
Institut Supérieur de l’Aéronautique et de l’Espace

Teaching formal methods through Frama-C & SPARK
Frama-C and SPARK day 2019
Christophe Garion and Jérôme Hugues (and others)
ISAE-SUPAERO – DISC/IpSC

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 1/ 24



Outline

1 Context: ISAE-SUPAERO engineering program

2 SPARK by Example

3 Formal methods course in critical systems major

4 Conclusion

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 2/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

40h lecture on Algorithms and Programming in C: algorithms, C
programming, data structures (linked lists, BST, binary heaps,
graphs)

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

40h lecture on Object Oriented Design and Programming in Java
10h lecture on Integer Linear Programming in S3

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

S2 and S4 are dedicated to projects and 30h elective courses e.g.
functional and logic programming languages
implementation of control systems
systems architecture

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

Most students do a gap year between S4 and S5 with various experiences:
academic, internships, personal projects.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



ISAE-SUPAERO engineering program

ISAE-SUPAERO is one of the leading French “Grandes Écoles”, mainly
focused on aerospace, albeit offering other possibilities.

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

field of application (140h): aircraft operations & design, space
systems, energy, autonomous systems, decision systems, complex
systems modeling & simulation
major of expertise (240h) e.g. critical system architecture

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 3/ 24



Teaching formal methods at SUPAERO?

Why?
as the main industrial sector of SUPAERO is aerospace, it seems
legitimate
the students in the critical system architecture major should be
exposed to formal methods
it gives more visibility to CS as a science

Difficulties?
the “average” student has only be exposed to 90h of Computer
Science before the last year
other scientific courses in the common core mainly use continuous
mathematics
(almost) no background in useful mathematics for formal
methods: mathematical logic, calculability theory, SAT/SMT solving
etc.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 4/ 24



Teaching formal methods at SUPAERO?

Why?
as the main industrial sector of SUPAERO is aerospace, it seems
legitimate
the students in the critical system architecture major should be
exposed to formal methods
it gives more visibility to CS as a science

Difficulties?
the “average” student has only be exposed to 90h of Computer
Science before the last year
other scientific courses in the common core mainly use continuous
mathematics
(almost) no background in useful mathematics for formal
methods: mathematical logic, calculability theory, SAT/SMT solving
etc.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 4/ 24



Two experiments

Common core
S1 (600h)

CS

scientific

hum.

management

projects

Common core
S3 (500h)

CS

scientific

hum.

management

S5 (550h)

field

major

hum.

management

SPARK by Example with two 2nd year students during semester 4
“classic” formal methods lecture in critical system architecture
major

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 5/ 24



Outline

1 Context: ISAE-SUPAERO engineering program

2 SPARK by Example

3 Formal methods course in critical systems major

4 Conclusion

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 6/ 24



Learning how to prove programs with SPARK

How to learn how to prove complex programs with SPARK?

function Inc (X : Integer) return Integer with
Pre => X < Integer'Last - 1,
Post => Inc'Result = X + 1,
SPARK_Mode is
begin

return X + 2 - 1;
end Inc;

how to go there?

Dross, Claire and Yannick Moy (2017).
“Auto-Active Proof of Red-Black Trees in SPARK”.
In: NASA Formal Methods .

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 7/ 24



Available material for learning

For the moment, there are several resources for learning SPARK:
SPARK 2014 User’s Guide by AdaCore

å requires familiarity with Ada and some previous knowledge on
formal verification

Building High Integrity Applications with SPARK by John
McCormick and Peter Chapin

å focuses on programming rather than verifying with SPARK
Introduction to SPARK by AdaCore, an interactive tutorial available
on https://learn.adacore.com/

Our impression
Still need a “recipe” document that shows how to develop and prove
SPARK programs through classic CS algorithms.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 8/ 24

http://docs.adacore.com/spark2014-docs/html/ug/index.html
https://learn.adacore.com/courses/intro-to-spark/index.html
https://learn.adacore.com/


