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Machine to machine communication

Browse, read/write, subscribe, …

Built-in security

IEC 62541 standard
Cornerstone of Industry 4.0 and Industrial IOT

OPC-UA
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French collaborative R&D project INGOPCS
• Backed by ANSSI (“French NSA”)
• Partial funding by the French Government (FUI19)

Cleanroom development of the OPC-UA protocol in C99

Main S2OPC targets
• Safety (SIL2 – IEC 61508)
• Security (EAL4 – Common Criteria)
• Embedded systems
• Open source

S2OPC
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Apply formal methods!

But difficult in the S2OPC context:
• Open world

• Concurrent
• Cryptography

• Dynamic data allocation

How to reach high quality software?
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Architectural pattern

Sequential automata executing concurrently
Post asynchronous messages between automata

No shared memory, but ownership transfer by message passing
Examples:
• Low-level socket operations
• Channel events
• Application interface

Simple to reason about

Programming is a bit more difficult (asynchronous, callback based)

Taming concurrency
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Difficult to get it right

Do not reinvent the wheel
Reuse existing crypto library (e.g., Mbed TLS)

Isolate it through a thin API adaptor
Allows plugging hardware crypto when available

About Cryptography
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The S2OPC code is heterogeneous
• Use Frama-C / TrustInSoft Analyser for low level
• Use the B method for high level

Take advantage of the strengths of each formal method

Do not attempt to cover 100 %
• Diminishing returns

Mixing Formal Methods
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Applied to low-level code
• OS interface
• crypto API
• message en/decoding

Provides extended static analysis
• Absence of undefined behavior
• Check dynamic CERT coding rules (e.g., buffer overflow)

A posteriori verification

Frama-C / TrustInSoft Analyser 
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Developed in the 90s

Correct by construction software

High level specifications in set theory (similar to SQL)

Then stepwise refinement to actual code (B0)
Finally automated one-to-one translation to C99 code

Proof of correctness and consistency of the model

Usually applied to SIL4 embedded software (e.g., CBTC)

What is the B Method?
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Applied to high-level code
• Channel automaton
• Session automaton
• Query processing on the address space

Simple high-level description, complex implementation
• Refinement to the rescue

Global invariants

A priori verification

Use of the B Method
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Formal methods are not enough

Apply an agile process
• With long runs (about two months)

Apply best practices of software engineering
• Automated code formatting
• Code reviews
• Source version control (incl. signed commits and pull requests)
• Continuous integration
• Static analyses (each compiler gives a different feedback)
• Unit, integration and acceptance testing (where applicable)

• Fuzz testing

Development process
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Traditionally B is applied in a safety-critical context

Dynamic data allocation is not permitted

But for a network protocol:
• The size of messages is unknown
• Fixed boundaries would be difficult to estimate
• Fixed boundaries are a waste of tight memory

The networking world is open by nature

Need to model dynamic data
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Simple pointers

• int *p;

• p = malloc(sizeof *p);

• p == NULL

• *p = 42;

• x = *p;

• p = q;

• free(p);

Not considered (aliasing)
• p = &x;

Similar to Pascal pointers

Simple C pointers
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SETS t_int_i /* Any value */

CONSTANTS t_int, /* Valid pointers */
c_int_undef /* NULL pointer */

PROPERTIES t_int ⊆ t_int_i ∧
c_int_undef ∈ t_int_i ∧
c_int_undef ∉ t_int

int *p; p ∈ t_int_i

p == null p = c_int_undef

p = q; p := q

B model (types)



Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is  the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten  consent.

Model allocated pointers and associated values

VARIABLESf_int /* Value of allocated data */

INVARIANT f_int ∈ t_int⇸ INT

INITIALISATION f_int := ∅

Note: f_int is abstract (does not exist outside the model)

Would be a ghost variable in SPARK.

B model (state)
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p ← int_alloc≙ /* p = malloc(sizeof *p); */
CHOICE

p := c_int_undef
OR

ANY np, ni
WHERE np ∈ t_int − dom(f_int) ∧ ni ∈ INT

THEN p := np ∥ f_int(np) := ni 
END

END

int_free(p) ≙ /* free(p) */

PRE
p ∈ dom(f_int)

THEN
f_int := {p} ⩤ f_int

END

B model (allocation)
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n ← int_get(p) ≙ /* n = *p; */
PRE

p ∈ dom(f_int)
THEN

n := f_int(p)
END

int_set(p, n) ≙ /* *p = n; */
PRE

p ∈ dom(f_int)
THEN

f_int(p) := n
END

B model (dereferences)
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Accept a pointer allocated outside of the model

int_bless(p) ≙
PRE

p ∈ t_int − dom(f_int)
THEN

ANY ni WHERE ni ∈ INT THEN f_int(p) := ni END
END

Release a pointer for use outside

int_forget(p) ≙
PRE

p ∈ dom(f_int)
THEN

f_int := {p} ⩤ f_int
END

B model (in and out pointers)
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Use several partial functions, one for each field

The domains of these functions must be equal
Example:

struct pos { int x; int y; };

f_pos_x ∈ t_pos⇸ INT
f_pos_y ∈ t_pos⇸ INT
dom(f_pos_x) = dom(f_pos_y)

A field can itself be a pointer to another structure

A field can be an array of dynamic length

Extension to structures
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High-level services are modelled in B

Can require that an input pointer is allocated
• precondition of an operation

Can guarantee that an output pointer is allocated
• postcondition of an operation body

Can detect and report unavailable memory
• check and propagate the alloc return value

Can transfer ownership of memory
• bless and release operations

Application to S2OPC
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Adapt your software architecture

Use the right tool for the job
Keep your ROI positive

Efficient and excellent quality code
S2OPC integrated in commercial software
• network bridge in railway supervision

General availability of B model shows modeling patterns used in 
industry
Full development available at

https://gitlab.com/systerel/S2OPC

Conclusion

https://gitlab.com/systerel/S2OPC
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But limited to non-recursive structures
• Recursive structures (e.g., linked lists, trees) would need more global 

invariant (e.g., lists are not circular).

Additional points


