
Public / Export Control: NLR License CC-BY-SA 3.0

Mitsubishi Electric R&D Centre Europe - COM Division

Practical introduction to Frama-C
(without Mathematical notations ;-))

David MENTRÉ <d.mentre@fr.merce.mee.com>

Using content of Jochen Burghardt (Fraunhofer First), Virgile Prevosto (CEA),
Julien Signoles (CEA), Nikolay Kosmatov (CEA) and Pascal Cuoq (TrustInSoft)

mailto:d.mentre@fr.merce.mee.com

Public / Export Control: NLR 2 MERCE – Communications Technology Division License CC-BY-SA 3.0

Content of this introduction to Frama-C

• What is Frama-C?
• Interlude: why doing formal verification
• The notion of “contract”
• First use of Frama-C tool
• Basic use of Frama-C/WP through examples
• A more complex example with WP: find()
• Behaviors: clean contracts
• find() example with Frama-C/Value analysis
• E-ACSL
• Conclusion

Public / Export Control: NLR 3 MERCE – Communications Technology Division License CC-BY-SA 3.0

WHAT IS FRAMA-C?

Public / Export Control: NLR 4 MERCE – Communications Technology Division License CC-BY-SA 3.0

What is Frama-C?

• Frama-C is FRAMework for StAtic of C language
• Build upon

– A core to read C files and build Abstract Syntax Trees
– A set of plug-ins to do static analyses and annotate those

syntax trees
– Collaboration of plug-ins

• A plug-in can use the analysis of another plug-in

• Purposes
– Static analyses of C code
– Transformation of C code
– Framework to build tools analyzing and manipulating C code

• New plug-ins programmed in OCaml language

Public / Export Control: NLR 5 MERCE – Communications Technology Division License CC-BY-SA 3.0

Frama-C plugins

Static analysis

Public / Export Control: NLR 6 MERCE – Communications Technology Division License CC-BY-SA 3.0

Some plug-ins developed around Frama-C

• Taster
– coding rules, Atos/Airbus, Delmas &al., ERTS 2010

• Dassault’s internal plug-ins
– Automatic annotation, call of external symbolic tool to validate

lemmas, interval input subdivision, …
– Pariente & Ledinot, FoVeOOs 2010

• Fan-C
– flow dependencies, Atos/Airbus, Duprat &al., ERTS 2012

• Various academic experiments, mostly security-related

Public / Export Control: NLR 7 MERCE – Communications Technology Division License CC-BY-SA 3.0

What are main plug-ins of Frama-C?

• Value analysis
– Static verification of C code using Abstract Interpretation

techniques

• WP
– Static verification of C code using Weakest Precondition

calculus
– Jessie similar tool

• A lot of other plug-ins useful in specific cases
– InOut (computation of outputs from inputs), Metrics (analyze

code complexity), Aoraï (temporal verification), PathCrawler
(test generation), Spare code (remove spare code), …

Public / Export Control: NLR 8 MERCE – Communications Technology Division License CC-BY-SA 3.0

Frama-C specification language

• Frama-C is using its own formal specification language:
ACSL
– ANSI/ISO C Specification Language

• ACSL annotations as special C comments /*@ */
• ACSL has a lot of features

– Not all of them understood by all plug-ins!!
• See each plug-in documentation to check the supported features

• E-ACSL: “Executable” ACSL variant
– Annotations can be compiled and executed
– Compatible with ACSL
– Mix test and formal verification!
– More details later

Public / Export Control: NLR 9 MERCE – Communications Technology Division License CC-BY-SA 3.0

History of Frama-C

• 90’s: CAVEAT, an Hoare logic-based tool for C programs at CEA
• 2000’s: CAVEAT used by Airbus during certification process of the

A380 (DO-178 level A qualification)
• 2001: Why and (2004) its C front-end Caduceus (at INRIA)
• 2006: Joint project to write a successor to CAVEAT and Caduceus
• 2008: First public release of Frama-C (Hydrogen version)
• 2010: start of Device-Soft project between Fraunhofer FIRST (now

