
Development of security-critical software with
Spark/Ada at secunet

Stefan Berghofer

30.5.2017

Agenda

1. Introduction

2. A Link between Why3 and Isabelle

3. Applications

4. Conclusion

Page 2 30.5.2017 Development of security-critical software

Agenda

1. Introduction

2. A Link between Why3 and Isabelle

3. Applications

4. Conclusion

Page 3 30.5.2017 Development of security-critical software

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:

I Public sector
Public Authorities, Homeland Security, Defence

I Business sector
Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence

I Business sector
Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

About secunet Security Networks AG

One of Germany’s leading providers of IT security

Security partner of the Federal Republic of Germany

More than 400 employees

Major shareholder is Giesecke & Devrient, Munich

Business Units:
I Public sector

Public Authorities, Homeland Security, Defence
I Business sector

Automotive, Critical Infrastructures

More details: www.secunet.com

Page 4 30.5.2017 Development of security-critical software

www.secunet.com

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture

I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption

I Larger untrusted components, e.g. user sessions, device drivers,
network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Context

High-security VPN gateways and clients

Process various categories of data with di↵erent classification

Prevent unintended information flow between domains

Development approach

Design goal: Keep trusted computing base small

Component-based architecture
I Few small, trusted components, e.g. encryption / decryption
I Larger untrusted components, e.g. user sessions, device drivers,

network protocol stack, . . .

Separation kernel controls interaction of components

Implement / verify trusted components using Spark

Prove at least absence of runtime exceptions for all trusted
components, for some also functional correctness

Page 5 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014
Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014
Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014
Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014

Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014
Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Spark at secunet

2010 Implementation of components in Spark 2005

2011 Verification of components using Spark and Isabelle

2013 Isabelle driver for Why3

2014 Switch to Spark 2014
Introduction of Muen separation kernel

2017 Proof of properties of Muen separation kernel
(ongoing)

Page 6 30.5.2017 Development of security-critical software

Component-Based Architecture

Red Linux

Enc Dec

Key Manager

Black LinuxInternet

Key Agreement

(Di�e Hellman)

Authentication

(X509 Certificates)

Page 7 30.5.2017 Development of security-critical software

Component-Based Architecture

Red Linux

Enc Dec

Key Manager

Black LinuxInternet

P

{|P |}K {|P 0|}K 0

P

0

K

K

0

Key Agreement

(Di�e Hellman)

Authentication

(X509 Certificates)

Page 7 30.5.2017 Development of security-critical software

Component-Based Architecture

Red Linux

Enc Dec

Key Manager

Black LinuxInternet

Key Agreement

(Di�e Hellman)

Authentication

(X509 Certificates)

Page 7 30.5.2017 Development of security-critical software

Component-Based Architecture

Red Linux

Enc Dec

Key Manager

Black LinuxInternet

Key Agreement

(Di�e Hellman)

Authentication

(X509 Certificates)

Page 7 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active

use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive

using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Verification Approaches

Automatic

Auto-Active
use lemma subprograms to help automatic provers

Interactive
using Coq or Isabelle

Why interactive verification?

About 10% – 40% of the VCs generated from our codebase
are not proved automatically by SMT solvers

Lemma subprograms di�cult to synthesize for complex proofs
(tool support?)

Complex external specifications can be linked to Spark code
using ghost functions

Page 8 30.5.2017 Development of security-critical software

Agenda

1. Introduction

2. A Link between Why3 and Isabelle

3. Applications

4. Conclusion

Page 9 30.5.2017 Development of security-critical software

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy

I Inferences may only be performed by small kernel
“LCF approach” [Robin Milner]

I Definitional theory extension
New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]

I Definitional theory extension
New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle/HOL

Interactive theorem prover

Developed (since 1986) by Prof. Larry Paulson (Cambridge),
Prof. Tobias Nipkow (Munich) and
Dr. Markus Wenzel

Widely used, e.g. in the L4 verified project at NICTA

Specifications written in a functional programming language
with logical operators

Design philosophy
I Inferences may only be performed by small kernel

“LCF approach” [Robin Milner]
I Definitional theory extension

New concepts must be introduced using already existing and
more primitive concepts.

