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About Galois

• established in 1999 to apply functional 
programming and formal methods to the 
problem of information assurance

• over 40 active projects for numerous clients, 
both U.S. government (NSA, DARPA, IARPA, 
Homeland Security, Air Force Research Lab) 
and commercial (Amazon, LG, others)

• over the years, we have substantially broadened 
our scope to high assurance everything
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Galois and Frama-C

• Galois has used Frama-C on some projects
• DARPA Crowdsourced Formal Verification

• WP plugin to generate verification conditions
• custom plugins to generate schematic 

assertions and program traces
• DARPA SHAVE

• Our clients rarely ask for formal verification in 
Frama-C’s “sweet spot”
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SHAVE: Software/Hardware  
Assurance Verified End-to-End

• DARPA MTO seedling for the SSITH program
• a bump-in-wire encryption device
• single, one-time AES key provisioning
• encryption or decryption mutual exclusion
• open hardware, firmware, and software
• crypto realized as a MMIO RISC-V extension
• custom development of a verification system for 

Bluespec hardware description language
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SHAVE Assurance
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The SHAVE Process
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SHAVE Process
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The SHAVE Architecture
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SHAVE Abstract State Machines
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              Figure 3  The SHAVE Software ASM 
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SHAVE Assurance Case

• assurance case via layered rely/guarantee
• entire system formally specified and assured except 

for (a) implementation of RISC-V ISA, and (b) 
behavior below RTL

• entire assurance case hangs on realization of system 
ASM composing ASMs for soft/firmware

• security properties include reset predicate, write-once 
key, no key leakage, crypto correctness, and 
guarantee that all bits are always encrypt/decrypted

• also includes formally verified trusted boot for RISC-V
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Assurance Technologies and 
Compositionality

• userland software and firmware specified in 
BON, PVS, ACSL, Cryptol, & SAW and verified 
using multiple Frama-C plugins, PVS, Cryptol, 
and SAW

• hardware and state machine assurance via 
Cryptol and SAW
• including a new frontend on SAW for 

reasoning about Bluespec SystemVerilog
• Cryptol is the compositional formal model that 

spans formalisms and tools
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Composed Assurance Case

• ad hoc
• human reviewed to ensure specs written in 

different concrete languages are consistent
• complex!

• need a SAW-like assurance language that 
understands evidence

• we’re working on that for SSITH for hardware 
(and firmware) security, and some day…
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Comparison of Experience with  
other BISL Technologies

• we have ~20 years of experience using 
CodeContracts, SPARK, Eiffel, and JML

• we have written several formal verification and 
rigorous validation tools on these foundations

• our statements of joy and disappointment with 
respect to ACSL and Frama-C come from this 
background, with love
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Frama-C Tools and Techniques Used

• both mainstream & experimental plugins used
• metrics, callback, pdg, and from analysis to 

drive verification process
• ASM reasoning with Aorai
• rtegen for combined reasoning a la Julien’s talk 

this morning on combining RTE+E-ACSL
• value analysis for unexpected behavior
• wp reasoning about functional correctness
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Our Experiences

• tool documentation is very good
• tool behavior is not as reliable as compilers
• the “fine print” is hard to find and understand even for a 

formal methods expert
• understanding the dependencies between, and order in 

which, different plugins should/can be used is complex
• experimental aspects of ACSL and reasoning tools are 

what we need most for scaling (advanced logic 
specifications, sets and lists, model programs, memory 
model subtleties, etc.)
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Constructive Next Steps

• we continue to use Frama-C at Galois as one 
of the tools in our toolbox

• Frama-C complements our reasoning 
capabilities (embodied in Cryptol and SAW)

• we see opportunities for writing new (possibly 
open source) plugins that relate to our work on 
hardware security and firmware reasoning
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