FOKUS) and CEA LIST
• Today (2013):

– Frama-C Fluorine (v9.3)
– Multiple projects around the platform
– A growing community of users…
– … and of plug-ins developers

Public / Export Control: NLR 10 MERCE – Communications Technology Division License CC-BY-SA 3.0

Frama-C main documentation

• One needs several manuals to work
– User manual: manual covering Frama-C main interface, GUI, …
– ACSL manual: all details of ACSL specification language
– Value Analysis manual: tutorial and detail use of Value Analysis

plug-in
– WP manual: detail use of WP plug-in
– RTE manual: detail use of RTE (Run Time Error) plug-in

• Use with WP

• It can need some time to find the searched information
;-)
– Ask me or Frama-C mailing list for information

Public / Export Control: NLR 11 MERCE – Communications Technology Division License CC-BY-SA 3.0

More information on Frama-C

• Developed at CEA and INRIA Saclay
• Frama-C is an Open Source project (GNU LGPL v2 license)

• Code & documentation http://frama-c.com
• Support

– Mailing list http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/frama-c-discuss

• Very helpful if questions are asked with complete C code

– StackOverflow with “frama-c” tag http://stackoverflow.com/tags/frama-c/

• Bug tracking system http://bts.frama-c.com/
• Wiki http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start

– Papers, tutorials, external plug-ins, …

• Blog http://blog.frama-c.com/

http://frama-c.com/
http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/frama-c-discuss
http://stackoverflow.com/tags/frama-c/
http://bts.frama-c.com/
http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start
http://blog.frama-c.com/

Public / Export Control: NLR 12 MERCE – Communications Technology Division License CC-BY-SA 3.0

INTERLUDE: WHY DOING FORMAL
VERIFICATION?

Public / Export Control: NLR 13 MERCE – Communications Technology Division License CC-BY-SA 3.0

Questions on a simple program

• What does the following program?
• Is it correct?

int abs(int x){
 if (x < 0)
 return -x;
 else
 return x;
}

Public / Export Control: NLR 14 MERCE – Communications Technology Division License CC-BY-SA 3.0

Answers on a simple program

• The program computes the absolute value of x
• It is buggy!

– If x == -231, 231 cannot be represented in binary two’s
complement!

• C’s int goes from -231 (-2147483648) to 231 -1 (2147483647)

• A formal tool (like Frama-C) can catch it
– “frama-c-gui -wp -wp-rte abs.c”
– Systematically!!

• Of course a programmer knows about
such issues…

• … but he might forget it while doing
more complex things

 Cannot be proved

Public / Export Control: NLR 15 MERCE – Communications Technology Division License CC-BY-SA 3.0

Question on a little more complex program

• What prints this
program?

• Both v.u=3 and v.u=4!

• This program uses undefined behavior of C99

– Access out of bound of v.t object: optimized in -O2
– Issue identified by Frama-C

#include <stdio.h>

int main(){
 struct {
 int t[4];
 int u;
 }
 v;

 v.u = 3;
 v.t[4] = 4;
 printf("v.u=%d\n", v.u);
 return 0;
}

 $ gcc struct-undefined.c && ./a.out
 v.u=4
 $ gcc -O2 struct-undefined.c && ./a.out
 v.u=3

Public / Export Control: NLR 16 MERCE – Communications Technology Division License CC-BY-SA 3.0

THE NOTION OF “CONTRACT”

Public / Export Control: NLR 17 MERCE – Communications Technology Division License CC-BY-SA 3.0

The notion of “contract”

• Contract of a function defines
– What the function requires from the outside world
– What the function ensures to the outside world

• Provided the “requires” part is fulfilled!

