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How can we avoid 
software failures in 
an effective way?

The VerCors Verifier

SOFTWARE IS EVERYWHERE

All software 
has errors!

Software failures 
can have 
enormous impact

Volkskrant
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CONCURRENT SOFTWARE CHALLENGES

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25
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requires true
ensures x is the last element in the list
void addToList(Elem x) {
 // code 

} 

The VerCors Verifier

CONCURRENT SOFTWARE: FUNCTIONAL BEHAVIOUR

Any other thread 
might invalidate 
this!

‘x is in the list’ 
cannot even be 
guaranteed!

Except when no 
other thread can 
update the list

x
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§ VerCors: verification of concurrent software
§ Overview
§ Examples
§ Annotation-aware optimisations for GPU programs

§ Verification of SystemC designs
§ Verification of LLVM programs

§ Future ideas and plans

THIS TALK
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Permission-based Separation Logic
§ Separation logic for sequential Java
§ Concurrent Separation Logic (with 

variations/extensions)
§ Permissions 

§ JML specifications
§ Dynamic frames
§ ...

The VerCors Verifier

VERCORS VERIFIER: VERIFICATION OF 
CONCURRENT SOFTWARE

Separation logic 
developed to reason 
about programs with 
pointers
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Assertions: extension of predicate logic:
φ ::= Perm(x, π) | φ à φ |  ... 

§ Perm(x, π) – thread has permission π to access field x on heap 

 

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2

The VerCors Verifier

PERMISSION-BASED SEPARATION LOGIC

Supports local reasoning

All formulas should be properly framed, i.e. you can only 
reason about heap locations that you have access to
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§ Permissions: fractional value between 0 and 1
§ Write permission: exclusive access (encoded by 1)
§ Read permission: shared access (encoded by fractional value between 0 

and 1)
§ Global invariant: for each heap location, the sum of all the permissions in the

system is never more than 1

§ Read and write permissions can be exchanged whenever threads 
synchronise

§ Permissions can be split and combined
Perm(x, 1) à − à Perm(x, ½) à Perm(x, ½)

§ Permission specifications frame functional properties

The VerCors Verifier

REASONING WITH PERMISSIONS
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The VerCors Verifier

VERCORS TOOL ARCHITECTURE

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Developed at 
ETH Zurich

See iFM 2017
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Automated verification of concurrent software
§ Different concurrency programming languages and paradigms

§ Correctness preservation of program transformations [TACAS 2022, 2024]
§ Reasoning about many language features [FMICS 2021]
§ Functional program properties by means of abstraction [VMCAI 2020]
§ Annotation generation [JSS 2024, HCVS 2024]

The VerCors Verifier

VERCORS HIGHLIGHTS

Stefan

Marina
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§ GPU examples
§ Prefix sum
§ Summed area table
§ Parallel Bellman--Ford Algorithm

§ Parallel nested depth-first search
§ Red-black tree and parallel merge
§ Kahn’s topological sort

§ ArrayList
§ Tunnel control software
§ Distributed locks
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VERCORS CASE STUDIES



EXAMPLE 
VERIFICATIONS
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context_everywhere A != null;
context_everywhere (\forall* int j; 0 <= j && j < A.length; Perm(A[j],write));
ensures (\forall int j; 0 <= j && j < A.length; A[j] == 0);
void clear(int[] A) {
 int i = 0;
  
 loop_invariant 0 <= i && i <= A.length;
 loop_invariant (\forall int j; 0 <= j && j < i; A[j] == 0);
 while (i < A.length) {
  A[i] = 0;
  i = i + 1;
 }
}

The VerCors Verifier

EXAMPLE: CLEAR ALL ELEMENTS

context_everywhere:
throughout the method
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context_everywhere A != null;
context (\forall* int j; 0 <= j && j < A.length; Perm(A[j], write));
ensures (\forall int j; 0 <= j && j < A.length; A[j] == 0);
void clearPar(int[] A) {

 par (int tid = 0 .. A.length)
  requires Perm(A[tid], write);
  ensures Perm(A[tid], write);

  ensures A[tid] == 0;
 {
  A[tid] = 0;
 }
}

The VerCors Verifier

CLEAR IN PARALLEL

context:
requires + ensures
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resource lock_invariant() = Perm(this.sum, 1);
 
context_everywhere A != null;
context (\forall* int i; 0 <= i && i < A.length; Perm(A[i], 1\2));
void sum(int[] A) {
 par (int tid = 0 .. A.length)
  requires Perm(A[tid], 1\2);
  ensures Perm(A[tid], 1\2);
 {
  lock this;
  sum = sum + A[tid];
  unlock this;
 }
}

