
Automatic Software Veri�cation of
BSPlib-programs:

Replicated Synchronization

Arvid Jakobsson

2017-05-31

Supervisors: G. Hains, W. Suijlen, F. Loulergue, F. Dabrowski, W.
Bousdira

Context

I Huawei: World-leading provider of ICT-solutions

I Huawei has an increasing need for embedded parallel software

I Successful software must be safe and e�cient

I Formal method gives mathematical guarantees of safety and
e�ciency

I Université d'Orléans (Laboratoire d'Informatique Fondamental):
Strong research focus on formal methods and parallel computing

Overview of AVSBSP

I Goal of the project: develop a basis for e�cient and secure,
statically veri�ed BSPlib programming

I Bulk Synchronous Parallel (BSP): simple but powerful model for
parallel programming,

I BSPlib: a library for BSP-programming in C

Overview of AVSBSP

I Main track: Developing automatic tools for veri�cation of BSPlib
programs based on formal methods.

I Correct synchronization
I Correct communication
I Correct API usage
⇒ Automatic veri�cation of safety

I Side-track: Automatic Cost Analysis
I Automatic BSP cost formula derivation
⇒ Automatic veri�cation of performance

Main-track: Veri�cation

I Main track: Developing automatic tools for veri�cation of BSPlib
programs based on formal methods.

I Correct synchronization
I Correct communication
I Correct API usage
⇒ Automatic veri�cation of safety

Motivating example (1)

I Long scienti�c calculations on cluster in parallel.

I But come Monday: calculation crashed after 10 hours :(

I What went wrong? Let's look at the code!

Motivating example (2)

I Single Program, Multiple data: same program c is run in parallel on
p processes:

c[pid := 0] ‖ c[pid := 1] ‖ . . . ‖ c[pid := p − 1]

// . . .
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

// . . .
}

Figure: Parallel SPMD program: Iterative calculation

Motivating example (2)

I Single Program, Multiple data: same program c is run in parallel on
p processes:

c[pid := 0] ‖ c[pid := 1] ‖ . . . ‖ c[pid := p − 1]

// . . .
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

// . . .
}

Figure: Parallel SPMD program: Iterative calculation

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1 . 0) {

p r i n t_p r o g r e s s (x) ;
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

vo id p r i n t_p r o g r e s s (double x) {
i n t p = bsp_nprocs () ;
// P r i n t p r o g r e s s f o r p r o c e s s 0 , 1 , 2 , . . .
f o r (i n t s = 0 ; s < p ; ++p) {

i f (bsp_pid () == s) {
p r i n t f (" p r o g r e s s (%d) : %g\n" , s , x) ;

}
bsp_sync();

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1 . 0) {

p r i n t_p r o g r e s s (x) ; // s y n c h r o n i z i n g
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t0 = bsp_time () ;
double x = 0 . 0 ;
f o r (i n t i = 0 ; i < 100 ; ++i) {

x = f (x) ;

double t1 = bsp_time () ;
i f (t1 - t0 > 1.0) { // P r o c e s s e s ag r e e on t h i s c o n d i t i o n ?

p r i n t_p r o g r e s s (x) ; // s y n c h r o n i z i n g .
t0 = t1 ;

}
}

Figure: Buggy parallel SPMD program: Processes agree?

Motivating example (3): Conclusion

I Source of bug: Program hangs since synchronization choice depends
on a value local to each process (bsp_time()).

I Possible solution: To synchronize or not must only depend on
conditions with the same value on all processes.

I Goal: Enforce solution statically.

Background: Bulk synchronous parallel (1)

I Bulk synchronous parallel (BSP): model of parallel computing

I BSP computation: sequence of super-steps executed by a �xed
number of p processes.

I A super-step is composed of:

1. Local computation by each process
2. Communication between processes
3. A synchronization barrier. Go back to Step 1 or terminate.

Background: Bulk synchronous parallel (2)

I Invented in the 80's by Leslie Valiant. Several implementations,
notably: BSPlib, BSML, most linear algebra packages. . .

