c]icp, E) — E’.

BSPlite example programs
Buggy program from the introduction

Cnok = [I := 0]
[X := pid]?;
while [I < 100]° do
[sync];
if [X = 0]° then
[sync]®
else
[skip]7
[end];
[T:=1+1]?

end

Correct program

Cok =[I:= 0]1;
while [I < 100]? do
[sync]®;
[T:=1+1]*

end

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0 Proc.1 Cnok
o o
[I:=0]%
[X := pid]?;
while [I < 100]® do
Wait(c;), 0 Wait(cy), 0? [sync]*;
if [X = 0]° then
[syncl®
else
[skip]”
[end];
[[:=1+1]®
end

(Cnok, o) =0 (Wait(cs),03) & (Crok, o) —* (Wait(cs), o))

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0 Proc.1 Chok
[I:=0]%
[X := pid]?;
while [I < 100]® do
Wait(c,), o} [sync]*;
if [X = 0]° then
Wait(cs), 09 [sync]®
else
[skip]’
[end];
[I:=1+1]8
end

(C4,0'8> -0 (Wait(Ce),U(?) & <C4,0'(1)> -1 <Wait(C4),0'%>

BSPlite example programs
Execution of ¢,ox with p =2

Proc.0 Proc.1

Wait(c4),a(1) Wait(c;;),af

(Ce, 0’8> —>0 (Wait(q), 0'(1)>

&

Chok
[I:=0]%
[X := pid]?;
while [I < 100]® do
[sync]*;
if [X = 0]° then
[sync]®
else
[skip]’
[end];
[I:=1+1]8
end

(ca,o1) = (Wait(cs), 02)

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0 Proc.1 Chok
[I:=0]%
[X := pid]?;
while [I < 100]® do
Wait(c,), 03 [sync]*;
if [X = 0]° then
Wait(cs), 03 [sync]®
else
[skip]’
[end];
[I:=1+1]8
end

(C4,0'é> -0 (Wait(Ce),O'(l)> & <C4,0'%> -1 <Wait(C4),0'?>

BSPlite example programs
Execution of ¢,ox with p =2

Proc.0 Proc.1

Wait(c4)7a(2, Wait(c4),a‘1‘

(Ce, O'é> —>0 (Wait(q), 0'(2)>

&

Chok
[I:=0]%
[X := pid]?;
while [I < 100]® do
[sync]*;
if [X = 0]° then
[sync]®
else
[skip]’
[end];
[I:=1+1]8
end

(ca,03) =1 (Wait(cs), o7)

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0

Proc.1

Chok
[I:=0]%
(X := pid]?;
while [I < 100]® do
[sync]®;
if [X = 0]° then
[sync]®
else
[skip]’
[end];
[I:=1+1]®

end

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0

Wait(cs), o3*

Proc.1

Wait(c,), 07°

Cnok
[I:=0]
[X := pid]?;
while [I < 100]® do
[sync]*;
if [X = 0]° then
[sync]®
else
[skip]”
[end];
[I:=1+1]

end

BSPlite example programs
Execution of ¢,ox with p =2

Proc.0 Proc.1

Wait(cs), 03°

Ok

<C4,0'34> -0 (Wait(C6)70'34> &

Cnok
[1:=0]%
[X := pid]?;
while [I < 100]® do
[sync]*;
if [X = 0]° then
[sync]®
else
[skip]’
[end];
[T:=1+1)®
end

(ca,09°) = (Ok, 55%)

BSPlite example programs

Execution of ¢,ox with p =2

Proc.0 Proc.1 Chok
[I:=0]%
[X := pid]?;
while [I < 100]® do
[sync]*;
if [X = 0]° then
Wait(cs), 03° [sync]®
else
[skip]’
[end];
[I:=1+1]®
Ok end

Wait # Ok: incoherent termination states of processor 0 and 1.
Computation cannot continue: a synchronization error.

BSPlite example programs

Execution of ¢, with p =2

Proc.0 Proc.1 Chok
o o
while [I < 100]* do
[sync]?;
[T:=1+1
end

(Cok, o) =0 (Wait(cz),0°) & (cox, o) = (Wait(c2), o)

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Chok

while [I < 100]* do
Wait(c,),0° Wait(cp), 0° [sync]?;
[T:=1+1
end

(c2,0%) =% (Wait(c), o) & (c2,0%) =1 (Wait(cp), o)

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Chok

while [I < 100]* do
Wait(c,), 0! Wait(cp), o* [sync]?;
[T:=1+1
end

(c2,0t) =0 (Wait(c),0%) & (c2,0%) =1 (Wait(cp),0?)

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Chok

while [I < 100]* do
Wait(c,), 02 Wait(cp), 02 [sync]?;
[T:=1+1
end

(c2,02) =0 (Wait(c),03) & (c2,0%) =1 (Wait(c), o)

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Chok

while [I < 100]* do
[sync]?;
[T:=1+1
end

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Crok

while [I < 100]' do
Wait(c;),0%° Wait(c,), 0 [sync]?;
[T:=1+1]
end

BSPlite example programs

Execution of ¢, with p =2
Proc.0 Proc.1 Chok

while [I < 100]* do
[sync]?;
[1:=1+1
Ok Ok end

(c2,0%%) =0 (0k,53%%) & (c2,0%%) =1 (Ok,o100)

BSPlite example programs

Execution of c,, with p =2
Proc.0 Proc.1 Chok

while [I < 100]! do
[sync]?;
[T:=1+1
Ok Ok end

Ok = Ok: coherent termination states. Global computation is finished.