More information: isabelle.in.tum.de

Page 10 30.5.2017 Development of security-critical software

isabelle.in.tum.de

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse

(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs

Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Isabelle Driver for Why3

Inspired by Coq driver

Uses data exchange format that is easy to generate and parse
(XML, no Isabelle theory files)

Consists of two parts

Why3 Generates XML file with definitions and VCs
Isabelle Parses XML file, performs definitions, manages VCs

Strict separation between generated and user-edited content

No fragile heuristics for parsing and interpreting edited parts

System keeps track of proved / unproved VCs

Page 11 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove

Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Spark Toolchain

Source Files
(*.ads, *.adb)

gnatprove
Why3 Files
(*.mlw)

Why3

Isabelle-Why3
Files (*.xml)

SMT Files

Isabelle-Why3
Wrapper

SMT Solver

Theory Files
(*.thy)

Isabelle-Why3

Page 12 30.5.2017 Development of security-critical software

Example: Euclidean Algorithm

function GCD_Spec (M, N : Natural) return Natural

with Ghost, Import;

function Euclid (M, N : Natural) return Natural

with Post => Euclid’Result = GCD_Spec (M, N)

is
A, B, R : Natural;

begin
A := M; B := N;

loop
pragma Loop_Invariant (GCD_Spec (A, B) = GCD_Spec (M, N));

exit when B = 0;

R := A mod B;

A := B; B := R;

end loop;

return A;

end Euclid;

Page 13 30.5.2017 Development of security-critical software

Managing VCs using Why3 IDE

Page 14 30.5.2017 Development of security-critical software

Proving VCs using Isabelle

Page 15 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types

(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Commands of Why3-Plugin for Isabelle

why3 open Load and parse VCs

why3 vc Start proof of VC

why3 end Close Why3 environment

why3 status Show VCs

why3 consts Link uninterpreted Why3 constants with
Isabelle constants

why3 types Link Why3 types with Isabelle types
(works for uninterpreted or data types)

why3 defs Replace Why3 definitions by Isabelle definitions

why3 thms Replace Why3 axioms by Isabelle theorems

why3 consts etc. can be viewed as light-weight on-the-fly variant
of Why3’s realizations that happen completely on the Isabelle side

