
The Why3 tool for deductive verification
and verified OCaml libraries

Jean-Christophe Filliâtre
CNRS

Frama-C & SPARK Day 2019

plan

1. an overview of Why3

2. a short demo

3. verified OCaml libraries

history

started in 2001, as an intermediate language in the process of
verifying C and Java programs (∼ Boogie)

today, joint work with

François Bobot

Claude Marché

Guillaume Melquiond

Andrei Paskevich

Why3: a deductive verification environment

• a logic

• a programming language, WhyML, with a VCGen

• a logic and programming library

• an interface with theorem provers

• a toolbox to build/save/update/replay proofs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Ada

your language

your VCs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

a logic

a total, polymorphic first-order logic, extended with

• algebraic data types and pattern matching

• recursive definitions

• (co)inductive predicates

• mapping type α→ β, λ-notation, application

[FroCos 2011, CADE 2013, VSTTE 2014]

a programming language

WhyML ∼ small subset of OCaml

• polymorphism

• pattern matching

• exceptions

• mutable data with controlled aliasing [ESOP 2013]

• ghost code and ghost data [CAV 2014]

• contracts, loop and type invariants

a library

• a logic library
• integers, real numbers, lists, sets, maps, sequences
• useful theories, e.g.

sum f a b
def
=

∑
a≤i<b

f (i)

numof p a b
def
= #{i | a ≤ i < b ∧ p(i)}

• a programming library
• references, arrays, stacks, queues, sets, maps
• floating-point arithmetic [ARITH 2007]

• machine integers

an interface with theorem provers

Why3 currently supports 25+ ITPs and ATPs

for each prover, a special “driver” file controls [Boogie 2011]

• logical transformations to apply

• input/output format

• predefined symbols, axioms to be removed

users can extend Why3 with support for a new theorem prover

a toolbox to handle proofs

proofs are built by

• applying logical transformations (e.g. splitting, case analysis)

• calling theorem provers

proofs are saved, for edition/replay in the future

proofs are updated automatically/heuristically
when changes occur (code, spec, environment) [VSTTE 2013]

2

a short demo

subsequence

a sequence v is a subsequence of u if v can be obtained by erasing
elements of u (possibly none)

devise and implement an algorithm to check whether v is a
subsequence of u in linear time

example

G R E E D Y

R E D

algorithm

subsequence(v , u)
def
=

i ← 0
j ← 0
while i < |v | ∧ j < |u|

if v [i] = u[j]
i ← i + 1

j ← j + 1
return i = |v |

in Why3 syntax

type char = int32

type word = array char

let is_subsequence (v u: word) (lv lu: int32) : bool

= let ref i = 0 in

let ref j = 0 in

while i < lv && j < lu do

if v[i] = u[j] then i <- i + 1;

j <- j + 1

done;

i = lv

gallery of verified programs

http://toccata.lri.fr/gallery/why3.en.html

more than 160 examples

• data structures: AVL, red-black trees, skew heaps, Braun
trees, ropes, resizable arrays, etc.

• sorting, graph algorithms, etc.

• solutions to most competition problems (VSComp, VerifyThis)

http://toccata.lri.fr/gallery/why3.en.html

3

verified OCaml libraries

VOCaL

ANR-funded project VOCaL (2015–2020)

partners:

• LRI, Univ Paris-Sud

• Gallium, Inria Paris

• PACSS, Verimag

• TrustInSoft

• OCamlPro

VOCaL — a Verified OCaml Library

a general-purpose data structures and algorithms library

• priority queues

• hash tables

• sequences

• sets / maps

• resizable arrays

• graph algorithms

• sorting

• searching

• union-find

• text algorithms

possible clients: Coq, Frama-C, Astrée, Infer, Alt-Ergo, Cubicle,
EasyCrypt, ProVerif, etc.

