
3 June 2019

PROOF AND TEST WITH RICH SPARK 2014 CONTRACTS
Thomas Wilson, Altran UK

Copyright © 2019 Altran. All rights reserved.

AGENDA

1 The approach used

2 The system developed

3 Use of contracts during development

4 Use of contracts during static verification

5 Use of contracts during testing

6 Conclusions

THE APPROACH USED

 This project was our first use of SPARK 2014

 Previous use of SPARK 2005 and earlier

› Usually proof of absence of run-time exceptions

› Contracts provided to support that

 Planned approach for project utilising new

capabilities in SPARK 2014

› Combination of light and heavyweight contracts

› Combination of proof and test
Implementation Guidance for the Adoption of SPARK, AdaCore and Thales

https://www.adacore.com/books/implementation-guidance-spark

SPARK Assurance Levels

https://www.adacore.com/books/implementation-guidance-spark

THE SYSTEM DEVELOPED

 Embedded protection sub-system

› Monitors operation of a wider system and overrides behaviour if required to

maintain safety

› Developed to highest integrity under UK DEF STAN 00-56

Protection

Sub-System

Another

Sub-System

Another

Sub-System

System boundary

Sensor

Protection Sub-System

Another Sub-System

Actuator

Key

Model of this type of embedded protection sub-system in context of wider system

SCADE

Heavyweight SPARK
contracts

SPARK bodies

English

Lightweight SPARK
contracts

SPARK bodies with
built-in run-time checks

USE OF CONTRACTS DURING DEVELOPMENT – OVERVIEW

Review

Func Proof,

Test

Review,

RTE Proof,

Test

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS

package Operator_1

is

type SM_1_T is (State_1, State_2);

type State_T is

record

Local_1 : Base_Types.Float64;

Local_2 : Base_Types.Float64;

Operator_2_1_State : Operator_2.State_T;

SM_1 : SM_1_T;

Init_1_Evaluated : Boolean;

Operator_3_1_State : Operator_3.State_T;

end record;

type Result_T is

record

State : State_T;

Output_1 : Boolean;

end record;

function Initialise return State_T

with Post => (...);

function Update (Old_State : State_T;

Input_1 : Base_Types.Float64)

return Result_T

with Post => (...);

end Operator_1;

Package specification:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
(Operator_2.Result_T' (

State => Update'Result.State.Operator_2_1_State,

Output_1 => Update'Result.State.Local_2)

= Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Update'Result.State.Local_1)) and

Update function postcondition:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
(Operator_2.Result_T' (

State => Update'Result.State.Operator_2_1_State,

Output_1 => Update'Result.State.Local_2)

= Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Update'Result.State.Local_1)) and

(if Old_State.SM_1 = State_1 then

(if (Input_1 > Constants.Constant_2) then

Update'Result.State.SM_1 = State_2

else

Update'Result.State.SM_1 = Old_State.SM_1)) and

(if Old_State.SM_1 = State_2 then

Update'Result.State.SM_1 = Old_State.SM_1) and

Update function postcondition:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
(Operator_2.Result_T' (

State => Update'Result.State.Operator_2_1_State,

Output_1 => Update'Result.State.Local_2)

= Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Update'Result.State.Local_1)) and

(if Old_State.SM_1 = State_1 then

(if (Input_1 > Constants.Constant_2) then

Update'Result.State.SM_1 = State_2

else

Update'Result.State.SM_1 = Old_State.SM_1)) and

(if Old_State.SM_1 = State_2 then

Update'Result.State.SM_1 = Old_State.SM_1) and

(if Update'Result.State.SM_1 = State_1 then

Update'Result.State.Local_1 =

(if (Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated

then Old_State.Local_1 else 0.0) and

Update'Result.Output_1 = (Update'Result.State.Local_2 > 0.0) and

Update'Result.State.Init_1_Evaluated and

Update'Result.State.Operator_3_1_State =

Old_State.Operator_3_1_State) and

Update function postcondition:

(if Update'Result.State.SM_1 = State_2 then

Update'Result.State.Local_1 = (Input_1 * Constants.Constant_1) and

(Operator_3.Result_T' (

State => Update'Result.State.Operator_3_1_State,

Output_1 => Update'Result.Output_1)

= Operator_3.Update (

Old_State => (if Old_State.SM_1 = State_2 then

Old_State.Operator_3_1_State else Operator_3.Initialise),

Input_1 => Update'Result.State.Local_1,

Input_2 => Update'Result.State.Local_2)) and

Update'Result.State.Init_1_Evaluated =

Old_State.Init_1_Evaluated));

