
Runtime Annotation Checking with Frama-C
The E-ACSL Plug-in

Julien Signoles June 13, 2024 @ Frama-C Days

CEA-List, Université Paris-Saclay, Software Safety and Security Lab

E-ACSL Book Chapter

2/202024-06-13 – J. Signoles

Runtime Annotation Checking and E-ACSL

Runtime Annotation Checking (RAC) [Huisman & Wijs, 2023]

“The basic idea of runtime annotation checking is that as a program is executed, every
precondition and postcondition is checked by simply evaluating the predicate, followed
by a test whether the outcome of this evaluation is true.”

E-ACSL [Signoles et al, 2017] [Benjamin & Signoles, 2024]

Frama-C plug-in that takes as input a C program p and ACSL annotations and
generates a new C code that monitors the annotations. When executed:

> behaves similarly to p if every ACSL annotation is valid;
> stops1 on the first invalid annotation otherwise

1Customizable behavior
3/202024-06-13 – J. Signoles

Runtime Annotation Checking and E-ACSL

Runtime Annotation Checking (RAC) [Huisman & Wijs, 2023]

“The basic idea of runtime annotation checking is that as a program is executed, every
precondition and postcondition is checked by simply evaluating the predicate, followed
by a test whether the outcome of this evaluation is true.”

E-ACSL [Signoles et al, 2017] [Benjamin & Signoles, 2024]

Frama-C plug-in that takes as input a C program p and ACSL annotations and
generates a new C code that monitors the annotations. When executed:

> behaves similarly to p if every ACSL annotation is valid;
> stops1 on the first invalid annotation otherwise

1Customizable behavior
3/202024-06-13 – J. Signoles

Outline

1 〉 What Does E-ACSL Provides

2 〉 How E-ACSL Works

4/202024-06-13 – J. Signoles

Outline

1 〉 What Does E-ACSL Provides
1 〉 First Example
2 〉 Usages
3 〉 Guarantees Provided

2 〉 How E-ACSL Works

5/202024-06-13 – J. Signoles

Running E-ACSL by Example

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main () {
5 int ∗a, ∗b;
6 a = (int ∗) malloc (10 ∗ sizeof (int));
7 b = (int ∗) malloc (3 ∗ sizeof (int));
8 for(int i = 0; i <= 10; i++) {
9 // @ assert (i < 10);

10 a[i] = i ;
11 }
12 printf ("Done!\n");
13 return 0;
14 }

> e−acsl−gcc.sh −c first .c
> ls −1
a.out // normal binary (as compiled by gcc)
a.out.e−acsl // monitored binary after E−ACSL instrumentation
a.out.frama−c // monitored C file generated by E−ACSL
first .c // user source file

> ./ a.out.e−acsl
first .c: In function ’main’
first .c:9: Error : Assertion failed :

The failing predicate is :
i < 10.
With values at failure point :
− i : 10

Abandon (core dumped)

e-acsl-gcc-sh: convenient script that calls Frama-C and the C compiler appropriately

6/202024-06-13 – J. Signoles

Running E-ACSL by Example (cont’d)

It also works on more complex specifications!
1 /∗@ requires \valid(a+(0..length−1));
2 @ requires \forall integer i , j ;
3 @ 0 <= i <= j <length ==> a[i] <= a[j];
4 @ requires length >=0;
5 @ behavior exists:
6 @ assumes \exists integer i; 0<=i<length && a[i] == key;
7 @ ensures 0<=\result<length && a[\result] == key;
8 @ behavior not_exists:
9 @ assumes \forall integer i; 0<=i<length ==> a[i] != key;

10 @ ensures \result == −1;
11 @ complete behaviors;
12 @ disjoint behaviors; ∗/
13 int binary_search(int∗ a, int length, int key) {

18 while (low<high) { // instead of low <= high

27 int main() {
28 int t[5] = { 1, 2, 3, 4, 5 };
29 return binary_search(t, 5, 5);
30 }

> e−acsl−gcc.sh −c search.c
> ./ a.out.eacsl
search.c: In function ’binary_search’
search.c:7: Error : Postcondition failed :

The failing predicate is :
exists :

0 <= \ result < \old(length)
&& ∗(\old(a) + \ result) == \old(key).

With values at failure point :
− \ result : −1

Abandon (core dumped)

7/202024-06-13 – J. Signoles

A Few Usages

> checking unproved properties of static analyzers (e.g., Eva, WP)

> extending test suites with monitoring for catching hardly-observable defects

> checking non-ACSL properties, automatically, with the help of dedicated plug-ins
> absence of undefined behaviors (RTE)
> ordering of function calls and returns (Aoraï)
> system level properties (MetACSL)
> Virgile Prevosto’s talk this afternoon!

> checking a few other properties automatically
> format string in printf- or scanf-like functions
> calls to critical libc functions, e.g. memset or memcpy
> memory consumption

8/202024-06-13 – J. Signoles

Checking Undefined Behaviors: Example

checking undefined behaviors automatically?
just give --rte=all to e-acsl-gcc.sh

1 int main ()
2 {
3 int size = 3;
4 int p[size];
5 for (int i = 0; i <= 3; i++)
6 p[i] = 0;
7 return 0;
8 }

> e−acsl−gcc.sh −c −−rte=all search.c
> ./ a.out.eacsl
undef.c: In function ’main’
undef.c:6: Error : Assertion failed :

The failing predicate is :
rte /mem_access:

\ valid (p + i) .
With values at failure point :
− rte : mem_access: \valid(p + i): 0
− sizeof(int) : 4
− i : 3
− p: 0x7ffcaffdb010

Abandon (core dumped)

9/202024-06-13 – J. Signoles

RAC Tool’s Guarantees

RAC is a lightweight formal method

criteria for evaluating runtime (annotation) checkers:
> expressivity: the more formal properties a RAC tool is able to check, the better.
> transparency: the instrumentation should not interfere with the behavior of the

original program, beyond interrupting the execution when detecting an invalid
property.

