Deductive verification of
industrial automotive C code

Christian Lidstrom
clid@kth.se
KTH Royal Institute of Technology

About me

* MSc thesis at Scania, spring 2016

 Deductive verification

e Consultant at Scania, 2016-2019

* Research on application of Formal Methods
* Various EU and Swedish projects

* PhD student at KTH since February
* Funded through AVerT

* “Automated Verificaton and Testing”
* Vinnova FFl project
 KTH, Scania collaboration

ke

By,
EKTH®

% VETENSKAP %

29 OCH KONST 2%
el
oS

About Scania

« Manufacturer of heavy trucks and buses -
* Worldwide production and sales

* 50,000 employees, 5,000 engineers
e >1,000,000 vehicles in operatlon >3OO OOO connected

* 100,000 products
sold/year

Formal Methods at Scania

e Research >10 years

* Increased safety regs.
e |ISO 26262
 Autonomous vehicles

* Increased complexity
e Autonomy / Platooning

* Continuous integration

* One product line, billions ‘ l
of variants

* More safety-critical SW

Deductive verification

* Deals with problems of: * Tools:
¢ CompIeXIty ° Frama-C (WP)
* Number of variants e VVCC

e Amount of SW
* Increased coverage
¢ Increased confidence In correctness

Possible states Verification

'U
©)
n
L
(=]
D
%)
—+
Q)
—t
(D
n

00000
00000
o0 00
00000
00000
000 O:S
@ 000
@NOOO
L XX

0000
00000

Benchmark results —

Testing vs forma

verification

Results of using mutation testing (inserting faults into the SW).

m LBTest Deductive verification*

Not terminated
Undetected
Detected

Not terminated
Undetected
Not terminated
Detected
Undetected

O 00 N o uu B W N P

Not terminated

=
o

Not terminated

Detected
Detected

Undetected

Detected
Detected

Undetected

Detected
Detected
Detected
Detected

Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected
Detected

Case study: Dual-Circuit Steering (STEE)

4 N
—>
Input Embedded [——%> Output
(sensors) ' System | (actuators)
—>

STEE requirements

Requirement # Description

AER417_4 The vehicle is regarded as moving if vehicle speed signal is larger than 2km/h. The vehicle is regarded as
stationary if the vehicle speed is below 1km/h.

If WheelBasedVehicleSpeed > Vehicle Is Moving Limit
Vehicle Is Moving = True

If WheelBasedVehicleSpeed < Vehicle Is Stationary Limit
Vehicle Is Moving = False

AER417_10 If the vehicle is moving without the primary circuit providing power steering the secondary steering
circuit will be activated.

If PositionSensor == NoFlow AND Vehicle Is Moving == True
Vehicle Moving Without Primary Power Steering = True
Else
Vehicle Moving Without Primary Power Steering = False

AER417_15 If the vehicle is moving without the primary circuit providing power steering (see AER417_10) the
secondary steering circuit will be activated.

If Vehicle Moving Without Primary Power Steering == True
Secondary Circuit Handles Steering = True

Requirements specified at module level

STEE requirements circuit

WuU1

SSS1
— 7
PCES T [X 21 1
2
ES 8 PCHM] 13
- PCSM
— "\ 21 14 SCHS
PS —11
10 15
VISL ; J VMWPPS
VIML 20
WBVS 3 VM
PBS
SCHS

From Requirements to Contracts
* Requirement AER417 4:

The vehicle is regarded as moving if vehicle speed signal is larger than 2km/h.
The vehicle is regarded as stationary if the vehicle speed is below 1km/h.

If WheelBasedVehicleSpeed > Vehicle Is Moving Limit
Vehicle Is Moving = True

If WheelBasedVehicleSpeed < Vehicle Is Stationary Limit
Vehicle Is Moving = False

 Requirement as function contract in C source code:

/*@
* e o o
* ensures \old(rtdb ov_s32 astr[RTDB VEHICLE SPEED E]) > STEE V VEHICLE MOV _LIM S32)
* ==> model VehicleIsMoving == \true;
* ensures \old(rtdb_ov_s32 astr[RTDB_VEHICLE SPEED E]) < STEE_V_VEHICLE STAT LIM S32)
* ==> model VehicleIsMoving == \false;
*
*/
void Stee_10ms (tE enabled B);

STEE Case study results

e 27 requirements in total
10 verified requirements (others not functional, module specific)

* Implementation file:
e 10 functions, ~1400 LoC (+24 header files included)

e Verification required:
e ~700 LoA
* 165 seconds (< 3 minutes) for full module
* 65 seconds for hardest function

Gurov et al (2017): Deductive Functional Verification of Safety-Critical Embedded C-Code: An Experience Report

What about the downsides?

