Software for a Total Artificial Heart

Nils Brynedal Ignell

R&D engineer

+46 (0)70 730 65 33
nils.brynedal@realheart.se

www.realheart.se/en
info@realheart.se



Background

Today, heart disease is one of the leading causes of death in the western world

About 50,000 patients world wide are placed on a heart transplantation list
annually

Shortage of donor hearts is causing many patients to die before transplantation

REALHEA@T



Background

Scandinavian Real Heart is developing a Total Artificial Heart (TAH)

A Total Artificial Heart replaces the natural heart, unlike Ventricular assist
devices (VADs)

Initially intended for bridge-to-transplant therapy

Currently in a preclinical stage, meaning:
o Research and development

o No formal safety requirements for the development process (for cost
reasons)

o No testing in humans, mostly lab testing, but animal testing for verification

REALHEA@T



Design features

As realistic as possible
Pulsating outflow

Heart rate and stroke volume can be changed within realistic
ranges

Two halves that pump synchronously, each having:
o a BLDC motor, controlled by

e aSTM32F4 ARM microcontroller
o two valves (just as the human heart)

e an atrium and a ventricle (just as the human heart)




Battery A

Design overview

Mechanical heart

Battery B

Control box




Blood flow




The need for verification of the software

You don’t want your heart to crash or hang
There is no Ctrl + Alt + Del on the heart
You'd rather not try the typical “turning it off and on again” trick

You’d rather want it to work all the time...




Software verification via proof

« All software in written in Ada/SPARK

o« Some properties have been proved statically using GNATprove, for example:

o Correct data initialization and data flow

o Correct program flow

o No array access out-of-bounds

« No error-prone features such as pointers

o Settings (e.g. heart rate) guaranteed to be within bounds

o Stack usage verified with GNATstack




Examples of proven properties

o Specific type used for indexing an array type

type Phase Type is (PhaseA, PhaseB, Phase(C);

for Phase Type use (PhaseA => 0,
PhaseB => 1,
PhaseC => 2);

type Hall Sensor Values is array (Phase _Type) of Boolean;

o This allows SPARK to prove that every array access will be within bounds
o This use of types can be done in Ada, it does not require SPARK

REALHEAET



Examples of proven properties

procedure Update (This : in out PID Controller_Type;
Error : Float;
Delta Time : Time Sec; -- Seconds since last update
Output : out Float;
P_Out : out Float;
I Out : out Float;
D Out : out Float) with

Global => null,

Depends => ((This, I Out, D Out, Output) => (Error, Delta Time, This),
P Out => (Error, This)),

Pre => (Delta Time > 0.0);

o Verification of program flow:
e This procedure will not depend on, nor affect, any globals

e The output parameters This, |_Out, D_Out and Output shall depend on
Error, Delta_Time and This

e P_Out shall only depend on Error and This
o These properties will be proven by GNATprove




Examples of proven properties

o A type used to define heart rate is given a limited range

o This use of types can be done in Ada, does not require SPARK

Max_Heart Rate : constant Unsigned 8 := 170;
Min_Heart Rate : constant Unsigned 8 := 15;

type Heart Rate Type is range Min_Heart Rate .. Max Heart Rate;
for Heart_Rate Type'Size use 8;

o Maximum or minimum heart rate is easy to change




Examples of proven properties

Precondition: The buffer can’t be full before calling the procedure
Postcondition: The buffer can’t be empty after calling the procedure

procedure Put (This : 1n out CAN Buffer;
Message : in CAN Message Type) with
Pre => not Full (This),
Post => not Empty (This);

o Pre and post conditions are checked in Ada,
In SPARK they are proven by GNATprove (if possible)




But what if the buffer is full?

o« Handle it!
e Ordon’t!

procedure Push_To_Receive Buffer (Message : CAN_Message Type) 1is
Full : constant Boolean := Receive_Buffer.Full;
begin
-- Please note that nothing will be done if the Buffer is full,
-- the mesage will be lost!
if not Full then
Receive_Buffer.Put (Message);
end if;
end Push_To_Receive_Buffer;




Pros of software verification via proof

Lesser need for software testing (properties are proved rather than
tested)

Lesser need for code review

Errors detected earlier (during compiling or verification)
Fewer errors later during system testing

No “once in a blue moon” errors

Only logical errors
(i.e. it’s really my fault if the code doesn’t work... ®)




Cons of software verification via proof

(Yes, there are some...)

Risk of over-reliance on proof (not testing enough)

Remember, no matter how good your tools are, you still need to do a
good job!

It’s harder to google your problems (the Ada/SPARK world is small)
Steep up-front learning curve (you’re probably used to C/C++...)

Initially time consuming to write contracts
It is really hard to write contracts (other than trivial ones)




Advice for future users

Learn to use your tools
« Start with a small test project and play around with it, try all Ada/SPARK
features with on it
Begin with the end in mind
e Start with a good software architecture from the beginning
e Add contracts from the beginning
Ask for help, don’t bang your head against the wall...

...you can find better use for your head
...and for the wall




Nils Brynedal Ignell

R&D engineer

+46 (0)70 730 65 33
nils.brynedal@realheart.se

www.realheart.se/en
info@realheart.se

Questions?