Page 16 30.5.2017 Development of security-critical software

Agenda

1. Introduction

2. A Link between Why3 and Isabelle

3. Applications

4. Conclusion

Page 17 30.5.2017 Development of security-critical software

libsparkcrypto – A Cryptographic Library for Spark

Supported algorithms

Hash functions: (HMAC-)SHA-256/384/512

Symmetric: AES-128/192/256

Asymmetric: Elliptic Curves

Open Source

http://git.codelabs.ch/?p=spark-crypto.git

Page 18 30.5.2017 Development of security-critical software

http://git.codelabs.ch/?p=spark-crypto.git

libsparkcrypto – A Cryptographic Library for Spark

Supported algorithms

Hash functions: (HMAC-)SHA-256/384/512

Symmetric: AES-128/192/256

Asymmetric: Elliptic Curves

Open Source

http://git.codelabs.ch/?p=spark-crypto.git

Page 18 30.5.2017 Development of security-critical software

http://git.codelabs.ch/?p=spark-crypto.git

libsparkcrypto – A Cryptographic Library for Spark

Supported algorithms

Hash functions: (HMAC-)SHA-256/384/512

Symmetric: AES-128/192/256

Asymmetric: Elliptic Curves

Open Source

http://git.codelabs.ch/?p=spark-crypto.git

Page 18 30.5.2017 Development of security-critical software

http://git.codelabs.ch/?p=spark-crypto.git

libsparkcrypto – A Cryptographic Library for Spark

Supported algorithms

Hash functions: (HMAC-)SHA-256/384/512

Symmetric: AES-128/192/256

Asymmetric: Elliptic Curves

Open Source

http://git.codelabs.ch/?p=spark-crypto.git

Page 18 30.5.2017 Development of security-critical software

http://git.codelabs.ch/?p=spark-crypto.git

libsparkcrypto – A Cryptographic Library for Spark

Supported algorithms

Hash functions: (HMAC-)SHA-256/384/512

Symmetric: AES-128/192/256

Asymmetric: Elliptic Curves

Open Source

http://git.codelabs.ch/?p=spark-crypto.git

Page 18 30.5.2017 Development of security-critical software

http://git.codelabs.ch/?p=spark-crypto.git

Layers of Cryptographic Functions

Security protocols ECDSA, ECDH

Elliptic curves (derived) Scalar multiplication

Elliptic curves (basic) Point addition and doubling

Big numbers Modular multiplication, addition, subtraction

Page 19 30.5.2017 Development of security-critical software

Layers of Cryptographic Functions

Security protocols ECDSA, ECDH

Elliptic curves (derived) Scalar multiplication

Elliptic curves (basic) Point addition and doubling

Big numbers Modular multiplication, addition, subtraction

Page 19 30.5.2017 Development of security-critical software

Layers of Cryptographic Functions

Security protocols ECDSA, ECDH

Elliptic curves (derived) Scalar multiplication

Elliptic curves (basic) Point addition and doubling

Big numbers Modular multiplication, addition, subtraction

Page 19 30.5.2017 Development of security-critical software

Layers of Cryptographic Functions

Security protocols ECDSA, ECDH

Elliptic curves (derived) Scalar multiplication

Elliptic curves (basic) Point addition and doubling

Big numbers Modular multiplication, addition, subtraction

Page 19 30.5.2017 Development of security-critical software

Basic Declarations for Big Numbers

package Bignum

is

function Base return Math_Int.Math_Int is (Math_Int.From_Word32 (2) ** 32)

with Ghost;

subtype Big_Int_Range is Natural range Natural’First .. Natural’Last - 1;

type Big_Int is array (Big_Int_Range range <>) of Types.Word32;

function Num_Of_Big_Int (A : Big_Int; F, L : Natural)

return Math_Int.Math_Int

with Ghost, Import, Global => null;

function Num_Of_Boolean (B : Boolean) return Math_Int.Math_Int

with Ghost, Import, Global => null;

function Inverse (M, A : Math_Int.Math_Int) return Math_Int.Math_Int

with Ghost, Import, Global => null;
. . .

end Bignum;

Page 20 30.5.2017 Development of security-critical software

Formalization of Big Numbers in Isabelle

Abstraction function

num-of-big-int :: (int) int)) int) int) int

num-of-big-int A k i = (
P

j = 0..<i. Basej ⇤ A (k + j))

Summation property

num-of-big-int A k (i + j) =
num-of-big-int A k i + Base

i ⇤ num-of-big-int A (k + i) j

Modular inverse

minv :: int) int) int

coprime x m =) 0 < x =) 1 < m =) x ⇤ minv m x mod m = 1

Page 21 30.5.2017 Development of security-critical software

Formalization of Big Numbers in Isabelle

Abstraction function

num-of-big-int :: (int) int)) int) int) int

num-of-big-int A k i = (
P

j = 0..<i. Basej ⇤ A (k + j))

Summation property

num-of-big-int A k (i + j) =
num-of-big-int A k i + Base

i ⇤ num-of-big-int A (k + i) j

Modular inverse

minv :: int) int) int

coprime x m =) 0 < x =) 1 < m =) x ⇤ minv m x mod m = 1

Page 21 30.5.2017 Development of security-critical software

Formalization of Big Numbers in Isabelle

Abstraction function

num-of-big-int :: (int) int)) int) int) int

num-of-big-int A k i = (
P

j = 0..<i. Basej ⇤ A (k + j))

Summation property

num-of-big-int A k (i + j) =
num-of-big-int A k i + Base

i ⇤ num-of-big-int A (k + i) j

Modular inverse

minv :: int) int) int

coprime x m =) 0 < x =) 1 < m =) x ⇤ minv m x mod m = 1

Page 21 30.5.2017 Development of security-critical software

Formalization of Big Numbers in Isabelle

Abstraction function

num-of-big-int :: (int) int)) int) int) int

num-of-big-int A k i = (
P

j = 0..<i. Basej ⇤ A (k + j))

Summation property

num-of-big-int A k (i + j) =
num-of-big-int A k i + Base

i ⇤ num-of-big-int A (k + i) j

Modular inverse

minv :: int) int) int

coprime x m =) 0 < x =) 1 < m =) x ⇤ minv m x mod m = 1

Page 21 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

Montgomery Multiplication

Computes

x ⌦ y = x · y · R�1 modm where R = b

n

Perform computations on numbers in Montgomery format

e
x = x · R modm (likewise for ey)

