
THE VERCORS VERIFIER:
A VERIFIER FOR MULTIPLE CONCURRENT
PROGRAMMING LANGUAGES
MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

MAXIMAL RELIABILITY OF CONCURRENT AND DISTRIBUTED SOFTWARE

How can we avoid
software failures in
an effective way?

The VerCors Verifier

SOFTWARE IS EVERYWHERE

All software
has errors!

Software failures
can have
enormous impact

Volkskrant

2

CONCURRENT SOFTWARE CHALLENGES

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

The VerCors Verifier 3

requires true
ensures x is the last element in the list
void addToList(Elem x) {
 // code

}

The VerCors Verifier

CONCURRENT SOFTWARE: FUNCTIONAL BEHAVIOUR

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

x

4

§ VerCors: verification of concurrent software
§ Overview
§ Examples
§ Annotation-aware optimisations for GPU programs

§ Verification of SystemC designs
§ Verification of LLVM programs

§ Future ideas and plans

THIS TALK

The VerCors Verifier 5

The VerCors Verifier 6

Permission-based Separation Logic
§ Separation logic for sequential Java
§ Concurrent Separation Logic (with

variations/extensions)
§ Permissions

§ JML specifications
§ Dynamic frames
§ ...

The VerCors Verifier

VERCORS VERIFIER: VERIFICATION OF
CONCURRENT SOFTWARE

Separation logic
developed to reason
about programs with
pointers

7

Assertions: extension of predicate logic:
φ ::= Perm(x, π) | φ à φ | ...

§ Perm(x, π) – thread has permission π to access field x on heap

§ φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2

The VerCors Verifier

PERMISSION-BASED SEPARATION LOGIC

Supports local reasoning

All formulas should be properly framed, i.e. you can only
reason about heap locations that you have access to

8

§ Permissions: fractional value between 0 and 1
§ Write permission: exclusive access (encoded by 1)
§ Read permission: shared access (encoded by fractional value between 0

and 1)
§ Global invariant: for each heap location, the sum of all the permissions in the

system is never more than 1

§ Read and write permissions can be exchanged whenever threads
synchronise

§ Permissions can be split and combined
Perm(x, 1) à − à Perm(x, ½) à Perm(x, ½)

§ Permission specifications frame functional properties

The VerCors Verifier

REASONING WITH PERMISSIONS

9

The VerCors Verifier

VERCORS TOOL ARCHITECTURE

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Developed at
ETH Zurich

See iFM 2017

10

Automated verification of concurrent software
§ Different concurrency programming languages and paradigms

§ Correctness preservation of program transformations [TACAS 2022, 2024]
§ Reasoning about many language features [FMICS 2021]
§ Functional program properties by means of abstraction [VMCAI 2020]
§ Annotation generation [JSS 2024, HCVS 2024]

The VerCors Verifier

VERCORS HIGHLIGHTS

Stefan

Marina

11

§ GPU examples
§ Prefix sum
§ Summed area table
§ Parallel Bellman--Ford Algorithm

§ Parallel nested depth-first search
§ Red-black tree and parallel merge
§ Kahn’s topological sort

§ ArrayList
§ Tunnel control software
§ Distributed locks

The VerCors Verifier 12

VERCORS CASE STUDIES

EXAMPLE
VERIFICATIONS

The VerCors Verifier 13

context_everywhere A != null;
context_everywhere (\forall* int j; 0 <= j && j < A.length; Perm(A[j],write));
ensures (\forall int j; 0 <= j && j < A.length; A[j] == 0);
void clear(int[] A) {
 int i = 0;

 loop_invariant 0 <= i && i <= A.length;
 loop_invariant (\forall int j; 0 <= j && j < i; A[j] == 0);
 while (i < A.length) {
 A[i] = 0;
 i = i + 1;
 }
}

The VerCors Verifier

EXAMPLE: CLEAR ALL ELEMENTS

context_everywhere:
throughout the method

14

context_everywhere A != null;
context (\forall* int j; 0 <= j && j < A.length; Perm(A[j], write));
ensures (\forall int j; 0 <= j && j < A.length; A[j] == 0);
void clearPar(int[] A) {

 par (int tid = 0 .. A.length)
 requires Perm(A[tid], write);
 ensures Perm(A[tid], write);

 ensures A[tid] == 0;
 {
 A[tid] = 0;
 }
}

The VerCors Verifier

CLEAR IN PARALLEL

context:
requires + ensures

15

resource lock_invariant() = Perm(this.sum, 1);

context_everywhere A != null;
context (\forall* int i; 0 <= i && i < A.length; Perm(A[i], 1\2));
void sum(int[] A) {
 par (int tid = 0 .. A.length)
 requires Perm(A[tid], 1\2);
 ensures Perm(A[tid], 1\2);
 {
 lock this;
 sum = sum + A[tid];
 unlock this;
 }
}