* Formal methods requires:
* Formal specifications/requirements
* High expertise among engineers

* Deductive verification:
* Requires even deeper knowledge (about tool/method)
* Requires large human annotation effort
* Tools lack features
* Tools have scalability issues
e Puts restrictions on code

Nyberg et al (2018): Formal Verification in Automotive Industry: Enablers and Obstacles

What about the downsides?

* Formal methods requires:
* Formal specifications/requirements
* High expertise among engineers

* Deductive verification:
* Requires even deeper knowledge (about tool/method) Solution:
* Requires large human annotation effort automation
* Tools lack features
* Tools have scalability issues
e Puts restrictions on code

Nyberg et al (2018): Formal Verification in Automotive Industry: Enablers and Obstacles

Automated tool chain

Specifier Tool
SG

/ \

R1 R2
R1.1 R1.1
/T
R1.1.1 R1.1.2
A

/3

&

Annotated C

C cE)de |:>
code
module

module

Frama-C

Modular verification —

requires \valid(p) && \valid(q);

/*@ assigns *p, *q;

requires \valid(p) && \valid(q); ensures *p == \old(*q)

assigns *p, *q; && *q == \old(*p);

ensures \old(*p > *q) ==> *p == \old(*q) && *qg == \old(*p); */

ensures \old(*p <= *q) ==> *p == \old(*p) && *qg == \old(*q); swap (* p, *q)
%/ {

swap_if gt(* p *q) { tmp = *p;
if (*p > *q) *p = *d;
swap(p, q); {1 *q = tmp;

} }

* On function call: assert precondition, assume postcondition
* Helps with scalability, but adds contracting effort

swap_if gt(* p *q) {
Inlining vs Contracting i Cp > e
swap(p, 9);
}
* Inlining: swap(int * p, int * q) {
» Replacing function call with body of tmp = *p;
called function fp = *g;
*q = tmp;
* Preferable when possible)

* But... perforr_n_anqe issues, no longer Inlined swap()
modular verification ~——

swap_if_gt(*p *q) {
e “Barrier” modules helps if (Fp > *q)
tmp = *p;
* Ongoing MSc thesis on heuristic to kp = *g;
predict “inlinable” functions o~
}

Automated annotation

\old(*p);

/*@
) requires \valid(p) && \valid(q);
mmmmmm) aSSsigns *p, *q;
E====) ensures \old(*p > *q) ==> *p == \old(*q) && *q ==
m===) ensures \old(*p <= *q) ==> *p == \old(*p) && *q == \old(*q);

*q) {

—

swap_if gt(*p
if (*p > *q)

swap(p, 9);

* Can generate relatively easy:

/*@
mmmmm) requires \valid(p) && \valid(q);
mmmmm) 3ssigns *p, *q;
mmmmmm) cnsures *p == \old(*q)
&& *q == \old(*p);
*/
swap (* p, *q)
{
tmp = *p;
*p = *q;
*q = tmp;
}

, auxiliary annotations

* May require large human effort: helper function contract

Contract generation

e Use SMC to generate functional annotations

* Ongoing MSc thesis

e Uses Eldarica (horn clause solver with C interface)

* Results promising, contract generation in seconds

Contract generation

e Use SMC to generate functional annotations

/*@ contract @*/ /*@
swap (* p, *q); // Functional contract generated

ensures *p == \old(*q)

// MC harness function && *q == \old(*p);
SV Eldarica v
X, y = nondet(); swap (* p, *q)
old x = x; > {
old y = vy; tmp = *p;
swap(&x, &y); *p = *q;
assert(x == old y & y == old_x); *q = tmp;

Conclusion

* Formal methods needed
* Complexity, software amount, autonomy, safety standards

* Deductive verification a great tool
* But requires automation (to nearly 100%)

* Other issues:
* Frama-C performance lacking
* Automated verification of floating-point arithmetic

Future work

Fully automated verification

* Continue work on automation

e Contract generation (under way)
* Loop invariant inference
* Model for temporal requirements

e Combine into automated toolchain

Integration into specification/requirements framework

Future work

r
Embedded software o
Formal verification

g Decision making sw Requirements
decomposition
analysis

Formal verification Testing

Formal verification

Formal verification

Testing Formal verification

Sensor reading sw Sensor reading sw Actuator control sw Actuator control sw

I I
I I
I I
I I
I I
I |
I I
I I
I |
I I
I I
I Sensor fusion sw Vehicle control sw :
| I
I I
I I
I I
I I
I I
I |
I I
I I
| Testing 1
I I

Simulated vehicle and environment

Integration into specification/requirements framework

The end

Thanks for listening!

Any questions?