• Similar to business contract
• Going back to our abs() function

– abs() requires that x > -231: requires x >= - 2147483647;

– abs() ensures that
• Its result is positive: ensures \result >= 0;
• Its result is –x if x is negative, x otherwise:

– ensures x < 0 ==> \result == -x;
– ensures x >= 0 ==> \result == x;

– “\result” denotes function result

– Using Frama-C notation:

/*@ requires x >= -2147483647;
 ensures \result >= 0;
 ensures x < 0 ==> \result == -x;
 ensures x >= 0 ==> \result == x;
 */

Formal annotation

Public / Export Control: NLR 18 MERCE – Communications Technology Division License CC-BY-SA 3.0

Version of abs() with contract
• Full Frama-C version of

abs()
– Contract is put before first

line of abs()

• Contracts can be more
elaborated (see later)

/*@ requires x >= -2147483647;
 ensures \result >= 0;
 ensures x < 0 ==> \result == -x;
 ensures x >= 0 ==> \result == x;
 */
int abs(int x){
 if (x < 0)
 return -x;
 else
 return x;
}

#include <assert.h>

int abs(int x){
 int old_x = x;
 int returned_x;

 assert(x >= -2147483647);

 if (x < 0)
 returned_x = -x;
 else
 returned_x = x;

 assert(old_x < 0 ?
 returned_x == -old_x : 1);
 assert(old_x >= 0 ?
 returned_x == old_x : 1);

 return returned_x;
}

• Note: one can do the same
with assert() and test it
– But this is more cumbersome!

Public / Export Control: NLR 19 MERCE – Communications Technology Division License CC-BY-SA 3.0

FIRST USE OF FRAMA-C TOOL

Public / Export Control: NLR 20 MERCE – Communications Technology Division License CC-BY-SA 3.0

Use of Frama-C/WP tool on abs()

• Call with “frama-c-gui -wp -wp-rte abs.c”
– -wp: call WP plug-in
– -wp-rte: call RTE plug-in that inserts additional checks for Run

Time Errors

• DEMO!
– Start without

contract
– Add progressively

contract parts
– Show how

Alt-Ergo is called

Public / Export Control: NLR 21 MERCE – Communications Technology Division License CC-BY-SA 3.0

Use of Frama-C/Value tool on abs()

• Call with “frama-c-gui -val abs-value.c”
– -val: call Value analysis plug-in

• Need to write a
 “driver”
– call the function

 in all possible
 contexts

• DEMO!
– Start with driver

only
– Add correction

code

Overflow is seen

Public / Export Control: NLR 22 MERCE – Communications Technology Division License CC-BY-SA 3.0

Comparison of WP vs. Value analysis

• Value analysis
– Need less annotations
– Need to write a proper driver and used function contracts

• Possible incorrect analysis if incorrect driver

– Limited set of proved properties
• Mainly absence of Run Time Error

• WP
– Need to add more annotations: more work
– More complex properties can be proved

• No definitive tool
• Both tools can be combined

– Advantage of Frama-C framework over other tools!

Public / Export Control: NLR 23 MERCE – Communications Technology Division License CC-BY-SA 3.0

BASIC USE OF FRAMA-C/WP
THROUGH EXAMPLES

Public / Export Control: NLR 24 MERCE – Communications Technology Division License CC-BY-SA 3.0

Function call and contract

• A contract is an “opaque” specification of function
behavior
– Function callers only see the contract

• Contract considered correct even if not proved

– If no contract… unknown behavior! (default contract)

• DEMO on call.c: “frama-c-gui -wp -wp-rte call.c”
– Initial state: all proved
– Show farenheit_to_celsius() “requires” not fulfilled

• farenheit_to_celsius() and main() “ensures” still proved

– Show farenheit_to_celsius() “ensures” not fulfilled
• main() “ensures” still proved

• Everything should be proved to guarantee the program
correct !

