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What is NIST?
l U.S. National Institute of Standards and Technology
l A non-regulatory agency in Dept. of Commerce
l 3,000 employees + adjuncts
l Gaithersburg, Maryland and Boulder, Colorado
l Primarily research, not funding
l Over 100 years in standards and measurements: 

from dental ceramics to microspheres, from quantum 
computers to fire codes, from body armor to DNA 
forensics, from biometrics to text retrieval



Who Cares About Good Software?
l The White House Office of 

Science and Technology 
Policy (OSTP) asked NIST to 
compile a list of approaches 
to dramatically reduce 
software vulnerabilities.
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What DRSV Covers

l Vulnerabilities
l New and existing code
l Approaches in 5 areas that may have 

dramatic impact in three to seven years.
l Other stuff

– Software measures
– Education, contracts, and other non-technical 

matters
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2.1 Formal Methods

l Assertions, Pre- and Postconditions, 
Invariants, Aspects, and Contracts

l Correct-by-Construction & Model-Based

l Directory of Verified Tools and Code

l Cyber Retrofitting

l Sound Static Analysis

l Model Checkers, SAT Solvers, and Other 

“Light Weight” Decision Algorithms
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Cyber Retrofitting

l Can’t rework all existing code.
l Instead, identify key components.
l One approach is to 

recompile with 
built-in hardening.
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Model Checkers, SAT Solvers, etc.
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((a /\ b /\ d) ⌵ (g /\ f /\ d) ⌵ • • •
•   •   •   •   •   •   •

• • • ⌵ (k /\ m /\ q))

SAT 
Solver

Attack path: a → g → f → q



I will return to formal methods and 
sound static analysis later. For now, 
on with DRSV …
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2.2 System Level Security

l Containers
l Microservices
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2.3 Additive Software Analysis

l Software Information Exchange Standards
l Tool Analysis Exchange Framework
l Strategy and Technology to Combine 

Analysis
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2.4 Domain-Specific Software 
Development Frameworks
l Finding and Learning New Frameworks
l Resolving Dependencies, Conflicts, and 

Incompatibilities
l Rapid Framework Adoption
l Advanced Test Methods
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2.5 Moving Target Defenses and 
Automatic Software Diversity
l Compile-Time Techniques
l System or Network 

Techniques
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Section 3. Measures & Metrics

l Deals with software product, not process
l Four dimensions of software measures

– Level, e.g. high or low

– Static or dynamic

– Point of view: exterior (blackbox) or interior

– Property: Buginess, Quality, Corectness

l In the “Metric System”, counted quantities 
are all dimensionless.
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l Quote DRSV to support the use of formal 
methods.
– “The absence of flaws does not indicate the 

presence of excellence.” Sect. 3, page 30
– “While previously deemed too time-

consuming, formal methods have become 
mainstream in many behind-the-scenes 
applications and show significant promise for 
both building better software and for 
supporting better testing.” Sect. 4.4, page 43 
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What are Formal Methods?
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Romans and 
medieval Europeans 
built great structures,

… but expertise passed haphazardly 
from master to apprentice.
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l Formal Methods are “techniques 
based on mathematical 
foundations and analysis.”†

– Program model,
– Specifications, and
– Rules to analyze their relations.

l Chief benefit: 100% coverage of 
design space

l Chief drawback: difficulty 
building models and reasoning

† Black, Hall,  Jones, Larson, and Windley, �A Brief Introduction 
to Formal Methods,� IEEE CICC 96, pp. 377-380



The Specification

l Unambiguous statements of desired 
behaviors, properties, etc.

l May be comprehensive or may be just a 
few critical requirements

l Choose level of abstraction
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Use Assertions, Pre- and Post-
conditions, Invariants, etc.
l Programmers think the software is right –

write down why!
l Disadvantage (?): It takes extra thought to 

express exactly what is happening.
l Benefits:

– Generate tests automatically
– Detect faults earlier
– Enable proofs
– Stay consistent with code

19



Ariane 5: A Striking Example
l 1996 first flight of Ariane 5 failed.
l If the code had a precondition, “Any team worth its salt 

would have checked … [preconditions, which] would have 
immediately revealed that the 
Ariane 5 calling software did 
not meet the expectation of the
Ariane 4 routines that it called.”
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Reasoning & Rules for Analysis

l Some methods (�logics�) are
– model checking
– theorem proving
– equivalence checking
– stress analysis

l Some methods are automatic.
l Other methods are interactive.
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Use Formal Methods Wisely

l Be sure that assumptions, limitations, and 
sensitivities are justified.

l Remember: it does not answer questions 
you don�t ask.



How Do I Get Good Software?
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Assurance in 
the Software

Construction Analysis

Resilient
Execution



Construction

l Code should be analyzable.
l Limits: Halting Problem, Rice’s Theorem
l Good tools are vital to safely 

use languages.
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Two Approaches to Analysis: 
Static and Dynamic
Static Analysis
l Code review
l Binary, byte, or source 

code scanners
l Model checkers & property 

proofs
l Assurance case

Dynamic Analysis
l Execute code
l Simulate design
l Fuzzing, coverage, MC/DC, 

use cases
l Penetration testing
l Field tests



Static and Dynamic Analysis 
Complement Each Other
Static Analysis
l Handles unfinished 

code
l Higher level artifacts
l Can find backdoors, 

e.g., full access for user 
name “JoshuaCaleb”

l Potentially complete

Dynamic Analysis
l Code not needed, e.g., 

embedded systems
l Has few(er) 

assumptions
l Covers end-to-end or 

system tests
l Assess as-installed



Dimensions of Analysis
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Different Static Analyzers Exist 
For Different Purposes
l To check intellectual property violation
l For developers to decide what needs to be 

fixed (and learn better practices)
l For auditors or reviewer to decide if it is 

good enough for use



What do I Mean by ”Sound”?

l Based on mathematical concepts; 
amenable to provable reasoning; 
yielding guaranteed results.

l “A deductive system is sound if and only if every 
statement that can be deduced is true.” [Ockham]
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Sound Does Not Mean Perfect
data = Float.parseFloat(stringNumber.trim());

if (Math.abs(data) > 0) {

int result = (int)(100.0 / data);

IO.writeLine(result);

} 
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data: [MIN_VALUE, MAX_VALUE]

data: [MIN_VALUE, MAX_VALUE]



Sound Static Analysis

l Guarantee that no bug escapes.
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Program

•  •  •

•  •  •

•  •  •

•  •  •



Sound Static Analysis
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“The best way to prevent BOF is to 
reduce the use of C.”
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— A colleague and me, just a year and a half ago



Higher-Level Languages

l Correct-by-construction
– Model-based development
– Design by refinement
– Domain-specific languages

l Developer rarely touches low level code.
l May generate test suites, UI with help, etc.
l Systematic concerns can be built-in.
l Disadvantages: requires huge effort to 

design, build, and prove language suites.
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Society has 3 options:

l Accept failing software

l Limit size or authority of software

l Learn how to make software 
that works
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Buckle Up, Buttercup
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