I Domain speci�c languages such as Pregel and MapReduce embody
BSP principles.

I Bene�ts of BSP compared to other models of parallel computation:
I Deadlock and data race free
I Simple but realistic cost model
I Simpli�es algorithm design

Background: BSPlib

I BSPlib: library and interface speci�cation for BSP in C.

I BSPlib follows the Single Program Multiple Data-model (SPMD).

I Small set of primitives (20):

I bsp_begin, bsp_end, bsp_pid, bsp_nprocs, bsp_get, bsp_put,
bsp_sync, . . .

I Several implementations exists: The Oxford BSP Toolset, Paderborn
University BSP, MulticoreBSP, Epiphany BSP. . .

BSPlite

I Toy-language �BSPlite�: WHILE-language with parallel primitives
(nprocs, pid and sync).

I Grammar of BSPlite:

expr 3 e ::= nprocs | pid | x | n | e + e | e − e | e × e
bexpr 3 b ::= true | false | e < e | e = e | b or b | b and b | !b
cmd 3 c ::= x := e | skip | sync | c ; c | if b then c else c end

| while b do c end

I pid, returns local process id from P = {0 . . . p − 1}: it allows
processes with di�erent id to evaluate the same program di�erently.

BSPlite local semantics

I Local semantics for local computation in each process:

→i : cmd × Σ→ T × Σ

Σ = X→ N
T = {Ok} ∪ {Wait(c) | c ∈ cmd}

I 〈c , σ〉 →i 〈t, σ′〉 denotes one step of local-computation with
termination state t by process with id i .

I Local semantics are standard (big-step, operational), except sync
which stops local computation and returns the rest of the program
as a continuation.

BSPlite global semantics

I Global semantics moves the computation forward globally from one
super-step to the next when all p local processes has completed:

→ : cmdp × Σp × (Σp ∪ {Ω})

I Global computation either:

1. terminates correctly: 〈C ,E〉 → E ′

2. synchronizes incorrectly: 〈C ,E〉 → Ω

I BSP meaning of program c in a Single Program Multiple Data
(SPMD) context: 〈[c]i∈P,E 〉 → E ′.

BSPlite example programs

Buggy program from the introduction

cnok = [I := 0]1;

[X := pid]2;

while [I < 100]3 do

[sync]4;

if [X = 0]5 then

[sync]6

else

[skip]7

[end];

[I := I + 1]8

end

Correct program

cok = [I := 0]1;

while [I < 100]2 do

[sync]3;

[I := I + 1]4

end

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok
σ σ

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ0
0

Wait(c4), σ0
1

[sync]4;
if [X = 0]5 then

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

〈cnok , σ〉 →0 〈Wait(c4), σ
0

0〉 & 〈cnok , σ〉 →1 〈Wait(c4), σ
0

1〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ1
1

[sync]4;
if [X = 0]5 then

Wait(c6), σ0
0

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

〈c4, σ00〉 →0 〈Wait(c6), σ
0

0〉 & 〈c4, σ01〉 →1 〈Wait(c4), σ
1

1〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ1
0

Wait(c4), σ2
1

[sync]4;
if [X = 0]5 then

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

〈c6, σ00〉 →0 〈Wait(c4), σ
1

0〉 & 〈c4, σ11〉 →1 〈Wait(c4), σ
2

1〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ3
1

[sync]4;
if [X = 0]5 then

Wait(c6), σ1
0

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

〈c4, σ10〉 →0 〈Wait(c6), σ
1

0〉 & 〈c4, σ21〉 →1 〈Wait(c4), σ
3

1〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ2
0

Wait(c4), σ4
1

[sync]4;
if [X = 0]5 then

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

〈c6, σ10〉 →0 〈Wait(c4), σ
2

0〉 & 〈c4, σ31〉 →1 〈Wait(c4), σ
4

1〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

. [sync]4;
if [X = 0]5 then

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

. . .