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
(Operator_2.Result_T' (

State => Update'Result.State.Operator_2_1_State,

Output_1 => Update'Result.State.Local_2)

= Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Update'Result.State.Local_1)) and

(if Old_State.SM_1 = State_1 then

(if (Input_1 > Constants.Constant_2) then

Update'Result.State.SM_1 = State_2

else

Update'Result.State.SM_1 = Old_State.SM_1)) and

(if Old_State.SM_1 = State_2 then

Update'Result.State.SM_1 = Old_State.SM_1) and

(if Update'Result.State.SM_1 = State_1 then

Update'Result.State.Local_1 =

(if (Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated

then Old_State.Local_1 else 0.0) and

Update'Result.Output_1 = (Update'Result.State.Local_2 > 0.0) and

Update'Result.State.Init_1_Evaluated and

Update'Result.State.Operator_3_1_State =

Old_State.Operator_3_1_State) and

Update function postcondition:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Result.State.Local_1 := (if (Result.State.SM_1 = State_1) then (if

((Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated)

then Old_State.Local_1 else 0.0) else (Input_1 *

Constants.Constant_1));

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Result.State.Local_1 := (if (Result.State.SM_1 = State_1) then (if

((Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated)

then Old_State.Local_1 else 0.0) else (Input_1 *

Constants.Constant_1));

Result.State.Init_1_Evaluated := (if (Result.State.SM_1 = State_1)

then True else Old_State.Init_1_Evaluated);

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Result.State.Local_1 := (if (Result.State.SM_1 = State_1) then (if

((Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated)

then Old_State.Local_1 else 0.0) else (Input_1 *

Constants.Constant_1));

Result.State.Init_1_Evaluated := (if (Result.State.SM_1 = State_1)

then True else Old_State.Init_1_Evaluated);

Result.State.Local_2 := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).Output_1;

Result.State.Operator_2_1_State := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).State;

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Result.State.Local_1 := (if (Result.State.SM_1 = State_1) then (if

((Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated)

then Old_State.Local_1 else 0.0) else (Input_1 *

Constants.Constant_1));

Result.State.Init_1_Evaluated := (if (Result.State.SM_1 = State_1)

then True else Old_State.Init_1_Evaluated);

Result.State.Local_2 := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).Output_1;

Result.State.Operator_2_1_State := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).State;

Result.Output_1 := (if (Result.State.SM_1 = State_1) then

(Result.State.Local_2 > 0.0) else Operator_3.Update (

Old_State => (if Old_State.SM_1 = State_2 then

Old_State.Operator_3_1_State else Operator_3.Initialise),

Input_1 => Result.State.Local_1,

Input_2 => Result.State.Local_2).Output_1);

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – SCADE REQS
Result.State.SM_1 := (if (Old_State.SM_1 = State_1) then (if

(Input_1 > Constants.Constant_2) then State_2 else

Old_State.SM_1) else Old_State.SM_1);

Result.State.Local_1 := (if (Result.State.SM_1 = State_1) then (if

((Old_State.SM_1 = State_1) and Old_State.Init_1_Evaluated)

then Old_State.Local_1 else 0.0) else (Input_1 *

Constants.Constant_1));

Result.State.Init_1_Evaluated := (if (Result.State.SM_1 = State_1)

then True else Old_State.Init_1_Evaluated);

Result.State.Local_2 := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).Output_1;

Result.State.Operator_2_1_State := Operator_2.Update (

Old_State => Old_State.Operator_2_1_State,

Input_1 => Result.State.Local_1).State;

Result.Output_1 := (if (Result.State.SM_1 = State_1) then

(Result.State.Local_2 > 0.0) else Operator_3.Update (

Old_State => (if Old_State.SM_1 = State_2 then

Old_State.Operator_3_1_State else Operator_3.Initialise),

Input_1 => Result.State.Local_1,

Input_2 => Result.State.Local_2).Output_1);

Result.State.Operator_3_1_State := (if (Result.State.SM_1 = State_2)

then Operator_3.Update (

Old_State => Old_State.Operator_3_1_State,

Input_1 => Result.State.Local_1,

Input_2 => Result.State.Local_2).State else

Old_State.Operator_3_1_State);

Update function body:

USE OF CONTRACTS DURING DEVELOPMENT – ENGLISH REQS

 Not all requirements amenable to specification in SCADE e.g.