Public / Export Control: NLR 25 MERCE – Communications Technology Division License CC-BY-SA 3.0

Old and new values, pointers: swap()

• In a contract, need to express:
– Validity of pointers
– For a variable x, value of x at function entrance and exit

• Informal specification
– “Exchange two integer values pointed by pointers”
– Prototype: void swap(int *a, int *b)

• What is swap() formal specification?
– Requires: the pointers need to be valid

• “\valid(a)”: pointer a is valid

– Ensures: the pointed values are swapped
• “\old(a)”: value of a at function entrance (in function contract ensures)
• “a”: value of a at function exit

Public / Export Control: NLR 26 MERCE – Communications Technology Division License CC-BY-SA 3.0

swap() contract and code

• Contract and code

• DEMO: “frama-c-gui -wp -wp-rte swap.c”

/*@ requires \valid(a) && \valid(b);
 ensures (*a == \old(*b) && *b == \old(*a));
 */
void swap(int *a, int *b){
 int tmp;

 tmp = *a;
 *a = *b;
 *b = tmp;
}

Public / Export Control: NLR 27 MERCE – Communications Technology Division License CC-BY-SA 3.0

Side note: Frama-C operators in specification

• Several operators useful in specification
– Similar to C notation

• No logical “IF p THEN q1 ELSE q2”
– Use “(p ==> q1) && (!p ==> q2)” instead
– Or more simply “p ? q1 : q2”

Operator Informal meaning Formal meaning (C notation)

!p NOT p !p

p && q p AND q p && q

p || q p OR q p || q

p ==> q IF p THEN q (p ? q : 1)

p <==> q p IF AND ONLY IF q p == q

Public / Export Control: NLR 28 MERCE – Communications Technology Division License CC-BY-SA 3.0

swap() variation: two elements in an array

• Informal specification
– “In array a[] of size n, exchange array elements indexed by n1

and n2”

• Prototype:
– void array_swap(int n, int a[], int n1, int n2)

• What is its formal specification?
– The indexes are within array bounds

• requires n >= 0 && 0 <= n1 < n && 0 <= n2 < n;

– The array a[] is valid memory area up to cell number n
• requires \valid(a+(0..n-1)); (similar to &a[0] valid, …, &a[n] valid)

– The indexed values are swapped
• ensures (a[n1] == \old(a[n2]) && a[n2] == \old(a[n1]));

Public / Export Control: NLR 29 MERCE – Communications Technology Division License CC-BY-SA 3.0

array_swap() contract and code

• Contract and code

• DEMO: “frama-c-gui -wp -wp-rte array_swap.c”

/*@ requires n >= 0 && 0 <= n1 < n && 0 <= n2 < n;
 requires \valid(a+(0..n-1));
 ensures (a[n1] == \old(a[n2]) && a[n2] == \old(a[n1]));
 */
void array_swap(int n, int a[], int n1, int n2){
 int tmp;

 tmp = a[n1];
 a[n1] = a[n2];
 a[n2] = tmp;
}

Public / Export Control: NLR 30 MERCE – Communications Technology Division License CC-BY-SA 3.0

A MORE COMPLEX EXAMPLE
WITH WP: FIND()

Public / Export Control: NLR 31 MERCE – Communications Technology Division License CC-BY-SA 3.0

find() specification

• Informal specification
– “Return the index of an occurrence of v in a[]”
– “Array a[] is of size n, value v and n are integers”

• Prototype:
int find(int n, const int a[], int v)

• What is its formal specification?
– We will elaborate it through some unit tests

Public / Export Control: NLR 32 MERCE – Communications Technology Division License CC-BY-SA 3.0

Case 1: find() finds v in a[]

• Informal specification
– “Return the index of an occurrence of v in a[]”
– “Array a[] is of size n, value v and n are integers”

• Prototype:
int find(int n, const int a[], int v)

• find() finds v in a[]

• Formally

 int a[5] = { 9, 7, 8, 9, 6 };

 int const f1 = find(5, a, 8);
 assert(f1 == 2);

ensures 0 <= \result < n ==> a[\result] == v;

Public / Export Control: NLR 33 MERCE – Communications Technology Division License CC-BY-SA 3.0

Case 2: find() does not find v in a[]

• Informal specification
– “Return the index of an occurrence of v in a[]”
– “Array a[] is of size n, value v and n are integers”
– “Returns -1 if v is not found”

• Prototype:
int find(int n, const int a[], int v)

• find() does not find v in a[]

• Formally
– If find() returns -1, then

• for all index i, if i is in a[] bounds then a[i] != v

 int a[5] = { 9, 7, 8, 9, 6 };

 int const f2 = find(5, a, 15);
 assert(f2 ==);

ensures \result == -1
 ==>

-1

(\forall integer i; 0 <= i < n ==> a[i] != v);

Public / Export Control: NLR 34 MERCE – Communications Technology Division License CC-BY-SA 3.0

Side note: types used in ACSL annotations

• In ACSL, distinction between C program and
mathematical types

• Usually one uses mathematical types for annotations
– “\forall integer i; ...”