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

Wait(c4), σ44
0

Wait(c4), σ99
1

[sync]4;
if [X = 0]5 then

[sync]6

else

[skip]7

[end];
[I := I + 1]8

end

. . .

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

[sync]4;
if [X = 0]5 then

Wait(c6), σ45
0

[sync]6

else

[skip]7

[end];
[I := I + 1]8

Ok end

〈c4, σ440 〉 →0 〈Wait(c6), σ
44

0 〉 & 〈c4, σ991 〉 →1 〈Ok, σ1000 〉

BSPlite example programs

Execution of cnok with p = 2

Proc.0 Proc.1 cnok

[I := 0]1;
[X := pid]2;
while [I < 100]3 do

[sync]4;
if [X = 0]5 then

Wait(c6), σ45
0

[sync]6

else

[skip]7

[end];
[I := I + 1]8

Ok end

Wait 6= Ok: incoherent termination states of processor 0 and 1.
Computation cannot continue: a synchronization error.

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok
σ σ

while [I < 100]1 do

[sync]2;
[I := I + 1]3

end

〈cok , σ〉 →0 〈Wait(c4), σ
0〉 & 〈cok , σ〉 →1 〈Wait(c2), σ

0〉

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

Wait(c2), σ0 Wait(c2), σ0 [sync]2;
[I := I + 1]3

end

〈c2, σ0〉 →0 〈Wait(c2), σ
1〉 & 〈c2, σ0〉 →1 〈Wait(c2), σ

1〉

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

Wait(c2), σ1 Wait(c2), σ1 [sync]2;
[I := I + 1]3

end

〈c2, σ1〉 →0 〈Wait(c2), σ
2〉 & 〈c2, σ1〉 →1 〈Wait(c2), σ

2〉

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

Wait(c2), σ2 Wait(c2), σ2 [sync]2;
[I := I + 1]3

end

〈c2, σ2〉 →0 〈Wait(c2), σ
3〉 & 〈c2, σ2〉 →1 〈Wait(c2), σ

3〉

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

. [sync]2;
[I := I + 1]3

end

. . .

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

Wait(c2), σ99 Wait(c2), σ99 [sync]2;
[I := I + 1]3

end

. . .

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

[sync]2;
[I := I + 1]3

Ok Ok end

〈c2, σ99〉 →0 〈Ok, σ1000 〉 & 〈c2, σ99〉 →1 〈Ok, σ100〉

BSPlite example programs

Execution of cok with p = 2

Proc.0 Proc.1 cnok

while [I < 100]1 do

[sync]2;
[I := I + 1]3

Ok Ok end

Ok = Ok: coherent termination states. Global computation is �nished.

Problem formulation

I A program c is synchronization error free, if

6 ∃E , 〈[c]i∈P,E 〉 → Ω

I Goal: guarantee that BSPlib programs are synchronization error free.

I cok synchronization error free, cnok is not.

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

I Su�cient but not necessary condition for correct synchronization.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processes at textually aligned statements.

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

I Su�cient but not necessary condition for correct synchronization.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processes at textually aligned statements.

Replicated synchronization

I Textually aligned synchronization: in each super-step, all local
processes stop at the same instance of the same sync-primitive.

I Su�cient but not necessary condition for correct synchronization.

I Replicated synchronization: statically veri�ed condition for having
textually aligned synchronization.

I Program has replicated synchronization if all conditionals and loops
with bodies which contains sync are pid-independent.

I A variable is pid-independent when it has no data- nor
control-dependency on pid.

I Pid-independent variables goes through the same series of values on
all processes at textually aligned statements.