The VerCors Verifier

SUMMING AN ARRAY IN PARALLEL

16

ANNOTATION-AWARE
OPTIMISATIONS

The VerCors Verifier 17

The VerCors Verifier 18

ALPINIST: ANNOTATION-AWARE OPTIMISATIONS

§ Loop unrolling
§ Kernel fusion
§ Tiling
§ Iteration merging

§ Matrix linearization
§ Data prefetching

The VerCors Verifier 19

SUPPORTED OPTIMISATIONS

The VerCors Verifier 20

LOOP UNROLLING

Starting kernel

The VerCors Verifier 21

KERNEL WITH UNROLLING

The VerCors Verifier 22

LOOP UNROLLING WITH ANNOTATIONS

N: array length, non-empty array

Alpinist checks that unrolling is
possible (can be derived from
precondition)

The VerCors Verifier 23

ANNOTATION-AWARE LOOP UNROLLING

Extra annotations
are generated
by Alpinist

The VerCors Verifier 24

ALPINIST ARCHITECTURE

SYSTEM C
VERIFICATION

The VerCors Verifier 25

§ C++ library with time, reactivity, hardware data types
§ Used for hardware/software co-design

§ System design organized into modules
§ Communication via channels
§ Concurrent processes with cooperative scheduling
§ Synchronization via (time-delayed) events in discrete-event simulation

The VerCors Verifier 26

SYSTEM C

§ Current verification approaches for SystemC rely on model checking
§ Highly automatic
§ Limited scalability with regards to

§ State space explosion
§ Unbounded program data

➞ Solution: Deductive verification!

The VerCors Verifier 27

SYSTEM C VERIFICATION

Design
Semantics

Thread
(Sensor)

Thread
(Controller) Shared

Data &
Functions

(Robot)

The VerCors Verifier 28

ENCODING SYSTEM C DESIGNS IN PVL

Execution
Semantics

Scheduler
Thread

Events
(od)lock

triggerGlobal
Lock

void sensor() {

while(true) {

wait(2, SC_MS);

dist = read_sensor();

if(dist < MIN_DIST) {

flag = true;

}

}

}

The VerCors Verifier 29

ENCODING A PROCESS

void run() {
lock(m);
while (true) {

m.event_state[1] = 2;
m.process_state[0] = 1;
while (m.process_state[0] != RUNNABLE

|| m.event_state[1] != OCCURED) {
unlock(m);
lock(m);

}
dist = read_sensor();
if (dist < MIN_DIST) {

flag = true;
}

}
unlock(m);

}

while (true) {
 lock(this);
 immediate_wakeup();
 reset_events_no_delta();
 if (no_process_ready()) {
 reset_occurred_events();
 int d = min_advance(event_state);
 advance_time(d);
 wakeup_after_wait();
 reset_all_events();
 }
 unlock (this)

 }
The VerCors Verifier 30

ENCODING THE SCHEDULE

§ Which event should occur next
§ Which processes should be

woken up
§ Advance time by subtracting the

due time

Functional properties
§ Local behavior
§ Strength of deductive verification
§ Function contracts, local assertions

assert slack < THRESHOLD;

Global properties
§ Involve timing, process interaction,

events
§ Dependent on global behavior
§ Hard to verify locally

assert event_state[3] != -1 ==> other.pc == 4;

The VerCors Verifier 31

VERIFYING PROPERTIES

§ To verify global properties, need connection between local and global state
§ Solution: global invariant

resource global_invariant() =
...

// Abstract state enumeration - potentially large, but automatable
** (event_state[0] != -1 && event_state[0] != 0)
** (event_state[2] <= -1)
** (sensor.pc == 0 ==> event_state[0] == -3)
** ((event_state[2] == -1 || event_state[2] == -2) ==> event_state[0] == 2)
** (event_state[1] >= -1 ==> event_state[0] == event_state[1] + 1)
** (!(event_state[0] < -1 && event_state[1] == -2))
// Some manual invariants are still necessary
** (event_state[2] >= -1 ==> sensor.dist < MIN_DIST)
** (event_state[2] == -2 ==> sensor.dist < MIN_DIST)
** (event_state[1] >= -1 ==> sensor.dist < MIN_DIST)
** (event_state[1] == -2 ==> sensor.dist < MIN_DIST);

§ User effort to connect local and global state is very high
§ Use abstract state space enumeration to improve automation

The VerCors Verifier 32

REACHABLE ABSTRACT STATES INVARIANT

Design
Semantics

Execution
Semantics

Thread
(Sensor)

Thread
(Controller)

Scheduler
Thread

 Shared
Data &

Functions
(Robot)