• And not “\forall int i; ...”
• It simplifies generated Verification Condition (not need to

add restrictions on int range)

C program type Mathematical type
int, short integer (Z)

float, double real (R)

Public / Export Control: NLR 35 MERCE – Communications Technology Division License CC-BY-SA 3.0

Case 3: find() does not modify a[]

• Would it be a valid find()?

• We can express it formally
– assigns \nothing;

– Note: “const” expressed it formally but Frama-C does
not understand “const”

int find(int n, int a[], int v){
 if (n > 0) {
 a[0] = v;
 return 0;
 } else
 return -1;
}

Public / Export Control: NLR 36 MERCE – Communications Technology Division License CC-BY-SA 3.0

Case 4: valid input and returned values

• Informal specification
– “Array a[] is of size n, value v and n are integers”

• Formal specification?
– requires 0 <= n && \valid(a+(0..n-1));

• Informal specification
– “find() result is between -1 and n (excluded)

• Formal specification?
– ensures -1 <= \result < n;

Public / Export Control: NLR 37 MERCE – Communications Technology Division License CC-BY-SA 3.0

Wrap-up: find() formal contract

/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */

Public / Export Control: NLR 38 MERCE – Communications Technology Division License CC-BY-SA 3.0

find() code

• DEMO: how to prove find() code?
– “frama-c-gui -wp -wp-rte find.c”

/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */
int find(int n, const int a[], int v){
 int i;

 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

Public / Export Control: NLR 39 MERCE – Communications Technology Division License CC-BY-SA 3.0

Loops: how to handle them?

• Main rule: loops are “opaque”
– So one needs to add needed annotations to help automatic

provers prove desired properties
– loop invariant, loop assigns, loop variant

• Loop invariant: property always true in a loop
– Should be true at loop entry
– Should be true at each loop iteration

• Even if no iterations are possible

– Should be true at loop exit

Public / Export Control: NLR 40 MERCE – Communications Technology Division License CC-BY-SA 3.0

Example of loop invariant (1/2)

• “Loop index is between 0 and n (inclusive)”
/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */

int find(int n, const int a[], int v){
 int i;

/*@
 loop invariant 0 <= i <= n;

*/
 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

Public / Export Control: NLR 41 MERCE – Communications Technology Division License CC-BY-SA 3.0

Example of loop invariant (2/2)

• “Up to index i, value v is still not found”
/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */

int find(int n, const int a[], int v){
 int i;

/*@
 loop invariant 0 <= i <= n;
 loop invariant \forall integer j; 0 <= j < i ==> a[j] != v;

*/
 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

We build progressively
the desired property

Public / Export Control: NLR 42 MERCE – Communications Technology Division License CC-BY-SA 3.0

Loop assigns and loop variant

• Loop assigns: what is assigned within the loop

• Loop variant: to prove termination
– Show a metric strictly decreasing at each loop iteration and

bounded by 0
int find(int n, const int a[], int v){
 int i;

/*@ loop invariant 0 <= i <= n;
 loop invariant \forall integer j; 0 <= j < i ==> a[j] != v;
 loop assigns i;
 loop variant n - i;
 */
 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

Public / Export Control: NLR 43 MERCE – Communications Technology Division License CC-BY-SA 3.0

find() final proved code

• “frama-c-gui -wp -wp-rte find-proved.c”
/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */

int find(int n, const int a[], int v){
 int i;

/*@ loop invariant 0 <= i <= n;
 loop invariant \forall integer j; 0 <= j < i ==> a[j] != v;
 loop assigns i;
 loop variant n - i; */
 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

Public / Export Control: NLR 44 MERCE – Communications Technology Division License CC-BY-SA 3.0

A note on proof with WP

• More annotations than code!
– 8 lines of code
– 10 lines of annotations

• Because what we prove is
complicated
– A loop, in all possible cases!

