
Enhance Verification using
Ghost Code

Claire Dross

SSAS Workshop 2018

Ghost Code, What Is It?

2

Ghost Code – General Definition

• Ghost code does not affect normal execution of a program.

3

Regular
Code

Ghost
Code

Ghost Code – General Definition

• Ghost code does not affect normal execution of a program.

• It is used to monitor execution (can terminate the program).

3

Regular
Code

Ghost
Code

Ghost Code – General Definition

• Ghost code does not affect normal execution of a program.

• It is used to monitor execution (can terminate the program).

• Example: assertions in code / subprogram contracts

3

pragma Assert (X /= 0);

-- Runtime exception: raised Assert_Failure – failed assertion

procedure Increment(X : in out Integer) with

Pre => X < Integer’Last,

Post => X = X’Old + 1;

Increment (X);

-- Runtime exception: raised Assert_Failure – failed precondition

procedure Do_Something (X : in out T) is

X_Init : constant T := X with Ghost;

begin

Do_Some_Complex_Stuff (X);

pragma Assert (Transformation_Is_Correct (X_Init, X));

-- It is OK to use X_Init inside an assertion.

Ghost Code in SPARK

4

• In SPARK, all entities (variables, subprograms, types…) can be ghost.

procedure Do_Something (X : in out T) is

X_Init : constant T := X with Ghost;

begin

Do_Some_Complex_Stuff (X);

pragma Assert (Transformation_Is_Correct (X_Init, X));

-- It is OK to use X_Init inside an assertion.

Ghost Code in SPARK

4

• In SPARK, all entities (variables, subprograms, types…) can be ghost.

• The compiler detects most incorrect usage.

procedure Do_Something (X : in out T) is

X_Init : constant T := X with Ghost;

begin

Do_Some_Complex_Stuff (X);

pragma Assert (Transformation_Is_Correct (X_Init, X));

-- It is OK to use X_Init inside an assertion.

X := X_Init;

-- Compilation error:

-- Ghost entity cannot appear in this context.

Ghost Code in SPARK – Execution

5

• Ghost code can be executed like normal code …

Ghost
Code

Regular
Code

Compilation with
assertions enabled

Ghost Code in SPARK – Execution

5

• Ghost code can be executed like normal code …

… or can be removed at compilation.

Ghost
Code

Regular
Code

Compilation
without assertions

Ghost Code in SPARK – Verification

• Static verification applies to regular code + ghost code.

6

Regular
Code

Ghost
Code

Regular
Code

Ghost Code in SPARK – Verification

• Static verification applies to regular code + ghost code.

• SPARK also verifies that ghost does not affect regular code.

6

Regular
Code

Ghost
Code

Regular
Code

Ghost Code in SPARK – Verification

• Static verification applies to regular code + ghost code.

• SPARK also verifies that ghost does not affect regular code.

→ Regular code is verified.

6

Regular
Code

Ghost
Code

Regular
Code

Enhance Expressiveness in
Specifications

7

function Sort (A : in out Nat_Array) with

Post => Is_Sorted (A) and then Is_Permutation (A, A’Old);

function Is_Sorted (A : Nat_Array) return Boolean is

(for all I in A’Range =>

(if I > A’First then A (I) >= A (I – 1)))

with Ghost;

function Search (A : Nat_Array; E : Natural) return Index with

Pre => Is_Sorted (A);

Specification-Only Functions

8

• Ghost functions are used to factor out expressions in contracts.

package Private_Counter is

function Disclose_Content return Natural with Ghost;

function Is_Max return Boolean with

Post => Is_Max’Result = (Disclose_Content = Max);

procedure Incr with

Pre => not Is_Max;

Post => Disclose_Content = Disclose_Content’Old + 1;

private

Counter_Value : Natural := 0;

end Private_Counter;

Specification-Only Functions

8

• Ghost functions are used to factor out expressions in contracts.

• They can disclose state abstractions for specification purposes.

function Occurrences (A : Nat_Array; E : Natural) return Natural;

function Is_Permutation (A, B : Nat_Array) return Boolean is

(for all E in Natural => Occurrences (A, E) = Occurrences (B, E))

with Ghost;

Specification-Only Functions

8

• Ghost functions are used to factor out expressions in contracts.

• They can disclose state abstractions for specification purposes.

• Inefficient is OK if assertions are disabled in the final executable.

X_Interm : T with Ghost;

procedure Do_Two_Thing (X : in out T) with

Post => First_Thing_Done (X’Old, X_Interm) and then

Second_Thing_Done (X_Interm, X)

is

X_Init : constant T := X with Ghost;

begin

Do_Something (X);

pragma Assert (First_Thing_Done (X_Init, X));

X_Interm := X;

Do_Something_Else (X);

pragma Assert (Second_Thing_Done (X_Interm, X));

end Do_Two_Things;

Specification-Only Data

9

• Ghost variables can be used to store intermediate values of variables.