› Interface requirements (implemented in abstraction layers of low-level software

and hardware)

› Non-functional requirements (implemented in software and hardware

architecture)

 Reverted to our previous style of proof of absence of run-time

exceptions, with contracts necessary to support that

 Additional built-in checks added for testing but not proof

› We didn’t prove these because we felt run-time checks were more appropriate

than static analysis

› When interfacing with hardware there is a lot more that can go wrong and

there are less solid assumptions on which to base static analysis

USE OF CONTRACTS DURING STATIC VERIFICATION

 Proof of implementations against SPARK contracts matching SCADE

and of absence of run-time exceptions in all code

 Challenges:

› Modifications required to SPARK derived from SCADE to support proof

o Mainly addition of type bounds to types, which was lacking from SCADE

o We addressed this by manually adding these to the SPARK

› Management of unproved VCs

o We didn’t prove 100% of the VCs

o Engineers made reasonable efforts to prove during development

o Proof experts worked on reducing these further periodically

o Static verification report written for releases including rigorous

argument for unproved VCs, which was reviewed

Proved Justified

USE OF CONTRACTS DURING TESTING – ENABLE ASSERTIONS

 We enabled run-time assertion checks, even proved ones

 This was because:

› Actually, not all VCs are proved (some are justified)

› It allows us to check the assumptions on which the static

analysis is based e.g. no hardware or compiler faults

› We can take some credit for these in the safety argument

 Run-time cost of checking contracts increases

exponentially with call hierarchy

› Execution time with all run-time checks enabled was over 100

times original

› Reduced to around 2.5 times original by disabling higher level

run-time contract checks

E
x

e
c

u
ti

o
n

 t
im

e

No assertion checks

All assertion checks

No high-level
assertion checks

USE OF CONTRACTS DURING TESTING – DEV MODULE TESTING

 If have built-in assertion checks that capture what you’re

interested in, all you need to do is generate inputs for tests

 We used a mixture of input generation schemes

 Random input generation

› Used during production of prototype of system to verify a

critical module, in which no defects were ever found

 Cross-product of interesting input values

› Simple but powerful technique when have assertions

› E.g. 80,402 interesting input combinations with 1 failure

 Stopped developer testing of proved modules because no

defects found

-1

0

1

T

F

Param1 Param2

-1 T

-1 F

0 T
…

Param1 Param2

Random input generation

Cross-product of interesting

input values

USE OF CONTRACTS DURING TESTING – IV&V SYSTEM TESTING

 Independent verification and validation team used a constrained random

input generation scheme together with a reference model

 No code faults found in code derived from SCADE requirements

› We did have some requirements faults, but not many

 There were considerably more requirements and code faults from

English requirements

› The causes typically involved ambiguity in some way

 Where faults in code derived from English requirements were caught by

built-in check failures, the faults were much easier to find

› It was otherwise difficult to debug failures found by the randomly generated

tests

USE OF CONTRACTS DURING TESTING – PROVED CHECKS FAIL

 After an update, various proved postconditions started

randomly failing

 The cause was found to be a low-level software fault

› Register values were being saved before interrupt handlers

› The registers were 64-bits but only 32-bits were typically used

and boot loader was only preserving 32-bits on an interrupt

› When we used 64-bit floating point operations within interrupt

handlers for the first time, if the interrupt handler interrupted a

floating point operation then the top 32-bits of the registers

could be corrupted

 This showed the ability of run-time assertion checks to

catch wider system issues

x1 x2

x2

x1 y1

x1 x2

x1 x2

x2

y1 y2

y1 x2

Interrupt

Interrupt

Save

Save

Restore

Restore

Interrupt using 32-bit ops

Interrupt using 64-bit ops

CONCLUSIONS

 Approach combining heavyweight and lightweight SPARK 2014

contracts and proof and test was usable at highest integrity level

 SPARK contracts can be a good intermediate form in code generation

 Assertions can be effective at finding bugs, even if not proved, when

combined with simple test input generation schemes

 Proof works! – no code errors found where full contracts proved

 Formal spec works! – much fewer errors for SCADE than English reqs

 Run-time assertions can help debug failures, particularly in gen. tests

 Enabling of run-time assertion checks worth considering even if proved

because can take credit for them and they can find real issues

Acknowledgement: This work was supported by the SECT-AIR project, funded by the

Aerospace Technology Institute and Innovate UK, as project number 113099.