BSPlite example programs

Buggy program from the introduction

cnok = [I := 0]1;

[X := pid]2;

while [I < 100]3 do

[sync]4;

if [X = 0]5 then

[sync]6

else

[skip]7

[end];

[I := I + 1]8

end

Correct program

cok = [I := 0]1;

while [I < 100]2 do

[sync]3;

[I := I + 1]4

end

Replicated synchronization: Good software engineering
practice

I Replicate synchronization codi�es good parallel software engineering
practices

I The condition is simple to understand

I Makes parallel code easier to understand

I Majority programs we have surveyed are implicitly written in this
style

I Our analysis statically veri�es that BSPlib code meets this condition,
and so is synchronization error free

Statical analysis for �nding pid -independent variables

I Reformulation of type system of Barrier Inference [Aiken & Gay '98]
as a data-�ow analysis

I Stronger requirements on the analyzed program: no synchronization
in branches where guard-expression is not pid -independent.

I Idea: �nd variables and program locations which does not have a
data- or control-dependency on pid

I The abstract state in the data-�ow analysis for each program
location contains:

1. set of variables statically guaranteed to be pid-independent at that
point

2. pid-independence of each guard-expression in which the point is
nested.

Statically verifying "Replicated synchronization"

I After data-�ow analysis, simple to verify that a program has
replicated synchronization: all guard-conditions for if- and
while-statements which contains sync is pid-independent:

RS(c) =
∧

(l,b,c′)∈guards(c)

[sync] 6∈ c ′ ∨ (FV (b) ⊆ PI (l) ∧ pid 6∈ b)

Implementing and evaluating �Replicated synchronization�

I Implemented as Frama-C plugin in ∼1200 lines of OCaml

I Uses the data-�ow functor of Frama-C.

I Implementation also handles:
I Interprocedurality
I Pointers, structures and arrays (using conservative assumption)

I Limitations:
I Unstructured control �ow (gotos, switch), and structures which are

normalized to gotos (early return, continue, etc) are not supported.
I Pointers, structures and arrays are never treated as pid-independent.

Evaluating �Replicated synchronization�

I Evaluation on 20 BSPlib programs: public and Huawei-developed

I Minor modi�cations needed:
I Rewriting switch-statements and early returns
I Forcing command-line arguments pid-independent.

I Synchronization of all but three is veri�ed

I Found same bug in two programs: synchronization depending on
global variables

I One program not handled: synchronization depends on the result of
a global reduction

Evaluation result

Program Result Reason LOC
BSPedupack/bspbench.c Safe 198
BSPedupack/bsp�t_test.c Safe 165
BSPedupack/bspinprod.c Safe 115
BSPedupack/bsplu_test.c Safe 147
BSPedupack/bspmv_test.c Safe 625
Huawei/SDN_BSP_1.c Safe 1580
AlexG/as02a/assess.c Safe 573
AlexG/bp03v2/brdmain.c Unsafe Uninitialized variable 342
AlexG/bp03v2/ppfmain.c Safe 336
AlexG/mult03v6/mulmain.c Safe 422
AlexG/prdx14v06/prmain.c Unsafe Uninitialized variable 320
OxfBSPlib/array_get.c Safe 85
OxfBSPlib/array_put.c Safe 85
OxfBSPlib/helloworld.c Safe 10
OxfBSPlib/helloworld_init.c Safe 25
OxfBSPlib/helloworld_seq.c Safe 16
OxfBSPlib/reverse.c Safe 57
OxfBSPlib/sparse.c Safe 109
OxfBSPlib/sum.c Safe 73
PRGPAR1/examen99/examen99.c Rejected but safe 192

Conclusion and future work

I Contributions:
I Formulating the correctness criterion �Replicated synchronization�
I Formalized and proved static analysis for detecting Replicated

synchronization as a data-�ow analysis for BSPlite
I Implementated as a Frama-C plugin, ∼1200 lines of OCaml-code

I Future work includes:
I Use as a building block for further analyses: communication,

cost-analysis . . .

	Context
	Bulk synchronous programming with BSPlib
	BSPlite
	Problem formulation

	Solution
	Textual alignment and Replicated synchronization
	``Replicated synchronization'': Good software engineering practice
	Statically verifying ``Replicated synchronization''
	Implementing and evaluating ``Replicated synchronization''

	Final words
	Conclusion and future work

