
Continuous Deductive 
Verification with Frama-C

Frama-C & SPARK Day 2019, Paris, France

Denis Efremov, efremov@ispras.ru

Jens Gerlach, jens.gerlach@fokus.fraunhofer.de

mailto:efremov@ispras.ru
mailto:jens.gerlach@fokus.fraunhofer.de


Continuous Verification
What problems we are trying to solve?

• Formal verification of a project (e.g., ACSL-By-Example)
• Global logic definitions (lemmas, common predicates, …)

• Changes in a toolchain

• Formal verification of a continuously developed project
• Developers != Verifiers

• Can’t be verified once and for all

• Verified code sometimes differs from the original one

• Need to maintain specifications to reflect code changes



Continuous Verification
What could we do?

• Continuous Integration (CI) + Verification == Continuous Verification (CV)

• Automation of proofs as much as possible
• Auto-active verification

• Special strategies for VCs transformations and solvers runs

• Contradiction checking
• Transformation (smoke detector in Why3)

• //@ assert 0 == 1; //@ check \false;

• Frequent replays of proofs

• Tracking of differences between the original and verified code
• In case verifiers can’t force developers to accept the verified code



Vessedia Project

• IoT Operating System (OS) Contiki
• More than 1000 commits in 2018 by 43 authors
• Changed more than a thousand files
• Added 70 thousand lines of code and deleted approximately 16 thousand

• Formal verification of parts of the Contiki with Frama-C/WP

• Verified parts: AES-CCM modules, lists functions, memory allocation module

• Project: https://www.vessedia.eu/

• Towards Formal Verification of Contiki: Analysis of the AES–CCM* Modules with Frama-C. A. Peyrard, N. Kosmatov, 
S. Duquennoy, S. Raza

• Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C. A. Blanchard, N. Kosmatov, F. Loulergue

• Formal Verification of a Memory Allocation Module of Contiki with Frama-C: a Case Study. F. Mangano, S. 
Duquennoy, N. Kosmatov

https://www.vessedia.eu/


AstraVer Project

• Verification of a closed-source access control system

• Size of code < 10.000 SLOC

• Constant development of code
• Started around 2014
• Need to maintain ACSL specifications
• Rewrote all specifications 3x times by now

• Project: http://www.ispras.ru/en/technologies/astraver_toolset/

• Deductive Verification of Unmodified Linux Kernel Library Functions. Efremov D., Mandrykin M., 
Khoroshilov A.

http://www.ispras.ru/en/technologies/astraver_toolset/


Our General Approach

• Store specifications next to the code
• Developers could benefit from specifications

• Store verification results of a previous run for Frama-C/WP

• Store verification sessions for Frama-C/AstraVer(Jessie)

• For every modified function (or for all verified functions)
1. Extricate it from the sources with all dependencies and specifications

2. Patch the extracted code to obtain the version ready for verification

3. Replay the verification

• Compare results with existing sessions or previous results



Step 1. Extricate. Motivation (1)
Size of code

• Unsupported features of the toolset:

• Blocks parsing: int128, asm goto, __builtin*, zero-size arrays, …

• Source code size:

• Module size: < 10 KSLOC
• Headers from the kernel: + 400 KSLOC (less than 100 KSLOC is 

relevant)

• It takes ~20 minutes for the tools to start and generate proof 
obligations

• Different functions can use different settings for the verification, e.g. 
–wp-model ‘Typed+Cast’ instead of the default model



Step 1. Extricate. Motivation (2)
Size of a verification task

•Other functions may force the verification tools to 
include additional theories to verification tasks
• A single bitwise operation from other function may lead 

to the inclusion of bitwise definitions to verification tasks

• “Unrelated” global definitions also extend verification 
tasks
• Sometimes it is possible to fully prove functions one 

by one, but it is hard to achieve the same for them 
together



Step 1. Extricate. Implementation

SELinux Callgraph sel_netport_sid_slow function

Extricate

GitHub: https://github.com/evdenis/spec-utils

https://github.com/evdenis/spec-utils


Step 1. Extricate. The example

struct S1 { int a; int b; }
struct S2 { struct S1 *s; ... }

int func1(int a, int b) {
...

