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Formal Methods

Q: When should formal methods be applied?
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A: As soon as you can!

Amey, P. (2002). Correctness by Construction: Better can also be 
Cheaper. CrossTalk: the Journal of Defense Software Engineering, 2, 
24-28.



Formal Methods and the V-Model
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Software of Unknown Provenance (SOUP)

• Formal methods are best when applied at the beginning

• Embedded systems may rely on software with no source 
code or with source code contributed by unknown authors
• Even when you have source code, compiler can introduce errors

•New software might use existing libraries of unknown 
provenance

• How can we leverage formal methods with binary code?
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Formal Methods

Q: When should formal methods be applied?
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A: As soon as reasonably practicable!

If we are given an existing software binary (library or 
executable) to use, how should we apply formal methods to it?



Is It Too Late?
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Has the safety/security “horse” 
already left the stable?



Goal and Approach
Goal: Prove Specific Security Properties about software for which we 

do not have the source code

Approach:
1. Generate SPARK Ada code from the binary software
2. Prove properties about the generated SPARK Ada code
3. Insert guards for unsafe binaries
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Why SPARK Ada and SPARKPro?
• SPARK Ada language 
• Designed for proof
• Familiar
• Simple

• SPARKPro
• Proof tools provide capability to establish proofs

• cvc4, z3, alt-ergo (by default, but also coq, isabelle, pvs…)
• Industrial strength support
• Can generate an executable for testing
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Process for Proving Properties of SOUP
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Details of the Representation Library
SPARK Ada Machine Representation Library

Instruction SetMachine Architecture
Integer
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(EAX) returns the lower 32-bits of RAX and Write_EAX sets those bits, while
setting the upper bits to zero. AL, and AH and AX are specified similarly, except
with appropriate bits preserved instead of set to zero. Each function includes a
post-condition in the SPARK Ada syntax describing the expected result. These
post-conditions are verified by the SPARKPro proof tools. Flag registers (OF,
SF, ZF, AF, CF, and PF) are modeled as Boolean. Floating-point registers (e.g.,
XMM and YMM) are not currently modeled.

133 function EAX return Unsigned32 with
134 Global => (Input => RAX),
135 Post => (EAX’Result = Unsigned32(RAX and 16#00000000FFFFFFFF#));
136 procedure Write_EAX(Val : in Unsigned32) with
137 Global => (In_Out => RAX),
138 Post => ((EAX = Val) and ((RAX and 16#FFFFFFFF00000000#) = (16#0000000000000000#)));

Figure 4. EAX specification

Memory is modeled as an array of 264 8-bit elements. The declaration of this
array is shown in Figure 5, along with 16-bit reads and writes operating on the
memory array.

12 type Mem_Array is array (Unsigned64) of Unsigned8;
13 Memory: Mem_Array := Mem_Array’(others => 0);
14 function ReadMem16(addr: in Unsigned64) return Unsigned16 with
15 Global => (Input => Memory),
16 Post => (((ReadMem16’Result and 16#00FF#) = Unsigned16(Memory(addr))) and
17 ((ReadMem16’Result and 16#FF00#) = Unsigned16(Memory(addr+1))*16#100#));
18 procedure WriteMem16(addr : in Unsigned64; Val : in Unsigned16) with
19 Global => (In_Out => Memory),
20 Post => ((ReadMem16(addr) = Val) and (for all i in Unsigned64 =>
21 (if ((i /= addr) and (i /= addr + 1)) then (Memory(i) = Memory’Old(i)))));

Figure 5. Memory type specification

Many X86–64 instructions are modeled as SPARK Ada functions operating
on memory and registers. For example, the instruction setnbe is specified as
shown in Figure 6. In some cases, instructions match an operator in Ada (e.g.,
addition), and for those instructions the Ada operator is used directly. Similarly,
jump instructions are modeled using Ada control statements (e.g., loops). Other
approaches to modeling jumps are possible, but difficult to prove. For example,
a binary program could be modeled as an array of instructions and a location
counter that is used as an array pointer. Jump instructions could then set the
instruction counter accordingly. The lack of loop details, however, would make
synthesis of loop invariants and subsequent proof almost impossible.