The VerCors Verifier

SUMMING AN ARRAY IN PARALLEL
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ANNOTATION-AWARE 
OPTIMISATIONS

The VerCors Verifier 17
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ALPINIST: ANNOTATION-AWARE OPTIMISATIONS



§ Loop unrolling 
§ Kernel fusion 
§ Tiling
§ Iteration merging 

§ Matrix linearization 
§ Data prefetching 
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SUPPORTED OPTIMISATIONS
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LOOP UNROLLING

Starting kernel
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KERNEL WITH UNROLLING
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LOOP UNROLLING WITH ANNOTATIONS

N: array length, non-empty array

Alpinist checks that unrolling is 
possible (can be derived from 
precondition)
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ANNOTATION-AWARE LOOP UNROLLING

Extra annotations 
are generated
by Alpinist
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ALPINIST ARCHITECTURE



SYSTEM C
VERIFICATION
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§ C++ library with time, reactivity, hardware data types 
§ Used for hardware/software co-design 

§ System design organized into modules 
§ Communication via channels 
§ Concurrent processes with cooperative scheduling 
§ Synchronization via (time-delayed) events in discrete-event simulation 
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SYSTEM C



§ Current verification approaches for SystemC rely on model checking
§ Highly automatic
§ Limited scalability with regards to 

§ State space explosion
§ Unbounded program data 

➞ Solution: Deductive verification! 
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SYSTEM C VERIFICATION



Design 
Semantics

Thread
(Sensor)

Thread
(Controller) Shared 

Data  & 
Functions

(Robot)
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ENCODING SYSTEM C DESIGNS IN PVL

Execution
Semantics

Scheduler
Thread

Events
(od)lock

triggerGlobal
Lock



void sensor() { 

while(true) { 

wait(2, SC_MS); 

dist = read_sensor(); 

if(dist < MIN_DIST) { 

flag = true; 

} 

} 

} 
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ENCODING A PROCESS

void run() { 
lock(m); 
while (true) { 

m.event_state[1] = 2;      
m.process_state[0] = 1; 
while (m.process_state[0] != RUNNABLE 

|| m.event_state[1] != OCCURED) { 
unlock(m); 
lock(m); 

} 
dist = read_sensor(); 
if (dist < MIN_DIST) { 

flag = true; 
} 

} 
unlock(m); 

} 



while (true) {
  lock(this);
  immediate_wakeup();
  reset_events_no_delta();
  if (no_process_ready()) {
   reset_occurred_events();
   int d = min_advance(event_state);
   advance_time(d);
   wakeup_after_wait();
   reset_all_events();
   }
  unlock (this)

 } 
The VerCors Verifier 30

ENCODING THE SCHEDULE

§ Which event should occur next 
§ Which processes should be 

woken up
§ Advance time by subtracting the 

due time



Functional properties 
§ Local behavior
§ Strength of deductive verification 
§ Function contracts, local assertions 

 

assert slack < THRESHOLD; 

Global properties 
§ Involve timing, process interaction, 

events 
§ Dependent on global behavior
§ Hard to verify locally 

assert event_state[3] != -1 ==> other.pc == 4; 
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VERIFYING PROPERTIES

§ To verify global properties, need connection between local and global state 
§ Solution: global invariant 



resource global_invariant() = 
... 

