
Sound Static Analysis:
5-point seat belts for your code

1

Paul E. Black
paul.black@nist.gov

Certain trade names and company products are mentioned. Such identification does
not imply recommendation or endorsement by the National Institute of Standards and
Technology (NIST) nor that the products are necessarily the best available.

27 June 2018

28 June 2018 Paul E. Black

2

What is NIST?
l U.S. National Institute of Standards and Technology
l A non-regulatory agency in Dept. of Commerce
l 3,000 employees + adjuncts
l Gaithersburg, Maryland and Boulder, Colorado
l Primarily research, not funding
l Over 100 years in standards and measurements:

from dental ceramics to microspheres, from quantum
computers to fire codes, from body armor to DNA
forensics, from biometrics to text retrieval

Who Cares About Good Software?
l The White House Office of

Science and Technology
Policy (OSTP) asked NIST to
compile a list of approaches
to dramatically reduce
software vulnerabilities.

3

What DRSV Covers

l Vulnerabilities
l New and existing code
l Approaches in 5 areas that may have

dramatic impact in three to seven years.
l Other stuff

– Software measures
– Education, contracts, and other non-technical

matters

4

2.1 Formal Methods

l Assertions, Pre- and Postconditions,
Invariants, Aspects, and Contracts

l Correct-by-Construction & Model-Based

l Directory of Verified Tools and Code

l Cyber Retrofitting

l Sound Static Analysis

l Model Checkers, SAT Solvers, and Other

“Light Weight” Decision Algorithms

5

Cyber Retrofitting

l Can’t rework all existing code.
l Instead, identify key components.
l One approach is to

recompile with
built-in hardening.

6

Model Checkers, SAT Solvers, etc.

7

((a /\ b /\ d) ⌵ (g /\ f /\ d) ⌵ • • •
• • • • • • •

• • • ⌵ (k /\ m /\ q))

SAT
Solver

Attack path: a → g → f → q

I will return to formal methods and
sound static analysis later. For now,
on with DRSV …

8

2.2 System Level Security

l Containers
l Microservices

9

2.3 Additive Software Analysis

l Software Information Exchange Standards
l Tool Analysis Exchange Framework
l Strategy and Technology to Combine

Analysis

10

2.4 Domain-Specific Software
Development Frameworks
l Finding and Learning New Frameworks
l Resolving Dependencies, Conflicts, and

Incompatibilities
l Rapid Framework Adoption
l Advanced Test Methods

11

2.5 Moving Target Defenses and
Automatic Software Diversity
l Compile-Time Techniques
l System or Network

Techniques

12

Section 3. Measures & Metrics

l Deals with software product, not process
l Four dimensions of software measures

– Level, e.g. high or low

– Static or dynamic

– Point of view: exterior (blackbox) or interior

– Property: Buginess, Quality, Corectness

l In the “Metric System”, counted quantities
are all dimensionless.

13

l Quote DRSV to support the use of formal
methods.
– “The absence of flaws does not indicate the

presence of excellence.” Sect. 3, page 30
– “While previously deemed too time-

consuming, formal methods have become
mainstream in many behind-the-scenes
applications and show significant promise for
both building better software and for
supporting better testing.” Sect. 4.4, page 43

14

What are Formal Methods?

15

16

Romans and
medieval Europeans
built great structures,

… but expertise passed haphazardly
from master to apprentice.

17

l Formal Methods are “techniques
based on mathematical
foundations and analysis.”†

– Program model,
– Specifications, and
– Rules to analyze their relations.

l Chief benefit: 100% coverage of
design space

l Chief drawback: difficulty
building models and reasoning

† Black, Hall, Jones, Larson, and Windley, �A Brief Introduction
to Formal Methods,� IEEE CICC 96, pp. 377-380

The Specification

l Unambiguous statements of desired
behaviors, properties, etc.

l May be comprehensive or may be just a
few critical requirements

l Choose level of abstraction

18

Use Assertions, Pre- and Post-
conditions, Invariants, etc.
l Programmers think the software is right –

write down why!
l Disadvantage (?): It takes extra thought to

express exactly what is happening.
l Benefits:

– Generate tests automatically
– Detect faults earlier
– Enable proofs
– Stay consistent with code

19

Ariane 5: A Striking Example
l 1996 first flight of Ariane 5 failed.
l If the code had a precondition, “Any team worth its salt

would have checked … [preconditions, which] would have
immediately revealed that the
Ariane 5 calling software did
not meet the expectation of the
Ariane 4 routines that it called.”

20

Reasoning & Rules for Analysis

l Some methods (�logics�) are
– model checking
– theorem proving
– equivalence checking
– stress analysis

l Some methods are automatic.
l Other methods are interactive.

21

23

Use Formal Methods Wisely

l Be sure that assumptions, limitations, and
sensitivities are justified.

l Remember: it does not answer questions
you don�t ask.

How Do I Get Good Software?

24

Assurance in
the Software

Construction Analysis

Resilient
Execution

Construction

l Code should be analyzable.
l Limits: Halting Problem, Rice’s Theorem
l Good tools are vital to safely

use languages.

25

Two Approaches to Analysis:
Static and Dynamic
Static Analysis
l Code review
l Binary, byte, or source

code scanners
l Model checkers & property

proofs
l Assurance case

Dynamic Analysis
l Execute code
l Simulate design
l Fuzzing, coverage, MC/DC,

use cases
l Penetration testing
l Field tests

Static and Dynamic Analysis
Complement Each Other
Static Analysis
l Handles unfinished

code
l Higher level artifacts
l Can find backdoors,

e.g., full access for user
name “JoshuaCaleb”

l Potentially complete

Dynamic Analysis
l Code not needed, e.g.,

embedded systems
l Has few(er)

assumptions
l Covers end-to-end or

system tests
l Assess as-installed

Dimensions of Analysis

Syntactic Heuristic Analytic Formal

General
(implicit)

Application
(explicit)

Source
Byte code

Binary

Level of Rigor

Pr
op

er
tie

s

Subject
Design

Different Static Analyzers Exist
For Different Purposes
l To check intellectual property violation
l For developers to decide what needs to be

fixed (and learn better practices)
l For auditors or reviewer to decide if it is

good enough for use

What do I Mean by ”Sound”?

l Based on mathematical concepts;
amenable to provable reasoning;
yielding guaranteed results.

l “A deductive system is sound if and only if every
statement that can be deduced is true.” [Ockham]

30

Sound Does Not Mean Perfect
data = Float.parseFloat(stringNumber.trim());

if (Math.abs(data) > 0) {

int result = (int)(100.0 / data);

IO.writeLine(result);

}

31

data: [MIN_VALUE, MAX_VALUE]

data: [MIN_VALUE, MAX_VALUE]

Sound Static Analysis

l Guarantee that no bug escapes.

32

Program

• • •

• • •

• • •

• • •

Sound Static Analysis

33
Used by permission 2018 Emma Gilmour, Gilmour Motors

“The best way to prevent BOF is to
reduce the use of C.”

35

— A colleague and me, just a year and a half ago

Higher-Level Languages

l Correct-by-construction
– Model-based development
– Design by refinement
– Domain-specific languages

l Developer rarely touches low level code.
l May generate test suites, UI with help, etc.
l Systematic concerns can be built-in.
l Disadvantages: requires huge effort to

design, build, and prove language suites.

36

Society has 3 options:

l Accept failing software

l Limit size or authority of software

l Learn how to make software
that works

38

Buckle Up, Buttercup

39

Used by permission Emma Gilmour, Gilmour Motors 2018

