
Security & safety of autonomous vehicles:
a case study with TrustInSoft Analyzer

Alexandre Hamez, David Wagner, Fabien Lheureux, Stéphane Zimmermann,
Benjamin Monate

June 3rd, 2019

1



TrustInSoft

2



TrustInSoft

• Startup incorporated in 2013
• Created by former CEA LIST researchers

• Initial Frama-C creators
• Frama-C lead developers for 10 years

• Application of formal methods to sensitive software

• Safety: aero, auto, energy, rail
• Cyber-Security: aero, auto, cryptography, cyber, defense, telco

• Software publisher of TrustInSoft Analyzer

• Technical expertise in source code assessment
• Training

3



TrustInSoft Analyzer

• TIS-Kernel: fork of Frama-C with stability in mind

• C with non-standard extensions
• Scalability and maintainability
• Value: evolutions toward predictability and ease of usage
• WP: mostly unchanged but porting evolutions from public Frama-C releases
• Increase precision and scalability of dependency analysis
• Available under GPL

• TIS-Analyzer: companion tools and methodologies

• C++ support from C++98 up to almost C++17
• Support for I/O modeling (filesystem, network)
• Support for automatic analysis configuration
• Web-based GUI dedicated to efficient methodologies
• JSON API for continuous integration
• Training, methodology and standard materials

4



TrustInSoft Analyzer on a test suite

Required inputs :

• Source code
• Tests suite (software)

Outcome :

• Precision: each alarm is a true bug
• Minimizing the time to setup up the analysis
• Easy to integrate in the development process
• Possibility to combine with fuzzers

Finds tons of serious bugs with minimal efforts

5



TrustInSoft Analyzer with generalized tests

Using generalized values on test suites to increase coverage

/* Standard test driver */

void test_driver(void)

{

int a, b, c;

a = 22;

b = 17;

c = is_prime_factor(a, b);

return;
}

/* Generalized test driver */

void test_driver(void)

{

int a, b, c;

a = tis_interval(0, INT_MAX);

b = tis_interval(0, INT_MAX);

c = is_prime_factor(a, b);

return;
}

Generalized test_driver :

• Equivalent to 231 * 231 = 262 tests cases
• Explore all the combinations of a and b at the same time

6



Challenges

• Incremental verification is a must: standard metrics do not apply
• Fixing bugs takes more time that finding them: process integration
• Continuous Integration of formal verification
• Inherently, most of the C++ data structures are relational:

• Difficult when the analysis is not precise
• Incremental generalization allows to counterbalance this difficulty

7



EasyMile

8



EasyMile

• Founded in 2014
• Software vendor
• Vertical solution: from embedded to fleet management software
• 170 employees
• In 5 years:

• 230 deployments
• 600 000 km

9



Development process for autonomous vehicles at EasyMile

• As opposed to regular cars:
• We have few ECUs
• The logic is implemented on “off-the-shelf” x86 PCs
• The development environment is familiar to Linux C/C++ devs
(i.e. without the traditional “embedded software” constraints)

• Safety:
• ISO 26262 for the low-level safety layer
• Our approach is:

• The low-level safety layer (C) prevents any collision (through an
emergency stop)

• The higher-level (C++) software does the actual navigation

• Cybersecurity concerns:
• SAE J3061

• Availability:
• The target is: 24/7

10



Architecture

Navigation
Software (C++)

Core Control
(ECUs)

Fleet management3G/4G
gateway

gps

V2I

LiDAR

Camera

Ethernet

CAN

11



Why C++…

… rather than C or Ada?

• Performant
• Modern C++ introduces ways of preventing some classes of
programming mistakes

• Automatic memory management, without garbage collection
• Technical ecosystem (standard library, ROS, Eigen)
• Developer/recruitment pool

12



Feedback: C++ Navigation software - 2018

TIS for C++ specificites:

• The code is first translated to C; implicit constructs are explicited, such
as:

• constructors/automatic destruction;
• virtual methods;
• copy elision; …

• The STL is huge
• Name mangling, templates

13



Results

• Eight days over a one month period
• 3 developers learning TIS Analyzer
• 9 unit tests have been analyzed, some of which have been generalized
• Bugs found:

• 2 in our code (one of them repeated several times in a lib)
• 3 in our dependencies (boost, eigen, gtsam)
• 1 in LLVM’s C++ standard library
(https://bugs.llvm.org/show_bug.cgi?id=39354)

• Use of uninitialized memory
• Use of dangling references
• Use of invalid iterator
• Year 2262 bug