Multiplication of numbers in Montgomery format

e
x ⌦ e

y = x · R · y · R · R�1 modm = x · y · R modm = g
x · y

Conversion between standard and Montgomery format

x ⌦ (R2 modm) = x · R2 · R�1 modm = x · R modm = e
x

e
x ⌦ 1 = x · R · 1 · R�1 modm = x modm

Page 22 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +

6 · 789 4734 =
4734 +

8 · 987 7896 =
12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +

8 · 987 7896 =
12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =

1263 +
5 · 789 3945 =

5208 +
6 · 987 5922 =

11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =

5208 +
6 · 987 5922 =

11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =

11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =

1113 +
4 · 789 3156 =

4269 +
3 · 987 2961 =

7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =

4269 +
3 · 987 2961 =

7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =

7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =

723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

E�ciently Computing 456 · 789 mod 987

a 0
for i = 0 to n � 1 do
u (a0 + xi · y0) ·�m�1

0 mod b
a (a+ xi · y + u ·m)/b

end for
if a � m then
a a�m

end if

�7�1 mod 10 = 7

723 · 1000 mod 987 = 516 =
456 · 789 mod 987

0 +
6 · 789 4734 =

4734 +
8 · 987 7896 =

12630 / 10 =
1263 +

5 · 789 3945 =
5208 +

6 · 987 5922 =
11130 / 10 =
1113 +

4 · 789 3156 =
4269 +

3 · 987 2961 =
7230 / 10 =
723

Page 23 30.5.2017 Development of security-critical software

Montgomery Multiplication in Spark

for I in Natural range A_First .. A_Last

loop
Carry1 := 0; Carry2 := 0;

XI := X (X_First + (I - A_First));

U := (A (A_First) + XI * Y (Y_First)) * M_Inv;

Single_Add_Mult_Mult

(A (A_First), XI, Y (Y_First),

M (M_First), U, Carry1, Carry2);

Add_Mult_Mult

(A, A_First, A_Last - 1,

Y, Y_First + 1, M, M_First + 1,

XI, U, Carry1, Carry2);

A (A_Last) := A_MSW + Carry1;

A_MSW := Carry2 + Word_Of_Boolean (A (A_Last) < Carry1);

end loop;

Page 24 30.5.2017 Development of security-critical software

Specification of Montgomery Multiplication

Preconditions

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <

Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 + M_Inv * M (M_First) = 0

Postcondition

Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =

(Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (A_Last - A_First + 1)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

In mathematical notation. . .

a = x · y · b�n modm

Page 25 30.5.2017 Development of security-critical software

Specification of Montgomery Multiplication

Preconditions

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <

Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 + M_Inv * M (M_First) = 0

Postcondition

Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =

(Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (A_Last - A_First + 1)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

In mathematical notation. . .

a = x · y · b�n modm

Page 25 30.5.2017 Development of security-critical software

Specification of Montgomery Multiplication

Preconditions

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) <

Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 < Num_Of_Big_Int (M, M_First, A_Last - A_First + 1) and
1 + M_Inv * M (M_First) = 0

Postcondition

Num_Of_Big_Int (A, A_First, A_Last - A_First + 1) =

(Num_Of_Big_Int (X, X_First, A_Last - A_First + 1) *

Num_Of_Big_Int (Y, Y_First, A_Last - A_First + 1) *

Inverse (Num_Of_Big_Int (M, M_First, A_Last - A_First + 1),

Base) ** (A_Last - A_First + 1)) mod
Num_Of_Big_Int (M, M_First, A_Last - A_First + 1)

In mathematical notation. . .

a = x · y · b�n modm

Page 25 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:

I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)

I Projective (x , y , z) 7�! (x/z , y/z)
point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z)

7�! (x/z , y/z)
point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle

based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves

Applications: ECDH (key agreement) and
ECDSA (authentication)

Curves in Weierstrass form over fields of characteristic > 2

Primitive operation: point addition

Points on curve form a group wrt. point addition

Coordinate systems:
I A�ne (x , y)
I Projective (x , y , z) 7�! (x/z , y/z)

point addition does not require computation of inverse

Abstract properties formalized in Isabelle
based on Coq formalization by Laurent Théry

Proved correspondence of Spark implementation with
abstract specification

Page 26 30.5.2017 Development of security-critical software

Elliptic Curves – Abstract Specification

datatype 0
a point = Infinity | Point 0

a

0
a

locale ell-field = field +
assumes two-not-zero: ⌧

2

� 6= 0

definition nonsingular :: 0
a) 0

a) bool where
nonsingular a b = (⌧4� ⌦ a " 3 � ⌧

27

� ⌦ b " 2 6= 0)

definition on-curve :: 0
a) 0

a) 0
a point) bool where

on-curve a b p = (case p of

Infinity) True

| Point x y) x 2 carrier R ^ y 2 carrier R ^
y " 2 = x " 3 � a ⌦ x � b)