• It corresponds to exhaustive
test!

/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;
 ensures \result == -1
 ==> (\forall integer i; 0 <= i < n ==> a[i] != v);
 ensures 0 <= \result < n ==> a[\result] == v;
 ensures -1 <= \result < n;
 */

int find(int n, const int a[], int v){
 int i;

/*@ loop invariant 0 <= i <= n;
 loop invariant \forall integer j; 0 <= j < i ==> a[j] != v;
 loop assigns i;
 loop variant n - i; */
 for (i=0; i < n; i++) {
 if (a[i] == v) {
 return i; }
 }

 return -1;
}

Public / Export Control: NLR 45 MERCE – Communications Technology Division License CC-BY-SA 3.0

BEHAVIORS: CLEAN CONTRACTS

Public / Export Control: NLR 46 MERCE – Communications Technology Division License CC-BY-SA 3.0

How to write clean contracts?

• Important to write clean contracts
– Improve readability: contract is a readable specification

• Help understand the code (e.g. in code review)
• But such specification can be mechanically checked!

– No more out-dated comments

– Help proofs

• “Behaviors” can be use to separate several cases
– Name each behavior
– Give a “sub-contract” for each behavior

• assumes, requires, ensures

• Bonus: one can additionally check that all behaviors…
– …Cover all possible inputs (complete behaviors)
– …Cover different cases (disjoint behaviors)

Public / Export Control: NLR 47 MERCE – Communications Technology Division License CC-BY-SA 3.0

find() contract using behaviors

• “frama-c-gui -wp -wp-rte find-behavior.c”

/*@ requires 0 <= n && \valid(a+(0..n-1));
 assigns \nothing;

 behavior found:
 assumes \exists integer i; 0 <= i < n && a[i] == v;
 ensures a[\result] == v;

 behavior not_found:
 assumes \forall integer i; 0 <= i < n ==> a[i] != v;
 ensures \result == -1;

 complete behaviors;
 disjoint behaviors;
 */

Array contains v at an index i

Array does not contain v for all possible indexes i

We cover all behaviors
All behaviors consider different cases

In that case return -1

In that case return the correct index

Public / Export Control: NLR 48 MERCE – Communications Technology Division License CC-BY-SA 3.0

Side note: \exists and \forall operators

• To express something over a range of values
• Examples

– int a[5] = {1, 5, 3, 2, 1};
– \exists integer i; 0 <= i < 5 && a[i] == 1;

– \forall integer i; 0 <= i < 5 ==> a[i] != 4;

i -1 0 1 2 3 4 5

a[i] ? 1 5 3 2 1 ?

0 <= i < 5 û ü ü ü ü ü û

a[i] == 1 û ü û û û ü û

i -1 0 1 2 3 4 5

a[i] ? 1 5 3 2 1 ?

0 <= i < 5 û ü ü ü ü ü û

a[i] != 4 û ü ü ü ü ü û

Public / Export Control: NLR 49 MERCE – Communications Technology Division License CC-BY-SA 3.0

Side note: opposite expressions

• Opposite expressions: 1st example
– int a[5] = {1, 5, 3, 2, 1};

• Still opposite expressions (with proper indexing)
– \exists integer i; 0 <= i < n && a[i] == v;

vs.
– \forall integer i; 0 <= i < n ==> a[i] != v;

i 0 1 2 3 4

a[i] 1 5 3 2 1

a[i] == 1 ü û û û ü

a[i] != 1 û ü ü ü û

ü ü

û
\exists index i; a[i] == 1

\forall index i; a[i] != 1

True ü
False û

Public / Export Control: NLR 50 MERCE – Communications Technology Division License CC-BY-SA 3.0

FIND() EXAMPLE WITH FRAMA-
C/VALUE ANALYSIS

Public / Export Control: NLR 51 MERCE – Communications Technology Division License CC-BY-SA 3.0