// Abstract state enumeration - potentially large, but automatable 
** (event_state[0] != -1 && event_state[0] != 0) 
** (event_state[2] <= -1) 
** (sensor.pc == 0 ==> event_state[0] == -3) 
** ((event_state[2] == -1 || event_state[2] == -2) ==> event_state[0] == 2) 
** (event_state[1] >= -1 ==> event_state[0] == event_state[1] + 1) 
** (!(event_state[0] < -1 && event_state[1] == -2)) 
// Some manual invariants are still necessary 
** (event_state[2] >= -1 ==> sensor.dist < MIN_DIST) 
** (event_state[2] == -2 ==> sensor.dist < MIN_DIST) 
** (event_state[1] >= -1 ==> sensor.dist < MIN_DIST) 
** (event_state[1] == -2 ==> sensor.dist < MIN_DIST); 

§ User effort to connect local and global state is very high
§ Use abstract state space enumeration to improve automation 
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REACHABLE ABSTRACT STATES INVARIANT 
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PUTTING IT ALL TOGETHER



LLVM
VERIFICATION
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The VerCors Verifier

PALLAS: OVERALL IDEA
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The VerCors Verifier

LLVM IR

36

§ Assembly language
§ Single static assignment
§ Block structure
§ Basic types: int & float, aggregate types
§ Stable API

define i32 @addMult(i32 %x, i32 %y, i32 %z)
{ %1 = mul i32 %y, %x
  %res2 = add i32 %1, %z
  ret i32 %res2
 } 



§ Instability of LLVM IR
§ Suitable specification language
§ Origin of user errors 
§ Control flow reconstruction (identify loop components)

§ Low-level language features (loads, stores, ɸ-nodes)
§ LLVM Concurrency Model
§ Special constants: undef (undefined state), poison (erroneous state)

The VerCors Verifier

CHALLENGES FOR LLVM IR DEDUCTIVE VERIFIER
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§ Only works for C programs
§ Compile C to LLVM IR 
§ Use opt tool to turn into suitable fragment of LLVM IR
§ Annotate LLVM IR program manually

§ Encode into interal VerCors format
§ Verify with VerCors

The VerCors Verifier

LLVM-IR VERIFICATION: CURRENT STATE
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§ Computation of triangular numbers and Cantor pairs
§ Date comparison
§ Fibonnaci and factorial, specified with support for pure functions

!VC.global = !{!0} 
!0 = !{ 

!"pure i32 @fib(i32 %n) = 
 br(icmp(sgt, %n, 2), 

  add(call @fib(sub(%n, 1)), call @fib(sub(%n, 2))),1);”} 

!"ensures icmp(eq, \result, call @fib(%0));" 

The VerCors Verifier

SOME VERIFIED LLVM IR PROGRAMS
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The VerCors Verifier

NEXT STEPS
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Support for more language features
Generic specification format
Generic translation, parametrised by compiler
Effective feedback at source level



LONG-TERM IDEAS
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DIFFERENT RESEARCH DIRECTIONS

Fast development of verifiers 
for new languages

API bottleneck

Multi-language systems

New language features

Which properties 
can we verify?

Abstraction



§ Identify the well-understood core for program verification for reuse
§ Use of LLMs to construct deductive verifiers or other forms of automation?
§ Seamless integration between static and dynamic verification
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FAST DEVELOPMENT OF PROGRAM VERIFIERS



§ Annotation generation
§ Translation of annotations
§ Common contract exchange format
§ Potential use of LLM 
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API BOTTLENECK



§ Structs and pointers
§ Floats
§ Dynamic typing
§ Reflection

§ Generics/templates
§ Streams
§ …
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MISSING AND COMBINING LANGUAGE FEATURES



§ Behavioural properties: global flow
§ Security
§ Energy consumption
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BEYOND FUNCTIONAL CORRECTNESS



§ Large systems are hard to verify
§ Layers of verification
§ Trusted refinement
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ABSTRACTION LEVEL OF VERIFICATION



§ Generic ways to target the semantic differences between different 
programming languages

§ Verification of interaction with lowest layer (sensors…)
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VERIFICATION FOR MULTI-LANGUAGE SYSTEMS



§ Long line of work on tool-supported software verification
§ VerCors: program verification for concurrent software
§ Concurrency support:

§ Resource invariants to reason about lock-protected data (synchronisers)
§ Parallel blocks

§ Alpinist: preserve verifiability of programs while optimizing for performance
§ Pallas: Verification of LLVM programs
§ Future work

§ Automate, extend and scale

The VerCors Verifier

TO CONCLUDE
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THE END...

Automated verification of
concurrent software

The VerCors Verifier

More information and try the tool:
http://www.utwente.nl/vercors
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