Page 27 30.5.2017 Development of security-critical software

Point Addition

definition add :: 0
a) 0

a point) 0
a point) 0

a point where
add a p1 p2 = (case p1 of

Infinity) p2

| Point x1 y1) (case p2 of

Infinity) p1

| Point x2 y2)
if x1 = x2 then

if y1 = y2 then Infinity

else let l = (⌧3� ⌦ x1 " 2 � a) ↵ (⌧2� ⌦ y1);
x3 = l " 2 ⌧

2

� ⌦ x1

in Point x3 (y1 l ⌦ (x3 x1))
else let l = (y2 y1) ↵ (x2 x1);

x3 = l " 2 x1 x2

in Point x3 (y1 l ⌦ (x3 x1))))

Page 28 30.5.2017 Development of security-critical software

Point Addition – Properties

lemma add-closed:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows on-curve a b (add a p1 p2)

lemma add-comm:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows add a p1 p2 = add a p2 p1

lemma add-assoc:
assumes a: a 2 carrier R and b: b 2 carrier R

and ab: nonsingular a b

and p1: on-curve a b p1 and p2: on-curve a b p2

and p3: on-curve a b p3

shows add a p1 (add a p2 p3) = add a (add a p1 p2) p3

Page 29 30.5.2017 Development of security-critical software

Point Addition – Properties

lemma add-closed:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows on-curve a b (add a p1 p2)

lemma add-comm:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows add a p1 p2 = add a p2 p1

lemma add-assoc:
assumes a: a 2 carrier R and b: b 2 carrier R

and ab: nonsingular a b

and p1: on-curve a b p1 and p2: on-curve a b p2

and p3: on-curve a b p3

shows add a p1 (add a p2 p3) = add a (add a p1 p2) p3

Page 29 30.5.2017 Development of security-critical software

Point Addition – Properties

lemma add-closed:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows on-curve a b (add a p1 p2)

lemma add-comm:
assumes a 2 carrier R and b 2 carrier R

and on-curve a b p1 and on-curve a b p2

shows add a p1 p2 = add a p2 p1

lemma add-assoc:
assumes a: a 2 carrier R and b: b 2 carrier R

and ab: nonsingular a b

and p1: on-curve a b p1 and p2: on-curve a b p2

and p3: on-curve a b p3

shows add a p1 (add a p2 p3) = add a (add a p1 p2) p3

Page 29 30.5.2017 Development of security-critical software

Projective Coordinates

type-synonym 0
a ppoint = 0

a ⇥ 0
a ⇥ 0

a

definition (in field) make-a�ne :: 0
a ppoint) 0

a point where
make-a�ne p =
(let (x, y, z) = p

in if z = 0 then Infinity else Point (x ↵ z) (y ↵ z))

lemma (in ell-field) padd-correct:
assumes a: a 2 carrier R and b: b 2 carrier R

and p1: on-curvep a b p1 and p2: on-curvep a b p2

shows make-a�ne (padd a p1 p2) =
add a (make-a�ne p1) (make-a�ne p2)

Page 30 30.5.2017 Development of security-critical software

Projective Coordinates – Equality

definition (in cring) proj-eq :: 0
a ppoint) 0

a ppoint) bool

where
proj-eq = (�(x1, y1, z1) (x2, y2, z2).
(z1 = 0) = (z2 = 0) ^
x1 ⌦ z2 = x2 ⌦ z1 ^ y1 ⌦ z2 = y2 ⌦ z1)

lemma (in field) make-a�ne-proj-eq-i↵:
in-carrierp p =) in-carrierp p

0 =)
proj-eq p p

0 = (make-a�ne p = make-a�ne p

0)

Page 31 30.5.2017 Development of security-critical software

Specification of Point Addition – Spark Part

function Point_Add_Spec

(M, A, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3 : Math_Int.Math_Int)

return Boolean

with Ghost, Import, Global => null;

procedure Point_Add

(X1, Y1, Z1 : in Bignum.Big_Int;

X2, Y2, Z2 : in Bignum.Big_Int;

X3, Y3, Z3 : out Bignum.Big_Int;

. . .
A : in Bignum.Big_Int;

M : in Bignum.Big_Int;

M_Inv : in Types.Word32)

with
Depends => . . .
Pre => . . .
Post =>

Point_Add_Spec

(Bignum.Num_Of_Big_Int (M, M_First, X1_Last - X1_First + 1),

. . .);