14

https://bugs.llvm.org/show_bug.cgi?id=39354


Results, example (1)

#include <cstdint>

template <size_t N>
void f(std::uint8_t (&bytes)[N], size_t offset)
{
for (auto i = 0; i < offset; ++i)
{
const auto mask = std::uint8_t{1} << (i % 8);
auto& byte = bytes[i / 8];

byte |= mask; // Use of uninitialized memory here
}

}

int main() {
std::uint8_t x[4]; // Uninitialized memory allocated here
f(x, 3);

}

/*@ assert Value: initialisation: \initialized(byte);*/
*byte = (unsigned char)((int)*byte | mask);

15



Results, example (2)

auto first = edges.begin();

auto last = std::prev(edges.end());

// Invalid iterator when "edges" is empty

// The above line is UB even if we never enter

// the loop

for (auto it = first; it != edges.end(); ++it)

{

f(*it);

}

16



Difficulties related to our use-case

• Floating point computation

• NaN and infinity are treated as errors
• whereas we regard them as special values/limit cases
• work in progress to change this behaviour

• Lots of trial and error to get the full sources needed by the analysis

• one of our analysis involved 35 source files
• tooling work ongoing to automate this

• System calls are specified (using ACSL)

• but they sometimes need to be stubbed to return arbitrary values
• in that case, all stubbed system calls involved need to be consistent
• and doing so reduces the scope for which the program is proven
UB-free

17



System calls difficulty example (1)

Year 2262 bug using clock_gettime :

struct timespec {
long tv_sec;
long tv_nsec;

};

/// Overflows April 11th, 2262 at 23:47:16
long nanoseconds = tv_sec * 1'000'000'000;

Initial workaround attempt:

int clock_gettime(clockid_t clk_id, struct timespec *tp) {
constexpr auto year_2262_bug = /* y2262_bug_time - epoch as nanoseconds */
tp->tv_sec = tis_long_interval(0, year_2262_bug - 1);
tp->tv_nsec = tis_long_interval(0, one_sec_in_ms - 1);
return 0;

}

18



System calls difficulty example (2)

The code involved in the analysis then uses gmtime_r to split a unix
timestamp into a date description:

/*@ requires \valid(__result);
assigns *__result \from *__timer;
assigns \result \from __result;
ensures \result == __result;
ensures \initialized(__result);

*/
struct tm *gmtime_r(const time_t *__timer,

struct tm *__restrict __result);

19



System calls difficulty example (3)

However, the ACSL specification leads to overapproximation (e.g. hours
greater than 23).

First take at stubbinggmtime_r :

result.tm_sec = tis_interval(0, 60);
result.tm_min = tis_interval(0, 59);
result.tm_hour = tis_interval(0, 23);
result.tm_mday = tis_interval(1, 31);
result.tm_mon = tis_interval(0, 11);
result.tm_year = tis_interval(0, 2038 - 1900);
result.tm_wday = tis_interval(0, 6);
result.tm_yday = tis_interval(0, 365);
tis_make_unknown((char *)&result.tm_isdst, sizeof(result.tm_isdst));

That will not do: this contains non-sense dates, such as February 31st.

20



System calls difficulty example (3)

Final stub: let’s us return an arbitrary date, 2018-10-18 (a Thursday, during
daylight savings time), 14:18:11.

result.tm_sec = 11;
result.tm_min = 19;
result.tm_hour = 14;
result.tm_mday = 18;
result.tm_mon = 10-1;
result.tm_year = 2018-1;
result.tm_wday = 4-1;
result.tm_yday = 291-1;
result.tm_isdst = 1;

But clock_gettime must now be consistent with gmtime_r and return
the same date:

tp->tv_sec = 1539872351;
tp->tv_nsec = 0;

Note: The program is only proved for that specific date.

21



Conclusions

• Putting static analysis tools and best practices in place prevented
many bugs or helped us detecting them early

• When TIS Analyzer finds a bug, it is quite easy to understand
• On the other hand, the tuning needed to refine false positives requires
some skill and some time

• Generally speaking, the more maintainable the code is, the easier it is
to analyze, encouraging us to:

• Move side effects/syscalls outside of the library code
• Analyze library code and user code (side-effects) separately
• Simplify the implementation of some algorithms or code constructs
• But this requires the ability to modify that code

• TIS Analyzer ensures us the code is free of any undefined behaviour
• Future standards for autonomous vehicles are not known but we’re
getting ahead

22



Questions ?

22


	TrustInSoft
	EasyMile