Available material for learning

For the moment, there are several resources for learning SPARK:
SPARK 2014 User’s Guide by AdaCore

å requires familiarity with Ada and some previous knowledge on
formal verification

Building High Integrity Applications with SPARK by John
McCormick and Peter Chapin

å focuses on programming rather than verifying with SPARK
Introduction to SPARK by AdaCore, an interactive tutorial available
on https://learn.adacore.com/

Our impression
Still need a “recipe” document that shows how to develop and prove
SPARK programs through classic CS algorithms.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 8/ 24

http://docs.adacore.com/spark2014-docs/html/ug/index.html
https://learn.adacore.com/courses/intro-to-spark/index.html
https://learn.adacore.com/


In the C world

There is of course a platform for deductive verification of C programs
specified by ACSL, namely Frama-C.

Good references are also available:
ACSL Frama-C implementation
Frama-C user manual
WP plugin manual

Jens Gerlach and al. at Fraunhofer Institute have produced a guide,
“ACSL by Example”:

specification, implementation and proof of classic CS algorithms
extracted from the C++ Standard Template Library
see https://fraunhoferfokus.github.io/acsl-by-example/

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 9/ 24

https://fraunhoferfokus.github.io/acsl-by-example/
https://fraunhoferfokus.github.io/acsl-by-example/


In the C world

There is of course a platform for deductive verification of C programs
specified by ACSL, namely Frama-C.

Good references are also available:
ACSL Frama-C implementation
Frama-C user manual
WP plugin manual

Jens Gerlach and al. at Fraunhofer Institute have produced a guide,
“ACSL by Example”:

specification, implementation and proof of classic CS algorithms
extracted from the C++ Standard Template Library
see https://fraunhoferfokus.github.io/acsl-by-example/

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 9/ 24

https://fraunhoferfokus.github.io/acsl-by-example/
https://fraunhoferfokus.github.io/acsl-by-example/


SPARK by Example: the contract

Idea
provide a booklet in the spirit of “ACSL by Example” in which
students can find classical algorithms and learn SPARK
“hands-on”
start from each function presented in “ACSL by Example”
write a SPARK version of this function, first by translating the C
function signature and then by trying to “SPARKify” the
function
compare both approaches

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 10/ 24



Guinea pigs: our students

Fortunately, we have plenty of students that can be used as guinea pigs
to experiment with SPARK ,

Léo Creuse Joffrey Huguet

some background knowledge in theoretical CS (automata,
propositional logic), functional programming (Caml) and maths
no previous knowledge of formal methods, Ada nor SPARK
small introduction to Floyd-Hoare logic and how to specify programs
in SPARK

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 11/ 24



Experiment

Objective
Will Léo and Joffrey be able to implement, prove and document all al-
gorithms from ACSL by Example in SPARK with the 2018 Community
Edition of SPARK during a 5-months internship?

Answer
Yes, they did it in less than 3 months!

Creuse, Léo et al. (2018).
“SPARK by Example: an introduction to formal verification
through the standard C++ library”.
In: Proceedings of HILT 2018 .

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 12/ 24



Experiment

Objective
Will Léo and Joffrey be able to implement, prove and document all al-
gorithms from ACSL by Example in SPARK with the 2018 Community
Edition of SPARK during a 5-months internship?

Answer
Yes, they did it in less than 3 months!

Creuse, Léo et al. (2018).
“SPARK by Example: an introduction to formal verification
through the standard C++ library”.
In: Proceedings of HILT 2018 .