622 procedure setnbe_CL with
623 Global => (Input => (ZeroFlag, CarryFlag), In_Out => RCX),
624 Post => (if ((not CarryFlag) and (not ZeroFlag)) then (CL = 1) else (CL = 0));

Figure 6. Specification of setnbe

3 Example
To illustrate the proof infrastructure and to highlight areas of current work, we
examine an example challenge function for security, zero_array, the C repre-
sentation of which is shown in Figure 7. The zero_array function is passed a
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6 procedure zero_array is
7 begin
8 --100000ed4: test esi,esi
9 X86.ZeroFlag := (X86.ESI = 0);

10 X86.SignFlag := (X86.ESI > X86.MaxSignedInt32);
11 X86.OverflowFlag := False;
12 --100000ed6: jle 100000eec <_zero_array+0x18>
13 if (X86.ZeroFlag or X86.SignFlag /= X86.OverflowFlag) then
14 --100000eec: f3 c3 repz ret
15 X86.RSP := X86.RSP + 8;
16 return;
17 end if;
18 --100000ed8: mov eax,0x0
19 X86.Write_EAX(0);
20 loop
21 --100000edd: DWORD PTR [rdi+rax*4],0x0
22 X86.WriteMem32(X86.RDI +(X86.RAX*4), 0);
23 --100000ee4: add rax,0x1
24 X86.RAX := X86.RAX + 1;
25 --100000ee8: cmp esi,eax
26 X86.ZeroFlag := ((X86.ESI - X86.EAX) = 0);
27 X86.SignFlag := (X86.ESI < X86.EAX);
28 X86.OverflowFlag := ((X86.SignFlag and (X86.EAX > X86.MaxSignedInt32) and
29 (X86.ESI <= X86.MaxSignedInt32)) or ((not X86.SignFlag) and
30 (X86.ESI > X86.MaxSignedInt32) and (X86.EAX <= X86.MaxSignedInt32)));
31 --100000eea: jg 100000edd <_zero_array+0x9>
32 exit when(not(X86.ZeroFlag=False and X86.SignFlag=X86.OverflowFlag));
33 end loop;
34 --100000eec: repz ret
35 X86.RSP := X86.RSP + 8;
36 return;
37 end zero_array;

Figure 8. Implementation of zero_array

modifications simplify the development of constraints and proofs; however, mod-
ifications add overhead and do not allow isolation of weaknesses in the original
binary program. In our approach, binary modifications are not necessary, but
could be used as a last resort when proofs cannot be established.

AUSPICE is also an approach based on a model of the ARM ISA using Hoare
logic [5]. AUSPICE supports security property verification for binary programs
without the need for modifications. To avoid manual development of invariants
and function pre-/post-conditions, AUSPICE makes simplifying assumptions. In
particular, machine-code instructions are not allowed to alter memory addresses
greater than the current function’s frame pointer address. This restriction is not
practical for most real-world programs.

Prior versions of the Binary Analysis Platform (BAP) support some security
analysis through manual insertion of predicates into intermediate representations
of the binary program [4]. This approach is limited to intraprocedural analysis of
functions that do not call other functions. Further, the BAP approach does not
complete proofs unless loops are unrolled and the code is free of indirect jumps.
More recent versions of BAP no longer appear to support formal analysis.

5 Conclusion
Reverse engineering of binary programs into a formal language and including for-
mal specifications of desired properties admits the possibility of proving those
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14 procedure zero_array with
15 Global => (In_Out => (X86.Memory, X86.RSP, X86.RAX, X86.SignFlag,
16 X86.OverflowFlag, X86.CarryFlag, X86.ZeroFlag),
17 Input => (X86.RSI, X86.RDI)),
18 Pre => ((X86.RDI < Unsigned64’Last -Unsigned64(X86.ESI) * 4) and
19 ((X86.RSP + 7 < X86.RDI) or (X86.RSP >= X86.RDI + Unsigned64(X86.ESI) * 4))),
20 Post =>
21 (for all i in Unsigned64 =>
22 (if ((i < X86.RDI) or (i >= (X86.RDI + (Unsigned64(X86.ESI)*4))))
23 then X86.Memory(i) = X86.Memory’Old(i))) and
24 (X86.RSP = (X86.RSP’Old + 8)) and
25 (X86.Memory(X86.RSP’Old) = X86.Memory’Old(X86.RSP’Old)) and
26 (X86.Memory(X86.RSP’Old + 1) = X86.Memory’Old(X86.RSP’Old + 1)) and
27 (X86.Memory(X86.RSP’Old + 2) = X86.Memory’Old(X86.RSP’Old + 2)) and
28 (X86.Memory(X86.RSP’Old + 3) = X86.Memory’Old(X86.RSP’Old + 3)) and
29 (X86.Memory(X86.RSP’Old + 4) = X86.Memory’Old(X86.RSP’Old + 4)) and
30 (X86.Memory(X86.RSP’Old + 5) = X86.Memory’Old(X86.RSP’Old + 5)) and
31 (X86.Memory(X86.RSP’Old + 6) = X86.Memory’Old(X86.RSP’Old + 6)) and
32 (X86.Memory(X86.RSP’Old + 7) = X86.Memory’Old(X86.RSP’Old + 7));

