
Mixing formal methods to increase
robustness against cyber-attacks

29/06/2018

Laurent Voisin

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Critical systems engineering

2

Systerel in a nutshell

Critical
Software

System
Expertise

Tests,
Proof &

Simulation

Safety
Cyber-security

Critical
Systems

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.3

Key figures

4
OFFICES

Aix-en-Provence
Paris

Toulouse
Berlin

YEARS

Average
experience

+108
M€

Turnover

including 15%
dedicated to

R&D

ENGINEERS
& PhD

100

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Machine to machine communication

Browse, read/write, subscribe, …

Built-in security

IEC 62541 standard
Cornerstone of Industry 4.0 and Industrial IOT

OPC-UA

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

French collaborative R&D project INGOPCS
• Backed by ANSSI (“French NSA”)
• Partial funding by the French Government (FUI19)

Cleanroom development of the OPC-UA protocol in C99

Main S2OPC targets
• Safety (SIL2 – IEC 61508)
• Security (EAL4 – Common Criteria)
• Embedded systems
• Open source

S2OPC

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Apply formal methods!

But difficult in the S2OPC context:
• Open world

• Concurrent
• Cryptography

• Dynamic data allocation

How to reach high quality software?

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Architectural pattern

Sequential automata executing concurrently
Post asynchronous messages between automata

No shared memory, but ownership transfer by message passing
Examples:
• Low-level socket operations
• Channel events
• Application interface

Simple to reason about

Programming is a bit more difficult (asynchronous, callback based)

Taming concurrency

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Difficult to get it right

Do not reinvent the wheel
Reuse existing crypto library (e.g., Mbed TLS)

Isolate it through a thin API adaptor
Allows plugging hardware crypto when available

About Cryptography

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

The S2OPC code is heterogeneous
• Use Frama-C / TrustInSoft Analyser for low level
• Use the B method for high level

Take advantage of the strengths of each formal method

Do not attempt to cover 100 %
• Diminishing returns

Mixing Formal Methods

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Applied to low-level code
• OS interface
• crypto API
• message en/decoding

Provides extended static analysis
• Absence of undefined behavior
• Check dynamic CERT coding rules (e.g., buffer overflow)

A posteriori verification

Frama-C / TrustInSoft Analyser

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Developed in the 90s

Correct by construction software

High level specifications in set theory (similar to SQL)

Then stepwise refinement to actual code (B0)
Finally automated one-to-one translation to C99 code

Proof of correctness and consistency of the model

Usually applied to SIL4 embedded software (e.g., CBTC)

What is the B Method?

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Applied to high-level code
• Channel automaton
• Session automaton
• Query processing on the address space

Simple high-level description, complex implementation
• Refinement to the rescue

Global invariants

A priori verification

Use of the B Method

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Formal methods are not enough

Apply an agile process
• With long runs (about two months)

Apply best practices of software engineering
• Automated code formatting
• Code reviews
• Source version control (incl. signed commits and pull requests)
• Continuous integration
• Static analyses (each compiler gives a different feedback)
• Unit, integration and acceptance testing (where applicable)

• Fuzz testing

Development process

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Traditionally B is applied in a safety-critical context

Dynamic data allocation is not permitted

But for a network protocol:
• The size of messages is unknown
• Fixed boundaries would be difficult to estimate
• Fixed boundaries are a waste of tight memory

The networking world is open by nature

Need to model dynamic data

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Simple pointers

• int *p;

• p = malloc(sizeof *p);

• p == NULL

• *p = 42;

• x = *p;

• p = q;

• free(p);

Not considered (aliasing)
• p = &x;

Similar to Pascal pointers

Simple C pointers

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

SETS t_int_i /* Any value */

CONSTANTS t_int, /* Valid pointers */
c_int_undef /* NULL pointer */

PROPERTIES t_int ⊆ t_int_i ∧
c_int_undef ∈ t_int_i ∧
c_int_undef ∉ t_int

int *p; p ∈ t_int_i

p == null p = c_int_undef

p = q; p := q

B model (types)

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Model allocated pointers and associated values

VARIABLESf_int /* Value of allocated data */

INVARIANT f_int ∈ t_int⇸ INT

INITIALISATION f_int := ∅

Note: f_int is abstract (does not exist outside the model)

Would be a ghost variable in SPARK.

B model (state)

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

p ← int_alloc≙ /* p = malloc(sizeof *p); */
CHOICE

p := c_int_undef
OR

ANY np, ni
WHERE np ∈ t_int − dom(f_int) ∧ ni ∈ INT

THEN p := np ∥ f_int(np) := ni
END

END

int_free(p) ≙ /* free(p) */

PRE
p ∈ dom(f_int)

THEN
f_int := {p} ⩤ f_int

END

B model (allocation)

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

n ← int_get(p) ≙ /* n = *p; */
PRE

p ∈ dom(f_int)
THEN

n := f_int(p)
END

int_set(p, n) ≙ /* *p = n; */
PRE

p ∈ dom(f_int)
THEN

f_int(p) := n
END

B model (dereferences)

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Accept a pointer allocated outside of the model

int_bless(p) ≙
PRE

p ∈ t_int − dom(f_int)
THEN

ANY ni WHERE ni ∈ INT THEN f_int(p) := ni END
END

Release a pointer for use outside

int_forget(p) ≙
PRE

p ∈ dom(f_int)
THEN

f_int := {p} ⩤ f_int
END

B model (in and out pointers)

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Use several partial functions, one for each field

The domains of these functions must be equal
Example:

struct pos { int x; int y; };

f_pos_x ∈ t_pos⇸ INT
f_pos_y ∈ t_pos⇸ INT
dom(f_pos_x) = dom(f_pos_y)

A field can itself be a pointer to another structure

A field can be an array of dynamic length

Extension to structures

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

High-level services are modelled in B

Can require that an input pointer is allocated
• precondition of an operation

Can guarantee that an output pointer is allocated
• postcondition of an operation body

Can detect and report unavailable memory
• check and propagate the alloc return value

Can transfer ownership of memory
• bless and release operations

Application to S2OPC

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

Adapt your software architecture

Use the right tool for the job
Keep your ROI positive

Efficient and excellent quality code
S2OPC integrated in commercial software
• network bridge in railway supervision

General availability of B model shows modeling patterns used in
industry
Full development available at

https://gitlab.com/systerel/S2OPC

Conclusion

https://gitlab.com/systerel/S2OPC

Dynamic Data

Conclusion

About us

Context

Approach

The present docum ent is the property of Systere l and cannot be reproduced or d isclosed w ithout Systere l prior w ritten consent.

But limited to non-recursive structures
• Recursive structures (e.g., linked lists, trees) would need more global

invariant (e.g., lists are not circular).

Additional points