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 12/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors
6 heap: a classical implementation of a binary heap with an array

å the most difficult chapter
7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors
6 heap: a classical implementation of a binary heap with an array

å the most difficult chapter
7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms

4 mutating algorithms: copy an array, swap values, replace value etc.
å first chapter with significant differences between ACSL by Ex-

ample and SPARK by Example
å using lemmas functions in proofs

5 numeric algorithms
å focuses on overflow errors

6 heap: a classical implementation of a binary heap with an array
å the most difficult chapter

7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs

5 numeric algorithms
å focuses on overflow errors

6 heap: a classical implementation of a binary heap with an array
å the most difficult chapter

7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors

6 heap: a classical implementation of a binary heap with an array
å the most difficult chapter

7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors
6 heap: a classical implementation of a binary heap with an array

å the most difficult chapter

7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors
6 heap: a classical implementation of a binary heap with an array

å the most difficult chapter
7 sorting algorithms: quick chapter

8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Algorithms proved

Algorithms presented in ACSL by Example and SPARK by Example are
extracted from the C++ Standard Template Library (STL):

1 non-mutating algorithms: find first occurence of an element in an
array, count the number of occurrences of an element in an array etc.

2 maxmin algorithms return the maximum and minimum value of an
array

3 binary search algorithms
4 mutating algorithms: copy an array, swap values, replace value etc.

å first chapter with significant differences between ACSL by Ex-
ample and SPARK by Example

å using lemmas functions in proofs
5 numeric algorithms

å focuses on overflow errors
6 heap: a classical implementation of a binary heap with an array

å the most difficult chapter
7 sorting algorithms: quick chapter
8 classic sorting: selection sort, insertion sort, heap sort

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 13/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…

… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)
only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)
two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof
understanding how SMT solvers work

å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…
… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)

only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)
two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof
understanding how SMT solvers work

å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…
… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)
only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)

two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof
understanding how SMT solvers work

å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…
… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)
only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)
two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof
understanding how SMT solvers work

å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…
… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)
only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)
two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof

understanding how SMT solvers work
å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Result

it is possible to prove (relatively) complex algorithms without
previous knowledge of formal methods…
… but with help of the community (thanks Claire, Yannick and
people from the spark2014-discuss mailing list!)
only SMT solvers were used to prove all algorithms (no need to learn
Coq for instance)
two difficult points:

using lemmas through ghost functions to help automatic provers
when proving complex functions

å you have to discover the mathematical proof
understanding how SMT solvers work

å quantifiers nesting
å understand triggers
å understand counterexamples

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 14/ 24



Outline

1 Context: ISAE-SUPAERO engineering program

2 SPARK by Example

3 Formal methods course in critical systems major

4 Conclusion

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 15/ 24



Content of the critical systems major

Critical systems
major (240h)

FITR301

FITR302

FITR303FITR304

FITR305

FITR306 FITR301 Network and Computer Architecture
FITR302 Security
FITR303 Real-time Systems
FITR304 Model-Based Engineering
FITR305 Distributed Systems
FITR306 Conferences

FITR304 “Model-Based Engineering” is a 55h lecture with two parts:
a 38h part on SysML and SCADE
a 17h slot for formal methods for validation…

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 16/ 24



Content of the formal method part

1 introduction lecture: what are formal methods, industrial use,
programming languages semantics

2 the students choose one particular formal method through a track
(4 students per track):

model checking (J. Brunel – ONERA)
abstract interpretation (P.-L. Garoche – ONERA)
deductive methods with SPARK (C. Dross – AdaCore)
deductive methods with Frama-C (C. Garion – ISAE-SUPAERO)

3 for each track, 6 2h sessions mixing theoretical concepts and labs
å each track has a specific project to do

4 each student group has 30 minutes to present to the other groups
the principles of the technique they used, their result, what was
difficult etc.

5 a 2h industrial feedback made by S. Duprat (ATOS) on how
(aerospace) industry uses formal methods

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 17/ 24



Frama-C tracks content

A very classic presentation:
what is a proof? Formal systems for prop. logic and FOL
Floyd-Hoare logic
manual annotation of small algorithms (factorial, GCD etc.) to
understand weakest-preconditions
Frama-C and WP plugin presentation
gradual hands-on labs to discover Frama-C/WP from basics to
axiomatization, pointers, memory separation etc.