Problem formulation

» A program c is synchronization error free, if
/HE, <[C]i€]P’a E> — Q

» Goal: guarantee that BSPIib programs are synchronization error free.

> Cox synchronization error free, cpok is not.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

» Sufficient but not necessary condition for correct synchronization.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

» Sufficient but not necessary condition for correct synchronization.
> Replicated synchronization: statically verified condition for having
textually aligned synchronization.

» Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

Replicated synchronization

» Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

» Sufficient but not necessary condition for correct synchronization.

> Replicated synchronization: statically verified condition for having
textually aligned synchronization.

» Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

» A variable is pid-independent when it has no data- nor
control-dependency on pid.

» Pid-independent variables goes through the same series of values on
all processes at textually aligned statements.

BSPlite example programs
Buggy program from the introduction

Cnok = [I := 0]
[X := pid]?;
while [I < 100]° do
[sync];
if [X = 0]° then
[sync]®
else
[skip]7
[end];
[T:=1+1]?

end

Correct program

Cok =[I:= 0]1;
while [I < 100]? do
[sync]®;
[T:=1+1]*

end

Replicated synchronization: Good software engineering
practice

» Replicate synchronization codifies good parallel software engineering
practices

» The condition is simple to understand

» Makes parallel code easier to understand

» Majority programs we have surveyed are implicitly written in this
style

» Our analysis statically verifies that BSPlib code meets this condition,
and so is synchronization error free

Statical analysis for finding pid-independent variables

» Reformulation of type system of Barrier Inference [Aiken & Gay '98]
as a data-flow analysis

» Stronger requirements on the analyzed program: no synchronization
in branches where guard-expression is not pid-independent.

» |dea: find variables and program locations which does not have a
data- or control-dependency on pid

» The abstract state in the data-flow analysis for each program
location contains:
1. set of variables statically guaranteed to be pid-independent at that
point
2. pid-independence of each guard-expression in which the point is
nested.

Statically verifying "Replicated synchronization"

» After data-flow analysis, simple to verify that a program has
replicated synchronization: all guard-conditions for if- and
while-statements which contains sync is pid-independent:

RS(c) = N [sync] € ¢’ vV (FV(b) C PI(I) A pid & b)

(I,b,c")€guards(c)

Implementing and evaluating “Replicated synchronization”

v

Implemented as Frama-C plugin in ~1200 lines of OCaml
Uses the data-flow functor of Frama-C.

v

v

Implementation also handles:

> Interprocedurality
> Pointers, structures and arrays (using conservative assumption)

Limitations:

v

» Unstructured control flow (gotos, switch), and structures which are
normalized to gotos (early return, continue, etc) are not supported.
> Pointers, structures and arrays are never treated as pid-independent.

Evaluating "Replicated synchronization”

» Evaluation on 20 BSPIib programs: public and Huawei-developed
» Minor modifications needed:

> Rewriting switch-statements and early returns
» Forcing command-line arguments pid-independent.

» Synchronization of all but three is verified

» Found same bug in two programs: synchronization depending on
global variables

» One program not handled: synchronization depends on the result of
a global reduction

Evaluation result

Program Result Reason LOC
BSPedupack/bspbench.c Safe 198
BSPedupack/bspfft test.c Safe 165
BSPedupack/bspinprod.c Safe 115
BSPedupack/bsplu_ test.c Safe 147
BSPedupack/bspmv _ test.c Safe 625
Huawei/SDN_BSP 1.c Safe 1580
AlexG/as02a/assess.c Safe 573
AlexG/bp03v2/brdmain.c Unsafe Uninitialized variable 342
AlexG/bp03v2/ppfmain.c Safe 336
AlexG/mult03v6/mulmain.c Safe 422
AlexG/prdx14v06/prmain.c Unsafe Uninitialized variable 320
OxfBSPlib/array get.c Safe 85
OxfBSPlib/array put.c Safe 85
OxfBSPIlib/helloworld.c Safe 10
OxfBSPlib/helloworld _init.c Safe 25
OxfBSPlib/helloworld _seq.c Safe 16
OxfBSPlib/reverse.c Safe 57
OxfBSPIlib/sparse.c Safe 109
OxfBSPlib/sum.c Safe 73
PRGPAR1/examen99/examen99.c Rejected but safe 192

Conclusion and future work

» Contributions:
» Formulating the correctness criterion “Replicated synchronization”
» Formalized and proved static analysis for detecting Replicated
synchronization as a data-flow analysis for BSPlite
> Implementated as a Frama-C plugin, ~1200 lines of OCaml-code
» Future work includes:

> Use as a building block for further analyses: communication,
cost-analysis ...

	Context
	Bulk synchronous programming with BSPlib
	BSPlite
	Problem formulation

	Solution
	Textual alignment and Replicated synchronization
	``Replicated synchronization'': Good software engineering practice
	Statically verifying ``Replicated synchronization''
	Implementing and evaluating ``Replicated synchronization''

	Final words
	Conclusion and future work