Value analysis on find() example

• Is it possible to prove properties with less annotations?
– Yes, on a specific program with Value analysis plug-in

• We need to define a driver calling find()
#define N 10

int main(void){
 int a[N] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 int i, n, result;

 for (i=0; i < N; i++) {
 result = find(N, a, i);
 //@ assert result == i;
 }

 return 0;
}

Public / Export Control: NLR 52 MERCE – Communications Technology Division License CC-BY-SA 3.0

Calling Value analysis with proper parameters

• “frama-c-gui -val find-value-constant.c”
– assert is not proved, 2 ensures of find() not proved
– We need to augment the precision of the analysis

• Use “-slevel n” parameter: semantic unrolling
– compute up to n states from different execution path before computing the union of

states

• “frama-c-gui -val -slevel 10 find-value-constant.c”
– Now everything is proved!
– Except “\assigns nothing”

• Value analysis doesn’t look at it!

• Rule of thumb: increase -slevel parameter
– But analysis take longer time… up to being unusable!
– è balance -slevel precision with needs

Public / Export Control: NLR 53 MERCE – Communications Technology Division License CC-BY-SA 3.0

A more generic verification

• We can use a more generic driver
#define N 10

int main(void){
 int a[N];
 int i, n, result;

 for (i = 0; i < N; i++)
 a[i] = Frama_C_interval(-2147483647, 2147483648);

 while (1) {
 n = Frama_C_interval(0, N);
 result = find(n, a, 0);
 }

 return 0;
}

Return random value between
min and max

Call find() with a[] size between
0 and N elements

Public / Export Control: NLR 54 MERCE – Communications Technology Division License CC-BY-SA 3.0

Result of Value analysis with generic driver

• “frama-c-gui -val -slevel 10 find-value-generic.c”
– All ensures clauses of find() not proved
– A check added in find()’s for loop

• “frama-c-gui -val -slevel 100 find-value-generic.c”
– One ensures clause proved
– No more check in find()’s for loop
– And still no proof attempt on “assigns \nothing”

• Value analysis is similar to a set of symbolic tests

– Exhaustive testing is not always possible

Public / Export Control: NLR 55 MERCE – Communications Technology Division License CC-BY-SA 3.0

E-ACSL

Public / Export Control: NLR 56 MERCE – Communications Technology Division License CC-BY-SA 3.0

E-ACSL

• E-ACSL is Executable ACSL
– Logic of E-ACSL modified to make all annotations compilable

• Partial logic (failure can occur) instead of total logic

– Compatible: all E-ACSL expressions are valid ACSL expressions

• DEMO: first-eacsl.c
int main(void){
 int x = 0;

 /*@ assert x == 0; */
 /*@ assert x == 1; */

 return 0;
}

This assertion is invalid

Public / Export Control: NLR 57 MERCE – Communications Technology Division License CC-BY-SA 3.0

Calling E-ACSL

• Annotate C code
– “frama-c -e-acsl first-eacsl.c -then-on e-acsl -print -ocode

monitored.c”

– -e-acsl: call E-ACSL plug-in to generate annotated code in new
Frama-C project named “e-acsl”

– -then-on e-acsl: switch to Frama-C project named “e-acsl”
– -print: print code of current project
– -ocode monitored.c: output printed code in “monitored.c” file

Public / Export Control: NLR 58 MERCE – Communications Technology Division License CC-BY-SA 3.0

E-ACSL annotated code

• Generated by e-acsl
plug-in

int main(void){
 int __retres;
 int x;
 x = 0;
 /*@ assert x ≡ 0; */
 e_acsl_assert(x == 0,(char *)"Assertion",(char *)"main",(char *)"x == 0",6);
 /*@ assert x ≡ 1; */
 e_acsl_assert(x == 1,(char *)"Assertion",(char *)"main",(char *)"x == 1",7);
 __retres = 0;
 return __retres;
}

Public / Export Control: NLR 59 MERCE – Communications Technology Division License CC-BY-SA 3.0

Compiling and executing annotated code

• Compile annotated code
– “gcc `frama-c -print-share-path`/e-acsl/e_acsl.c monitored.c”
– `frama-c -print-share-path`/e-acsl/e_acsl.c: compile with

e_acsl.c support library

• Execute annotated code
 $./a.out
Assertion failed at line 7 in function main.
The failing predicate is:
x == 1.