Events
(od)lock

trigger

wait
notify

Global
Lock

assume/check

lock

Re
ac

ha
bl

e A
bs

tra
ct

 S
ta

te
s I

nv
ar

ia
nt

 (R
AS

I)

enablelock
wait
notify

enable

The VerCors Verifier 33

PUTTING IT ALL TOGETHER

LLVM
VERIFICATION

The VerCors Verifier 34

The VerCors Verifier

PALLAS: OVERALL IDEA

35

The VerCors Verifier

LLVM IR

36

§ Assembly language
§ Single static assignment
§ Block structure
§ Basic types: int & float, aggregate types
§ Stable API

define i32 @addMult(i32 %x, i32 %y, i32 %z)
{ %1 = mul i32 %y, %x
 %res2 = add i32 %1, %z
 ret i32 %res2
 }

§ Instability of LLVM IR
§ Suitable specification language
§ Origin of user errors
§ Control flow reconstruction (identify loop components)

§ Low-level language features (loads, stores, ɸ-nodes)
§ LLVM Concurrency Model
§ Special constants: undef (undefined state), poison (erroneous state)

The VerCors Verifier

CHALLENGES FOR LLVM IR DEDUCTIVE VERIFIER

37

§ Only works for C programs
§ Compile C to LLVM IR
§ Use opt tool to turn into suitable fragment of LLVM IR
§ Annotate LLVM IR program manually

§ Encode into interal VerCors format
§ Verify with VerCors

The VerCors Verifier

LLVM-IR VERIFICATION: CURRENT STATE

38

§ Computation of triangular numbers and Cantor pairs
§ Date comparison
§ Fibonnaci and factorial, specified with support for pure functions

!VC.global = !{!0}
!0 = !{

!"pure i32 @fib(i32 %n) =
 br(icmp(sgt, %n, 2),

 add(call @fib(sub(%n, 1)), call @fib(sub(%n, 2))),1);”}

!"ensures icmp(eq, \result, call @fib(%0));"

The VerCors Verifier

SOME VERIFIED LLVM IR PROGRAMS

39

The VerCors Verifier

NEXT STEPS

40

Support for more language features
Generic specification format
Generic translation, parametrised by compiler
Effective feedback at source level

LONG-TERM IDEAS

The VerCors Verifier 41

The VerCors Verifier 42

DIFFERENT RESEARCH DIRECTIONS

Fast development of verifiers
for new languages

API bottleneck

Multi-language systems

New language features

Which properties
can we verify?

Abstraction

§ Identify the well-understood core for program verification for reuse
§ Use of LLMs to construct deductive verifiers or other forms of automation?
§ Seamless integration between static and dynamic verification

The VerCors Verifier 43

FAST DEVELOPMENT OF PROGRAM VERIFIERS

§ Annotation generation
§ Translation of annotations
§ Common contract exchange format
§ Potential use of LLM

The VerCors Verifier 44

API BOTTLENECK

§ Structs and pointers
§ Floats
§ Dynamic typing
§ Reflection

§ Generics/templates
§ Streams
§ …

The VerCors Verifier 45

MISSING AND COMBINING LANGUAGE FEATURES

§ Behavioural properties: global flow
§ Security
§ Energy consumption

The VerCors Verifier 46

BEYOND FUNCTIONAL CORRECTNESS

§ Large systems are hard to verify
§ Layers of verification
§ Trusted refinement

The VerCors Verifier 47

ABSTRACTION LEVEL OF VERIFICATION

§ Generic ways to target the semantic differences between different
programming languages

§ Verification of interaction with lowest layer (sensors…)

The VerCors Verifier 48

VERIFICATION FOR MULTI-LANGUAGE SYSTEMS

§ Long line of work on tool-supported software verification
§ VerCors: program verification for concurrent software
§ Concurrency support:

§ Resource invariants to reason about lock-protected data (synchronisers)
§ Parallel blocks

§ Alpinist: preserve verifiability of programs while optimizing for performance
§ Pallas: Verification of LLVM programs
§ Future work

§ Automate, extend and scale

The VerCors Verifier

TO CONCLUDE

49

The VerCors Verifier 50

Afshin Amighi, Lukas Armborst, Stefan Blom, Petra van den Bos,
Pieter Bos, Saeed Darabi, Lars van den Haak, Paula Herber, Sebastiaan Joosten,
Sophie Lathouwers, Robert Mensing, Raúl Monti, Wojciech Mostowski,
Henk Mulder, Wytse Oortwijn, Bob Rubbens, Ömer Sakar, Alexander Stekelenburg,
Philip Tasche, Naum Tomov, Anton Wijs, Marina Zaharieva, and many
BSc and MSc students

ACKNOWLEDGEMENTS

THE END...

Automated verification of
concurrent software

The VerCors Verifier

More information and try the tool:
http://www.utwente.nl/vercors

51