å top-down presentation: from theory to practise

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 18/ 24



SPARK track content

Claire has a more incremental approach using stronger and stronger levels
of verification.

AdaCore and Thales (2018).
Implementation Guidance for the Adoption of SPARK.
https : / / www . adacore . com / books / implementation -
guidance-spark.

stone level
valid SPARK

bronze level
init. + data flow

silver level
AoRTE

gold level
contracts

å bottom-up presentation

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 19/ 24

https://www.adacore.com/books/implementation-guidance-spark
https://www.adacore.com/books/implementation-guidance-spark


Associated projects

Two (similar) projects are done in both tracks.
Frama-C track: develop a tiny library on strings
int strlen(const char *str);
void strsubstring(char *dst, const char *src, int start, int length);
void strappend(char *dst, const char *src);

An (incomplete) axiomatization for strlen is given to students.
They have to specify, implement and prove the three functions.
SPARK track: prove a small part of Ada.Strings.Fixed GNAT
library
function Index
(Source : String;
Set : Maps.Character_Set;
Test : Membership := Inside;
Going : Direction := Forward) return Natural;

...

Students have to specify and prove 12 functions.

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 20/ 24



Students feedback on deductive tracks

Pros
students complete both projects
it is cool for them to prove programs
industrial feedback is important

Cons
in such a small amount of time, top-down approach is not
efficient

å better to quickly use Frama-C/SPARK and present theory
when needed

it is not cool for them to write specifications
they lack theoretical background for complex specifications

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 21/ 24



Students feedback on deductive tracks

Pros
students complete both projects
it is cool for them to prove programs
industrial feedback is important

Cons
in such a small amount of time, top-down approach is not
efficient

å better to quickly use Frama-C/SPARK and present theory
when needed

it is not cool for them to write specifications
they lack theoretical background for complex specifications

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 21/ 24



Outline

1 Context: ISAE-SUPAERO engineering program

2 SPARK by Example

3 Formal methods course in critical systems major

4 Conclusion

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 22/ 24



Conclusion

It is possible for non-experts to use Frama-C/SPARK to prove “relatively
complex” programs.

But they sometimes lack knowledge/background to:
understand how SMT solvers work and why they may fail
understand what is decidable or not
write complex specifications

Industrial feedback by S. Duprat and also C. Dross is important to
confort students that these techniques are used in real life.

Some ideas:
begin with Why3 and WhyML instead of “real” programming
languages
add more formal methods with TLA+ in the distributed algorithms
course
create a S4 30h optional course on reliable software

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 23/ 24



Conclusion

It is possible for non-experts to use Frama-C/SPARK to prove “relatively
complex” programs.

But they sometimes lack knowledge/background to:
understand how SMT solvers work and why they may fail
understand what is decidable or not
write complex specifications

Industrial feedback by S. Duprat and also C. Dross is important to
confort students that these techniques are used in real life.

Some ideas:
begin with Why3 and WhyML instead of “real” programming
languages
add more formal methods with TLA+ in the distributed algorithms
course
create a S4 30h optional course on reliable software

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 23/ 24



Conclusion

It is possible for non-experts to use Frama-C/SPARK to prove “relatively
complex” programs.

But they sometimes lack knowledge/background to:
understand how SMT solvers work and why they may fail
understand what is decidable or not
write complex specifications

Industrial feedback by S. Duprat and also C. Dross is important to
confort students that these techniques are used in real life.

Some ideas:
begin with Why3 and WhyML instead of “real” programming
languages
add more formal methods with TLA+ in the distributed algorithms
course
create a S4 30h optional course on reliable software

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 23/ 24



Thanks for your attention

Coffee is just waiting for you, but you can ask
questions!

Christophe Garion and Jérôme Hugues (and others) Frama-C/SPARK 19 24/ 24


	Context: ISAE-SUPAERO engineering program
	SPARK by Example
	Formal methods course in critical systems major
	Conclusion