Figure 9. Specification of zero_array

Stack pointer 
incremented by 8

Return address 
integrity

Pre-condition required for 
return address integrity

Additional information 
for downstream analysis

4 Authors Suppressed Due to Excessive Length

pointer to an array and a size parameter. The function proceeds to zero out size
elements of the array. This function presents a typical security challenge since
zero_array might result in a buffer overflow that could corrupt, among other
things, function return addresses depending on the value of the size parameter.

24 void zero_array(int *array, int size) {
25 for (int i = 0; i < size; i++) array[i] = 0;
26 }

Figure 7. Implementation of zero_array

In an example program (not illustrated) zero_array is called from two dif-
ferent functions, each of which passes a pointer to an array of a different size. In
the program, the size parameter is always set to the size of the array, i.e., while
zero_array is potentially dangerous, its use in this example does not introduce
a security vulnerability. The example program was compiled with gcc and the
raw disassembled binary as produced by objdump was examined.3

The SPARK Ada representation of the zero_array function is shown in Fig-
ure 8, with the associated disassembled code included as comments. Line 19 of
Figure 8 represents the mov instruction as Write_EAX; however, for lines 9–11,
instead of modeling the test instruction as a procedure, the result of test (i.e.,
assignment of flag registers) is represented explicitly in the translated code. Ad-
ditionally, the binary analysis detects write-after-write situations affecting flags.
For example, the flags that would be set by the add instruction (lines 23–24)
are not read prior to the following cmp instruction, so there is no need to model
the setting of these flags.

The loop on line 20 and the if statement on line 13 are examples of control
structures recovered by the static analyzer from analysis of jump instructions.

To prove security properties about the SPARK Ada representation, con-
straints are added to the initial version of the representation (not illustrated).
So as to prove the integrity of other items on the stack, the constraint in this
example is that the loop index of zero_array will not exceed the size parameter.
With this constraint in the example, using the SPARKPro prover (gnatprove)
with the cvc4 backend we are able to prove that the example program will not
overwrite any function’s return address.

This proof requires approximately 8 seconds to complete when using all 8
cores of a MacBook Pro (Retina, Mid 2012). We plan to publish further discus-
sion of automatic constraint development in the future.

4 Related Work
Zhao et al. [6] propose binary software fault isolation techniques (ARMor) based
on a model of the ARM ISA [3] and Hoare logic. Their approach modifies a bi-
nary program by inserting guards at possibly dangerous instructions. Proofs are
then generated about security of the modified code. XFI is an approach similar
to Zhao et al. developed to support binary programs on Windows [2]. XFI’s veri-
fication is based primarily on the defined properties of security guards. Software
3 The binary analyzer uses a combination of objdump and IDA Pro.
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Guards and Proofs
• Guards can be quite effective
• Added code can require additional computational resources
• Real-time constraints might be at risk
• Embedded systems often have limited room for additional code

• Can we prove that software does not have a security violation?
• If so, guards are not required for those situations

• When we cannot prove that software does not have a security 
violation…
• Guards can be added to guarantee that the insecure situation is protected 

against
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And then prove that the 
modified code does not 
have a security violation



Case Study
• Looked at 3 security properties:

• The exit value in the RSP register is 8 larger than the entry value in the RSP register 
for all possible execution paths.

• The argument to setuid (in RDI) is non-zero for every call to setuid for all possible 
execution paths.

• The return address of a function is unmodified. Specifically, the 8 bytes in memory 
pointed to by the RSP register contain the same value when the function exits as 
they did when the function begins.

• Examined 11 programs, 2 of which used setuid
• All 11 programs were able to prove correct stack pointer (RSP).

• Both programs using setuid were proven to use it with non-zero values.

• Proved unmodified return address in 5 of 7 programs instrumented for checking this 
property — the other 2 programs could possibly modify the return address.
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Summary
• Advantages
• Can prove security properties for SOUP without overhead of guards
• Automatable

• Disadvantages
• When proofs do not automatically discharge, manual proofs are difficult

• Future Work
• Robust heuristics for automatically generating provable SPARK Ada 

representation
• Assertions and loop invariants

• Additional security properties
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