Public / Export Control: NLR 60 MERCE – Communications Technology Division License CC-BY-SA 3.0

Test and proof with E-ACSL

• E-ACSL allows to mix test and proof
– Use E-ACSL annotation on code
– Test it!
– For safety critical code: prove it!

• Documentation on E-ACSL
– E-ACSL manual: documentation for E-ACSL specification

language
– E-ACSL implementation manual: what is currently

implemented by E-ACSL plug-in
– E-ACSL user manual: how to use the plug-in

Public / Export Control: NLR 61 MERCE – Communications Technology Division License CC-BY-SA 3.0

CONCLUSION

Public / Export Control: NLR 62 MERCE – Communications Technology Division License CC-BY-SA 3.0

Not addressed in this presentation

• Axiomatization in specification language
– To write more complex specifications and proofs

• Plug-in development using OCaml API
– To develop one’s own analyses, to automate manual review

• Ghost variables and code
• All plug-ins in detail (InOut, PathCrawler, Aoraï, …)
• …

Public / Export Control: NLR 63 MERCE – Communications Technology Division License CC-BY-SA 3.0

To conclude

• Frama-C is a generic framework for static analysis of C code
– Set of plug-ins for code discovery and analysis
– Two main plug-ins: WP and Value analysis
– All plug-in use a single specification language: ACSL (in comments)

• WP: proof of complete properties possible
– But a lot (and sometimes complex) annotations are needed

• Value analysis: needs less annotations
– But a proper driver and called function contracts are needed
– Prove less properties

• Mainly absence of Run Time error

• Both tools (and others) can be combined
– Tailor the analysis to the user needs ?

	Practical introduction to Frama-C�(without Mathematical notations ;-))
	Content of this introduction to Frama-C
	What is Frama-C?
	What is Frama-C?
	Frama-C plugins
	Some plug-ins developed around Frama-C
	What are main plug-ins of Frama-C?
	Frama-C specification language
	History of Frama-C
	Frama-C main documentation
	More information on Frama-C
	Interlude: Why doing formal verification?
	Questions on a simple program
	Answers on a simple program
	Question on a little more complex program
	The notion of “contract”
	The notion of “contract”
	Version of abs() with contract
	First use of Frama-C tool
	Use of Frama-C/WP tool on abs()
	Use of Frama-C/Value tool on abs()
	Comparison of WP vs. Value analysis
	Basic use of Frama-C/WP through examples
	Function call and contract
	Old and new values, pointers: swap()
	swap() contract and code
	Side note: Frama-C operators in specification
	swap() variation: two elements in an array
	array_swap() contract and code
	A more complex example with WP: find()
	find() specification
	Case 1: find() finds v in a[]
	Case 2: find() does not find v in a[]
	Side note: types used in ACSL annotations
	Case 3: find() does not modify a[]
	Case 4: valid input and returned values
	Wrap-up: find() formal contract
	find() code
	Loops: how to handle them?
	Example of loop invariant (1/2)
	Example of loop invariant (2/2)
	Loop assigns and loop variant
	find() final proved code
	A note on proof with WP
	Behaviors: clean contracts
	How to write clean contracts?
	find() contract using behaviors
	Side note: \exists and \forall operators
	Side note: opposite expressions
	Find() example with Frama-C/Value analysis
	Value analysis on find() example
	Calling Value analysis with proper parameters
	A more generic verification
	Result of Value analysis with generic driver
	e-ACSL
	E-ACSL
	Calling E-ACSL
	E-ACSL annotated code
	Compiling and executing annotated code
	Test and proof with E-ACSL
	Conclusion
	Not addressed in this presentation
	To conclude