GOSPEL — a specification language for OCaml

interface files (.mli) are augmented with a formal specification

• within special comments (à la JML / ACSL)

• using a simple, first-order logic

• which can be ignored at first sight

implementation based on the OCaml parser

example — Vector.mli

(** Resizable arrays. ... *)

type ’a t

(** The type of resizable arrays. *)

(*@ ephemeral *)

(*@ mutable model view: ’a seq *)

(*@ invariant length view <= Sys.max_array_length *)

val init: dummy:’a -> int -> (int -> ’a) -> ’a t

(** [init dummy n f] creates a new ... *)

(*@ a = init ~dummy n f

requires 0 <= n <= Sys.max_array_length

ensures length a.view = n

ensures forall i. 0 <= i < n -> a.view[i] = f i *)

...

verifying OCaml code

we use a combination of three tools

• Why3

• CFML [Charguéraud, ICFP 2010]

• higher-order separation logic, within Coq
• targets pointer programs

• Coq
• automated translation to OCaml
• targets purely applicative programming

verifying OCaml code with Why3

OCaml Why3

.mli +
GOSPEL

specification

.ml
WhyML

code

tool

refinement proof

extraction

implements

challenges

• higher-order functions

• RTAC or not?

• proofs of complexity

• mutable state

• machine arithmetic

higher-order functions

sometimes you can assume functions to be pure

example:

val binary_search:

(’a -> ’a -> int) -> ’a array -> int -> int -> ’a -> int

(*@ r = binary_search cmp a fromi toi v

requires is_pre_order cmp

requires forall i j.

fromi <= i <= j < toi -> cmp a.(i) a.(j) <= 0

...

iteration

sometimes you cannot

val iter: (elt -> unit) -> set -> unit

two challenges here

• how to specify the iteration

• how to verify the implementation

we contributed

• a new way to specify iteration [NFM 2016]

• verified iterators, cursors, and lazy sequences [CPP 2017]

runtime assertion checking, or not?

VOCaL modules can be used in

• verified code
⇒ we prove that all preconditions are met

• unverified code
⇒ which behavior for a precondition that is not met?

we distinguish checks (runtime check) and requires

we provide two versions for each function
(with and without runtime checks)

example

val binary_search:

(’a -> ’a -> int) -> ’a array -> int -> int -> ’a -> int

(*@ r = binary_search cmp a fromi toi v

requires is_pre_order cmp

checks 0 <= fromi <= toi <= Array.length a

requires forall i j. fromi <= i <= j < toi ->

cmp a.(i) a.(j) <= 0

ensures ...

one precondition cannot be checked at runtime
one precondition would be too costly to check at runtime

proofs of complexity

beyond functional correctness,
we also prove worst-case complexity bounds

using time credits [JAR 2017, ESOP 2018]

non-trivial case study: union-find

val find: ’a elem -> ’a elem

(*@ r = find x [uf]

requires mem x uf

requires $(2 * alpha(card uf) + 4)

ensures r = repr uf x *)

mutable state

OCaml features mutable data structures, which means

• aliasing
• what about Vector.append v v ?

(so far, we assume disjoint arguments)

• ownership and permissions
• what about a container with mutable elements?

(so far, we assume owned elements)

contribution:
separation logic with read-only permissions [ESOP 2017]

machine arithmetic

we prove the absence of arithmetic overflows

risk of specification explosion

• additional preconditions in client code

• sometimes difficult to exhibit bounds

• precondition/proof sometimes not even possible

solution: machine integers with limited growth
[VSTTE 2015]

VOCaL so far

• eight verified modules (https://github.com/vocal-project)

module loc tool

HashTable 150 CFML

UnionFind 60 Why3,CFML

Lists 50 Coq

Vector 150 Why3

PairingHeap 42 Why3

ZipperList 58 Why3

Arrays 63 Why3

PriorityQueue 81 Why3

• publications
• project overview [ML 2017]

• complexity proofs [JAR 2017, ESOP 2018]

• case studies [VSTTE 2016 ×2, JAR 2017]

• iteration [NFM 2016, CPP 2017]

• mutable state [ESOP 2017]

https://github.com/vocal-project