}

int func2(struct S1 *s) {
func1(s->a, s->b);

}

int func3(struct S2 *s) {
func1(...);
func2(...);

}

struct S1 { int a; int b; }

int func1(int a, int *b);

int func2(struct S1 *s) {
func1(s->a, s->b);

}

Extricate func2



Step 2. Patch. Motivation (1)

• Not a mandatory step

• Verified Code != Original Code && Verifiers != Developers
• verification toolset is not able to handle a code pattern
• verification toolset does not support some verification features for now
• verification driven refactoring
• …

• Need to track the differences between a verified version and the original one
• Temporary step before either developers will accept the changes or verification 

toolchain will be improved

• A set of patches allows one to precisely track the issues and keep the same 
sources for the development and the verification
• Don’t need to resolve merge conflicts with specifications (prevents automation) or backport 

the patches



Step 2. Patch. Motivation (2)
Developers <-> Verification Engineers

C'est la vie:

Dreams for the future:

Developers: design, write, 
test, release code

Specifiers: do formal 
methods stuff

Code

Nothing

Specifications are
separate from code

Developers: design, write, 
test, release code

Specifiers: do formal 
methods stuff

Code

bug reports,
design decisions,
verification refactoring

The idea of the slide was borrowed 
from David R. Cok presentation



Step 2. Patch. Implementation

• ACSL specifications from a verified version
• Committed to the repository to the mainline development branch

• Without modifications of the code

• In case the verified version of code differs
• The modifications are local enough

• Semantic patching. Coccinelle tool - http://coccinelle.lip6.fr/

• Stable enough against development updates

http://coccinelle.lip6.fr/


Step 2. Patch. The example (1)

static void set_key(...) {

<...

-

memcpy(round_keys[0],key,AES_128_KEY_LEN

GTH);

+  for(i = 0; i < AES_128_KEY_LENGTH; 

i++) {

+    round_keys[0][i] = key[i];

+  }

...>

}

• The set_key function from 
Contiki-NG os/lib/ccm-star.c

• Verified version differs from 
original one by “inlining” the 
memcpy function

• Frama-C fails to reason about 
non-modified version

• Developers will not accept this 
change



Step 2. Patch. The example (2)

@@

expression E;

@@

- E << 2

+ E * 4

• Simple patch for replacing bitwise shift

• Not easy to convince the developers to 
get rid of it
• They tend to think this code looks smarter 

when they use it

• Makes Frama-C/WP cry

• Function pointer

• Doesn’t supported by Frama-C for now

• Can be replaced by the direct call

@set_key@

@@

- AES_128.set_key

+ set_key



Step 2. Patch. The example (3)

- void * list_tail(list_t list)

+ struct list * list_tail(list_t list)

{

+ int n;

...

- for(l = *list; l->next != NULL; l = l-
>next);

+ for(l = *list; l->next != NULL; l = l->next) 
{

+    //@ assert \valid(l);

+    //@ assert 0 <= n < \length(to_ll(*list, 
NULL))-1;

+    ++n;

+ }

...

}

• The list_tail function from 
Contiki-NG os/lib/list.c

• Replace “void *” with a concrete 
type

• Introduce additional local 
variable “n”

• Add body for the “for” loop 

• Ghost expression for a loop body 
is not currently supported by 
Frama-C



Step 2. Patch. The example (4). Fail

The Original Code

void list_remove(list_t list, void *item) {

struct list *l, *r;

if(*list == NULL) { return; }

r = NULL;
for(l = *list; l != NULL; l = l->next) {
if(l == item) {
if(r == NULL) {
*list = l->next;

} else {
r->next = l->next;

}
l->next = NULL;
return;

}
r = l;

}
}

The Verified Code

void list_remove(list_t list, struct list 
*item) {
if(*list == NULL) { return; }
if(*list == item) {
*list = (*list)->next ;
return;

}

struct list *l = *list;
int n = 0;
while(l->next != item && l->next != NULL){
l = l->next ;
++n;

}

if(l->next == item){
l->next = l->next->next ;

} else {
}

}



Step 3. Replay. Implementation

• Frama-C/WP doesn’t support sessions for now
• One needs to store the results of a previous run

• Check for results downgrade
• Could be due to a code change by developers
• Could be due to a global logical definitions change
• Could be due to a verification toolchain update
• Could be due to a server heavy load with other tasks (flickering)

• Frama-C/Jessie/Why3 replay

• Frama-C/WP run



Results

• Contiki-NG - https://github.com/evdenis/Contiki-NG
• Extrication + Semantic patches, 50 functions
• Replay based on a previous run

• AstraVer
• Extrication
• Tens of thousands verification conditions, replay takes about 6-7 hours
• Replay based on sessions and why3 strategies

• ACSL-By-Example - https://github.com/fraunhoferfokus/acsl-by-example
• Replay based on a previous run

• VerKer - https://github.com/evdenis/verker
• Replay based on sessions

https://github.com/evdenis/Contiki-NG
https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/evdenis/verker


Questions?



How do we manage specifications

• We store specifications next to the code
• Separate header files for axiomatizations (e.g., predicates, lemmas, logic 

functions)

• Contracts for functions in headers files

• Assertions and invariants in a body of a function

• Approximately 2.6 lines of specification for a single line of code

• We believe that a developer could benefit from specifications
• Even write a simple precondition

• At least he can update a code without touching specifications


