
Reflections on Industrial Use
of Frama-C
Joseph R. Kiniry and Daniel M. Zimmerman
Sound Static Analysis for Security Workshop
NIST — Gaithersburg, Maryland — 28 June 2018

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

About Galois

• established in 1999 to apply functional
programming and formal methods to the
problem of information assurance

• over 40 active projects for numerous clients,
both U.S. government (NSA, DARPA, IARPA,
Homeland Security, Air Force Research Lab)
and commercial (Amazon, LG, others)

• over the years, we have substantially broadened
our scope to high assurance everything

�2

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Galois and Frama-C

• Galois has used Frama-C on some projects
• DARPA Crowdsourced Formal Verification

• WP plugin to generate verification conditions
• custom plugins to generate schematic

assertions and program traces
• DARPA SHAVE

• Our clients rarely ask for formal verification in
Frama-C’s “sweet spot”

�3

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

SHAVE: Software/Hardware  
Assurance Verified End-to-End

• DARPA MTO seedling for the SSITH program
• a bump-in-wire encryption device
• single, one-time AES key provisioning
• encryption or decryption mutual exclusion
• open hardware, firmware, and software
• crypto realized as a MMIO RISC-V extension
• custom development of a verification system for

Bluespec hardware description language

�4

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

SHAVE Assurance

�5

BSV
spec

Verilog
RTL
spec

Informal
specs

Architec-
ture spec

Netlist
spec

GDSII
spec

manual inspection
Today's

Assurance
Technique

Artifacts

manual designRefinement
Technology automatic synthesis and manual design

manual inspection, runtime testing,
model checking, formal verification

SHAVE
Assurance formal verification that produces independently verifiable claims and proofs

Concept Silicon

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

The SHAVE Process

�6

SHAVE Process
Systems Engineering Point-of-view

specify informal
system requirements

define an informal
domain model

formalize
domain model

specify static system
architecture

Systems Engineer

perform domain
engineering1 2 3 4

5

specify dynamic
system model

specify the behavior of
the system model

formalize informal
system requirements

as properties

reason about all formal
models to ensure that
they are fit for purpose

automatically generate
validation bench from

specifications

specify concrete
implementations that

refine models

implement “bottom”
behavior for all

implementations

manually implement validation
properties that cannot be
automatically generated

piecewise implement
specification

execute runtime
verification of test

benches

formally verify
implementations

against all models

reason about concrete
implementations to ensure
that they are fit for purpose

6

7

8

910

11

12

13

14

15a 15b

1616

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

The SHAVE Architecture

�7

HARDWARE RISC-V
CPU

AES
NI

FIRMWARE

SOFTWARE
CRYPTO LIBRARY

NO OPERATING SYSTEM

STREAMING ENCRYPTION
APPLICATION

CRYPTO FIRMWARE

software
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

firmware
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

RISC-V in
BSV

BSV in Coq

AES in BSV
AES in
Cryptol

AES in SV

library
theory

(Cryptol)

firmware
theory

(Cryptol)

RISC-V in SV

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

SHAVE Abstract State Machines

�8

10

 Figure 3 The SHAVE Software ASM

Boot and Config

Powered
On

Powered
Off

Booted

Operating Mode =
Normal Mode

Operating Mode =
Test Mode

Halted

Key
Loaded

Behavior Mode =
Encrypting Mode

Behavior Mode =
Decrypting Mode

Streaming
Mode

Paused

Any
Booted

Test State

System Initialization

Load Key and Stream Data

States Under Test System Shutdown

Encrypt

Decrypt

Any State

START

Boot

Power On

Normal Mode

Test Mode

Initializedƛ

ƛ

Initialized Configured
ƛ

ƛ

Configured Load Key ƛ

Process buffer

Halt
Pause

Continue
Power Off

ƛ

I/O

Any
Initialized

State

Read UARTWrite UART

10

 Figure 3 The SHAVE Software ASM

Boot and Config

Powered
On

Powered
Off

Booted

Operating Mode =
Normal Mode

Operating Mode =
Test Mode

Halted

Key
Loaded

Behavior Mode =
Encrypting Mode

Behavior Mode =
Decrypting Mode

Streaming
Mode

Paused

Any
Booted

Test State

System Initialization

Load Key and Stream Data

States Under Test System Shutdown

Encrypt

Decrypt

Any State

START

Boot

Power On

Normal Mode

Test Mode

Initializedƛ

ƛ

Initialized Configured
ƛ

ƛ

Configured Load Key ƛ

Process buffer

Halt
Pause

Continue
Power Off

ƛ

I/O

Any
Initialized

State

Read UARTWrite UART

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

SHAVE Assurance Case

• assurance case via layered rely/guarantee
• entire system formally specified and assured except

for (a) implementation of RISC-V ISA, and (b)
behavior below RTL

• entire assurance case hangs on realization of system
ASM composing ASMs for soft/firmware

• security properties include reset predicate, write-once
key, no key leakage, crypto correctness, and
guarantee that all bits are always encrypt/decrypted

• also includes formally verified trusted boot for RISC-V

�9

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Assurance Technologies and
Compositionality

• userland software and firmware specified in
BON, PVS, ACSL, Cryptol, & SAW and verified
using multiple Frama-C plugins, PVS, Cryptol,
and SAW

• hardware and state machine assurance via
Cryptol and SAW
• including a new frontend on SAW for

reasoning about Bluespec SystemVerilog
• Cryptol is the compositional formal model that

spans formalisms and tools
�10

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Composed Assurance Case

• ad hoc
• human reviewed to ensure specs written in

different concrete languages are consistent
• complex!

• need a SAW-like assurance language that
understands evidence

• we’re working on that for SSITH for hardware
(and firmware) security, and some day…

�11

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Comparison of Experience with  
other BISL Technologies

• we have ~20 years of experience using
CodeContracts, SPARK, Eiffel, and JML

• we have written several formal verification and
rigorous validation tools on these foundations

• our statements of joy and disappointment with
respect to ACSL and Frama-C come from this
background, with love

�12

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Frama-C Tools and Techniques Used

• both mainstream & experimental plugins used
• metrics, callback, pdg, and from analysis to

drive verification process
• ASM reasoning with Aorai
• rtegen for combined reasoning a la Julien’s talk

this morning on combining RTE+E-ACSL
• value analysis for unexpected behavior
• wp reasoning about functional correctness

�13

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Our Experiences

• tool documentation is very good
• tool behavior is not as reliable as compilers
• the “fine print” is hard to find and understand even for a

formal methods expert
• understanding the dependencies between, and order in

which, different plugins should/can be used is complex
• experimental aspects of ACSL and reasoning tools are

what we need most for scaling (advanced logic
specifications, sets and lists, model programs, memory
model subtleties, etc.)

�14

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Constructive Next Steps

• we continue to use Frama-C at Galois as one
of the tools in our toolbox

• Frama-C complements our reasoning
capabilities (embodied in Cryptol and SAW)

• we see opportunities for writing new (possibly
open source) plugins that relate to our work on
hardware security and firmware reasoning

�15

