
Deductive verification of
industrial automotive C code

Christian Lidström

clid@kth.se

KTH Royal Institute of Technology

About me

• MSc thesis at Scania, spring 2016
• Deductive verification

• Consultant at Scania, 2016-2019
• Research on application of Formal Methods
• Various EU and Swedish projects

• PhD student at KTH since February
• Funded through AVerT

• “Automated Verificaton and Testing”
• Vinnova FFI project
• KTH, Scania collaboration

About Scania

• Manufacturer of heavy trucks and buses

• Worldwide production and sales

• 50,000 employees, 5,000 engineers

• >1,000,000 vehicles in operation, >300,000 connected

• 100,000 products
sold/year

Formal Methods at Scania

• Research >10 years

• Increased safety reqs.
• ISO 26262

• Autonomous vehicles

• Increased complexity
• Autonomy / Platooning

• Continuous integration

• One product line, billions
of variants

• More safety-critical SW

Deductive verification

• Deals with problems of:
• Complexity

• Number of variants

• Amount of SW

• Increased coverage

• Increased confidence in correctness

Possible states TesterTests Possible states Verification

Req

Req

Req

Req

• Tools:
• Frama-C (WP)
• VCC

Results of using mutation testing (inserting faults into the SW).

Benchmark results –
Testing vs formal verification

Fault piTest LBTest Deductive verification*

1 Not terminated Detected Detected

2 Undetected Detected Detected

3 Detected Undetected Detected

4 Not terminated Detected Detected

5 Undetected Detected Detected

6 Not terminated Undetected Detected

7 Detected Detected Detected

8 Undetected Detected Detected

9 Not terminated Detected Detected

10 Not terminated Detected Detected

Case study: Dual-Circuit Steering (STEE)

Requirement # Description

AER417_4 The vehicle is regarded as moving if vehicle speed signal is larger than 2km/h. The vehicle is regarded as
stationary if the vehicle speed is below 1km/h.

If WheelBasedVehicleSpeed > Vehicle Is Moving Limit
Vehicle Is Moving = True

If WheelBasedVehicleSpeed < Vehicle Is Stationary Limit
Vehicle Is Moving = False

AER417_10 If the vehicle is moving without the primary circuit providing power steering the secondary steering
circuit will be activated.

If PositionSensor == NoFlow AND Vehicle Is Moving == True
Vehicle Moving Without Primary Power Steering = True

Else
Vehicle Moving Without Primary Power Steering = False

AER417_15 If the vehicle is moving without the primary circuit providing power steering (see AER417_10) the
secondary steering circuit will be activated.

If Vehicle Moving Without Primary Power Steering == True
Secondary Circuit Handles Steering = True

STEE requirements

Requirements specified at module level

STEE requirements circuit

• Requirement AER417_4:

The vehicle is regarded as moving if vehicle speed signal is larger than 2km/h.
The vehicle is regarded as stationary if the vehicle speed is below 1km/h.

If WheelBasedVehicleSpeed > Vehicle Is Moving Limit
Vehicle Is Moving = True

If WheelBasedVehicleSpeed < Vehicle Is Stationary Limit
Vehicle Is Moving = False

• Requirement as function contract in C source code:

/*@

* ...

* ensures \old(rtdb_ov_s32_astr[RTDB_VEHICLE_SPEED_E]) > STEE_V_VEHICLE_MOV_LIM_S32)

* ==> model_VehicleIsMoving == \true;

* ensures \old(rtdb_ov_s32_astr[RTDB_VEHICLE_SPEED_E]) < STEE_V_VEHICLE_STAT_LIM_S32)

* ==> model_VehicleIsMoving == \false;

* ...

*/

void Stee_10ms(tB enabled_B);

From Requirements to Contracts

STEE Case study results

• 27 requirements in total

• 10 verified requirements (others not functional, module specific)

• Implementation file:
• 10 functions, ~1400 LoC (+24 header files included)

• Verification required:
• ~700 LoA
• 165 seconds (< 3 minutes) for full module
• 65 seconds for hardest function

11Gurov et al (2017): Deductive Functional Verification of Safety-Critical Embedded C-Code: An Experience Report

What about the downsides?