Page 32 30.5.2017 Development of security-critical software

Specification of Point Addition – Isabelle Part

definition point-add-spec :: math-int) math-int)
math-int) math-int) math-int) math-int) math-int)
math-int) math-int) math-int) math-int) bool

where
point-add-spec m a x1 y1 z1 x2 y2 z2 x3 y3 z3 =
(let r = residue-ring (int-of-math-int m);

a

0 = int-of-math-int a mod int-of-math-int m

in cring.proj-eq r

(cring.padd r a

0

(int-of-math-int x1, int-of-math-int y1, int-of-math-int z1)
(int-of-math-int x2, int-of-math-int y2, int-of-math-int z2))

(int-of-math-int x3, int-of-math-int y3, int-of-math-int z3))

why3-consts
Lsc--ec--point-add-spec.point-add-spec = point-add-spec

Page 33 30.5.2017 Development of security-critical software

Agenda

1. Introduction

2. A Link between Why3 and Isabelle

3. Applications

4. Conclusion

Page 34 30.5.2017 Development of security-critical software

Achievements

Correctness of complex mathematical algorithms can be
proved using Spark

Link with interactive prover allows to prove advanced
properties that are beyond reach of automatic provers

Behaviour of programs can be specified in an abstract way

Spark implementation can be shown to correspond to
abstract specification

Page 35 30.5.2017 Development of security-critical software

Achievements

Correctness of complex mathematical algorithms can be
proved using Spark

Link with interactive prover allows to prove advanced
properties that are beyond reach of automatic provers

Behaviour of programs can be specified in an abstract way

Spark implementation can be shown to correspond to
abstract specification

Page 35 30.5.2017 Development of security-critical software

Achievements

Correctness of complex mathematical algorithms can be
proved using Spark

Link with interactive prover allows to prove advanced
properties that are beyond reach of automatic provers

Behaviour of programs can be specified in an abstract way

Spark implementation can be shown to correspond to
abstract specification

Page 35 30.5.2017 Development of security-critical software

Achievements

Correctness of complex mathematical algorithms can be
proved using Spark

Link with interactive prover allows to prove advanced
properties that are beyond reach of automatic provers

Behaviour of programs can be specified in an abstract way

Spark implementation can be shown to correspond to
abstract specification

Page 35 30.5.2017 Development of security-critical software

Challenges

Why3 model not really suitable for human consumption

Translation to Why3 introduces many axioms
(must be realized in Isabelle)

Why3 session file not perfectly suitable for interactive provers
e.g. goal matching algorithm sometimes gets confused by
complex control flow

Page 36 30.5.2017 Development of security-critical software

Challenges

Why3 model not really suitable for human consumption

Translation to Why3 introduces many axioms
(must be realized in Isabelle)

Why3 session file not perfectly suitable for interactive provers
e.g. goal matching algorithm sometimes gets confused by
complex control flow

Page 36 30.5.2017 Development of security-critical software

Challenges

Why3 model not really suitable for human consumption

Translation to Why3 introduces many axioms
(must be realized in Isabelle)

Why3 session file not perfectly suitable for interactive provers

e.g. goal matching algorithm sometimes gets confused by
complex control flow

Page 36 30.5.2017 Development of security-critical software

Challenges

Why3 model not really suitable for human consumption

Translation to Why3 introduces many axioms
(must be realized in Isabelle)

Why3 session file not perfectly suitable for interactive provers
e.g. goal matching algorithm sometimes gets confused by
complex control flow

Page 36 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour

e.g. correct saving / restoring of subject states
I Memory layout

e.g. correct construction of page tables
I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout

e.g. correct construction of page tables
I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties

I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle

Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

Ongoing and Future Work

Verification of Muen separation kernel

I Runtime behaviour
e.g. correct saving / restoring of subject states

I Memory layout
e.g. correct construction of page tables

I Non-interference properties
I Abstract Isabelle model

Improvement of Why3 plugin for Isabelle
Automatic realization of axioms generated for Spark types

Continued verification of security-critical components and
protocols

Page 37 30.5.2017 Development of security-critical software

secunet Security Networks AG

Stefan Berghofer

Kurfürstenstraße 58
45138 Essen
Tel.: +49-201-5454-3606
Fax: +49-201-5454-1323
stefan.berghofer@secunet.com
www.secunet.com

	Introduction
	A Link between Why3 and Isabelle
	Applications
	Conclusion