Perm : Permutation with Ghost;

procedure Perm_Sort (A : Nat_Array) with

Post => A = Apply_Perm (Perm, A’Old)

is

begin

Perm := Identity_Perm;

for Current in A'First .. A'Last - 1 loop

Smallest := Index_Of_Minimum (A, Current, A'Last);

if Smallest /= Current then

Swap (A, Current, Smallest);

Permute (Perm, Current, Smallest);

end if;

Specification-Only Data

9

• Ghost variables can be used to store intermediate values of variables.

• Some properties are best expressed by constructing a witness.

Specification-Only Data

9

History : Buffer_Of_Bool (1 .. 2) with Ghost;

procedure Count_To_Three (Is_Third : out Boolean) with

Post => Is_Third = (not Last_Value (History’Old)

and then not Before_Last_Value (History’Old))

and then History = Enqueue (History’Old, Is_Third);

• Ghost variables can be used to store intermediate values of variables.

• Some properties are best expressed by constructing a witness.

• Ghost variables can also store interprocedural information.

Last_Accessed_Is_A : Boolean := False with Ghost;

procedure Access_A with

Post => Last_Accessed_Is_A;

procedure Access_B with

Pre => Last_Accessed_Is_A,

Post => not Last_Accessed_Is_A;

Models of Control Flow

10

• Ghost variable can also model interprocedural control flow.

Last_Accessed_Is_A : Boolean := False with Ghost;

procedure Access_A with

Post => Last_Accessed_Is_A;

procedure Access_B with

Pre => Last_Accessed_Is_A,

Post => not Last_Accessed_Is_A;

type State_Kind is (S1, S2, S3) with Ghost;

State : State_Kind := S1 with Ghost;

procedure Access_A with

Pre => State in S1 | S3,

Contract_Cases =>

(State = S1 => State = S2,

State = S3 => State = S3);

procedure Access_B with

Pre => State in S2 | S3,

Post => State = S3;

Models of Control Flow

10

S1 S2
A B

A

B

S3

• Ghost variable can also model interprocedural control flow.

• More generally, expected control flow can be expressed as an
automaton.

type Mailbox_Status_Kind is (Empty, Full) with Ghost;

Mailbox_Status : Mailbox_Status_Kind := Empty with Ghost;

function Invariant return Boolean is

(if Mailbox_Status = Full then Valid (Message_Content))

with Ghost;

procedure Receive with

Pre => Invariant and then Mailbox_Status = Full,

Post => Invariant and then Mailbox_Status = Empty;

Models of Control Flow

10

• Ghost variable can also model interprocedural control flow.

• More generally, expected control flow can be expressed as an
automaton.

• An invariant can link the ghost and regular states.

Models of Data Structures

• A model is an alternative view of a data structure.

11

A ring buffer Its model : an array

Models of Data Structures

• A model is an alternative view of a data structure.

• They are typically simpler and less efficient.

11

A ring buffer Its model : an array

Models of Data Structures

• A model is an alternative view of a data structure.

• They are typically simpler and less efficient.

• They can be stored in global variables or computed through a
function.

11

Buffer_Content : Nat_Array;

Buffer_Top : Natural;

Buffer_Model : Nat_Array with Ghost;

procedure Enqueue (E : Natural) with

Post => Buffer_Model = E & Buffer_Model’Old (1 .. Max – 1);

Models of Data Structures

• A model is an alternative view of a data structure.

• They are typically simpler and less efficient.

• They can be stored in global variables or computed through a
function.

11

Buffer_Content : Nat_Array;

Buffer_Top : Natural;

Buffer_Model : Nat_Array with Ghost;

procedure Enqueue (E : Natural) with

Post => Buffer_Model = E & Buffer_Model’Old (1 .. Max – 1);

type Buffer_Type is record …;

subtype Model_Type is Nat_Array with Ghost;

function Get_Model (B : Buffer_Type) return Model_Type with Ghost;

procedure Enqueue (B : Buffer_Type, E : Natural) with

Post => Get_Model (B) = E & Get_Model (B)’Old (1 .. Max – 1);

Guide the Proof Tool

12

• Intermediate assertions can help the tool.

pragma Assert (Complex_Assertion);

Guide the Proof Tool

13

• Intermediate assertions can help the tool.

pragma Assert (Intermediate_Assertion_1);

pragma Assert (Intermediate_Assertion_2);

pragma Assert (Complex_Assertion);

Guide the Proof Tool

13

• Intermediate assertions can help the tool.

pragma Assert (Intermediate_Assertion_1);

pragma Assert (Intermediate_Assertion_2);

pragma Assert (Complex_Assertion);

Guide the Proof Tool

13

pragma Assert (A (A’First) = 0 and then A (A’Last) > 0);

pragma Assert

(for some I in A’Range =>

I < A’Last and then A (I) = 0 and then A (I + 1) > 0);

Guide the Proof Tool – Provide Witnesses

• Proving an existential quantifier is difficult for provers.