• Formal methods requires:
• Formal specifications/requirements

• High expertise among engineers

• Deductive verification:
• Requires even deeper knowledge (about tool/method)

• Requires large human annotation effort

• Tools lack features

• Tools have scalability issues

• Puts restrictions on code

Nyberg et al (2018): Formal Verification in Automotive Industry: Enablers and Obstacles

What about the downsides?

• Formal methods requires:
• Formal specifications/requirements

• High expertise among engineers

• Deductive verification:
• Requires even deeper knowledge (about tool/method)

• Requires large human annotation effort

• Tools lack features

• Tools have scalability issues

• Puts restrictions on code

Nyberg et al (2018): Formal Verification in Automotive Industry: Enablers and Obstacles

Solution:
automation

SG

R1 R2

R1.1

C code
module

R1.1.1 R1.1.2

R1.1

Specifier Tool Z3

Frama-C

Annotated C
code

module

Automated tool chain

Modular verification

• On function call: assert precondition, assume postcondition

• Helps with scalability, but adds contracting effort

/*@

requires \valid(p) && \valid(q);

assigns *p, *q;

ensures *p == \old(*q)

&& *q == \old(*p);

*/

void swap(int * p, int * q)

{

int tmp = *p;

*p = *q;

*q = tmp;

}

/*@

requires \valid(p) && \valid(q);

assigns *p, *q;

ensures \old(*p > *q) ==> *p == \old(*q) && *q == \old(*p);

ensures \old(*p <= *q) ==> *p == \old(*p) && *q == \old(*q);

*/

void swap_if_gt(int * p, int * q) {

if (*p > *q)

swap(p, q);

}

Inlining vs Contracting

• Inlining:
• Replacing function call with body of

called function

• Preferable when possible

• But… performance issues, no longer
modular verification

• “Barrier” modules helps

• Ongoing MSc thesis on heuristic to
predict “inlinable” functions

void swap_if_gt(int * p, int * q) {

if (*p > *q)

swap(p, q);

}

void swap(int * p, int * q) {

int tmp = *p;

*p = *q;

*q = tmp;

}

void swap_if_gt(int * p, int * q) {

if (*p > *q)

int tmp = *p;

*p = *q;

*q = tmp;

}

Inlined swap()

Automated annotation

• Can generate relatively easy: entry-point contract, auxiliary annotations

• May require large human effort: helper function contract

/*@

requires \valid(p) && \valid(q);

assigns *p, *q;

ensures *p == \old(*q)

&& *q == \old(*p);

*/

void swap(int * p, int * q)

{

int tmp = *p;

*p = *q;

*q = tmp;

}

/*@

requires \valid(p) && \valid(q);

assigns *p, *q;

ensures \old(*p > *q) ==> *p == \old(*q) && *q == \old(*p);

ensures \old(*p <= *q) ==> *p == \old(*p) && *q == \old(*q);

*/

void swap_if_gt(int * p, int * q) {

if (*p > *q)

swap(p, q);

}

Contract generation

• Use SMC to generate functional annotations

• Ongoing MSc thesis

• Uses Eldarica (horn clause solver with C interface)

• Results promising, contract generation in seconds

Contract generation

/*@

// Functional contract generated

ensures *p == \old(*q)

&& *q == \old(*p);

*/

void swap(int * p, int * q)

{

int tmp = *p;

*p = *q;

*q = tmp;

}

/*@ contract @*/

swap(int * p, int * q);

// MC harness function

void main() {

int x, y = nondet();

int old_x = x;

int old_y = y;

swap(&x, &y);

assert(x == old_y && y == old_x);

}

• Use SMC to generate functional annotations

Eldarica

Conclusion

• Formal methods needed
• Complexity, software amount, autonomy, safety standards

• Deductive verification a great tool
• But requires automation (to nearly 100%)

• Other issues:
• Frama-C performance lacking

• Automated verification of floating-point arithmetic

Future work

Fully automated verification

• Continue work on automation
• Contract generation (under way)

• Loop invariant inference

• Model for temporal requirements

• Combine into automated toolchain

Integration into specification/requirements framework

Future work

Integration into specification/requirements framework

The end

Thanks for listening!

Any questions?