14

0 0 5 9…

pragma Assert (A (A’First) = 0 and then A (A’Last) > 0);

pragma Assert

(for some I in A’Range =>

I < A’Last and then A (I) = 0 and then A (I + 1) > 0);

function Find_Pos (A : Nat_Array) return Positive with Ghost,

Pre => A (A’First) = 0 and then A (A’Last) > 0,

Post => Find_Pos’Result in A’First .. A’Last - 1 and then

A (Find_Pos’Result) = 0 and then A (Find_Pos’Result + 1) > 0;

pragma Assert (A (A’First) = 0 and then A (A’Last) > 0);

pragma Assert (Find_Pos (A) in A’Range);

pragma Assert

(for some I in A’Range =>

I < A’Last and then A (I) = 0 and then A (I + 1) > 0);

Guide the Proof Tool – Provide Witnesses

• Proving an existential quantifier is difficult for provers.

• A witness can be constructed and provided.

14

0 0 5 9…

pragma Assert

(for all I in A'Range =>

(if I > A'First then A (I) > A (I - 1)));

pragma Assert

(for all I in A'Range =>

(for all J in A'Range =>

(if I > J then A (I) > A (J))));

Guide the Proof Tool – Proof by Induction

• Provers mostly can’t perform induction.

1 3 4 6 9

>>>>

>
> > >

15

pragma Assert

(for all I in A'Range =>

(if I > A'First then A (I) > A (I - 1)));

pragma Assert

(for all I in A'Range =>

(for all J in A'Range =>

(if I > J then A (I) > A (J))));

procedure Prove_Sorted (A : Nat_Array) with Ghost is

begin

for K in 0 .. A’Length loop

pragma Loop_Invariant

(for all I in A’Range => (for all J in A’Range =>

(if I > J and then I - J <= K then A (I) > A (J))));

end loop;

pragma Assert (for all I in A'Range =>

(for all J in A'Range => (if I > J then A (I) > A (J))));

end Prove_Sorted;

Guide the Proof Tool – Proof by Induction

• Provers mostly can’t perform induction.

• Loop invariants allow to perform induction. 1 3 4 6 9

>>>>

>
> > >

15

procedure Prove_Sorted (A : Nat_Array) with Ghost,

Pre => (for all I in A’Range =>

(if I > A’First then A (I) > A (I - 1))),

Post => (for all I in A’Range =>

(for all J in A’Range =>

(if I > J then A (I) > A (J))));

• Procedures for lemmas have a contract but no effects.

Guide the Proof Tool – Lemmas

16

procedure Prove_Sorted (A : Nat_Array) with Ghost,

Pre => (for all I in A’Range =>

(if I > A’First then A (I) > A (I - 1))),

Post => (for all I in A’Range =>

(for all J in A’Range =>

(if I > J then A (I) > A (J))));

• Procedures for lemmas have a contract but no effects.

• They must be called manually to assume the lemma.

pragma Assert

(for all I in A’Range =>

(if I > A’First then A (I) > A (I - 1)));

Prove_Sorted (A);

-- Precondition of Prove_Sorted is proved

pragma Assert

(for all I in A’Range =>

(for all J in A’Range => (if I > J then A (I) > A (J))));

Guide the Proof Tool – Lemmas

16

• Procedures for lemmas have a contract but no effects.

• They must be called manually to assume the lemma.

• A lemma library is provided with SPARK for classical lemmas.

procedure Lemma_Div_Is_Monotonic

(Val1 : Int;

Val2 : Int;

Denom : Pos)

with Ghost,

Pre => Val1 <= Val2,

Post => Val1 / Denom <= Val2 / Denom;

-- Proven manually using Coq

Guide the Proof Tool – Lemmas

16

Conclusion

17

An Everyday Tool for Formal Verification

• miTLS1 and HACL*2: TLS layer protocol and cryptographic functions
• Pure ghost specification in F*

• Ironclad and IronFleet3: Verifying distributed systems
• Ghost safety specification using Dafny

• Imperative red-black trees in SPARK4

• Multi-layer ghost specification and ghost proofs

18

1 - Zinzindohoué, Jean-Karim, et al. "HACL*: A verified modern cryptographic library." 2017.
2 - Bhargavan, Karthikeyan. "Attacking and Proving TLS 1.3 implementations." 2015.
3 - Hawblitzel, Chris, et al. "IronFleet: proving practical distributed systems correct." 2015.
4 - Dross, Claire and Moy, Yannick. "Auto-active proof of red-black trees in SPARK." 2017.

What Ghost Code Can Do for You

• Ghost code provides provably non-interfering instrumentation.

• Ghost code can enhance expressiveness of the specification.

• Ghost code can be used for static or dynamic verification.

• Ghost code can guide the proof tool.

• Ghost code is the bridge between automatic and interactive
verification.

19