> soundness: the instrumented program should check the annotations accurately
(always detects the bug)

> correctness = transparency + soundness
> efficiency: to be practical, it is necessary to limit the time and memory overheads

induced by the instrumentation.

10/202024-06-13 – J. Signoles

Expressivity for Undefined Behaviors

Defect Type E-ACSL Google’s Sanitizers
Dynamic Memory 94% (81/86) 78% (67/86)
Static Memory ✓ (67/67) 96% (64/67)
Pointer-related 56% (47/84) 32% (27/84)
Stack-related 35% (7/20) 70% (14/20)
Resource 99% (95/96) 60% (58/96)
Numeric 93% (100/108) 59% (64/108)
Miscellaneous 94% (33/35) 49% (17/35)
Inappropriate Code – (0/64) – (0/64)
Concurrency – (0/44) 73% (32/44)
Overall 71% (430/604) 57% (343/604)

Detection Capabilities over Toyota ITC Benchmark [Vorobyov et al, 2018]

11/202024-06-13 – J. Signoles

Efficiency for Undefined Behaviors

164
.gzi

p
175

.vp
r
179

.art
181

.mcf

183
.eq

uak
e

188
.am

mp

197
.pa

rse
r

256
.bzi

p2

300
.tw

olf

401
.bzi

p2
429

.mcf

433
.milc

458
.sje

ng

456
.hm

mer
470

.lbm

998
.spe

cra
nd

999
.spe

cra
nd

104.91

0

10

20

30

40

50

R
u
n
ti

m
e
 O

v
e
rh

e
a
d
 R

a
ti

o

E-ACSL-Shadow
MemCheck
ASan
Dr. Memory (64)
Dr. Memory (32)

×17 time-overhead; ×2.4 memory overhead on SPEC-CPU
speed comparable to Valgrind; slower than AddressSanitizer
less memory-overhead than these tools [Vorobyov et al, 2017]

12/202024-06-13 – J. Signoles

Use Case: Generating Security
Counter-Measures

[Pariente & Signoles, 2017]

First, use automatic static analysis to detect vulnerabilities
Then, switch to fast runtime monitoring

Experimented on modules from Apache/OpenSSL

13/202024-06-13 – J. Signoles

Outline

1 〉 What Does E-ACSL Provides

2 〉 How E-ACSL Works
1 〉 Checking Arithmetic Properties
2 〉 Checking Memory Properties

14/202024-06-13 – J. Signoles

The Challenge of Compiling Formal Annotations

RAC is a compilation technique

> RAC compiles assertions into executable code
> input: /*@ assert x+1 == 0; */
> output: assert (x+1 == 0);

> may look straightforward
> “The run-time checker [of Spec#] is straightforward” [Barnet et al., 2011]

> really straightforward??
> maybe not: “the run-time overhead [of Spec#] is prohibitive” [Barnet et al., 2011]
> maybe not: the example above is unsound, in general

15/202024-06-13 – J. Signoles

The Challenge of Compiling Formal Annotations

RAC is a compilation technique

> RAC compiles assertions into executable code
> input: /*@ assert x+1 == 0; */
> output: assert (x+1 == 0);

> may look straightforward
> “The run-time checker [of Spec#] is straightforward” [Barnet et al., 2011]

> really straightforward??
> maybe not: “the run-time overhead [of Spec#] is prohibitive” [Barnet et al., 2011]
> maybe not: the example above is unsound, in general

15/202024-06-13 – J. Signoles

Compiling Mathemetical Numbers Soundly

dedicated library (GMP in C) for integers and rationals

1 /*@ assert x + 1 == 0; */
2 mpz_t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;
3 int e_acsl_5;
4 mpz_init_set_si(e_acsl_1, x); // e_acsl_1 = x
5 mpz_init_set_si(e_acsl_2, 1); // e_acsl_2 = 1
6 mpz_init(e_acsl_3);
7 mpz_add(e_acsl_3, e_acsl_1, e_acsl_2); // e_acsl_3 = x + 1
8 mpz_init_set_si(e_acsl_4, 0); // e_acsl_4 = 0
9 e_acsl_5 = mpz_cmp(e_acsl_3, e_acsl_4); // x + 1 == 0

10 e_acsl_assert(e_acsl_5 == 0); // runtime check
11 mpz_clear(e_acsl_1); mpz_clear(e_acsl_2); // deallocate
12 mpz_clear(e_acsl_3); mpz_clear(e_acsl_4);

sound [Benjamin & Signoles, 2023a] but not efficient

16/202024-06-13 – J. Signoles

Compiling Mathemetical Numbers Efficiently

> dedicated type system [Kosmatov et al, 2020], extended to an abstract
interpreter [Benjamin & Signoles, 2023b] for being sound and efficient

> use machine bounded numbers and arithmetic whenever possible
> use GMP otherwise

> only a few GMPs integers in practice
> very efficient in practice

> implemented in E-ACSL for integer and rational numbers

17/202024-06-13 – J. Signoles

Compiling Memory Properties

> how to compile \valid(p) or \initialize(p)?
> standard solution: shadow memory

> implemented in memory debuggers, e.g., Address Sanitizer [Serebryany et al, 2012]
> cannot evaluate block-level properties

\base_addr(p)

\o�set(p)

\block_length(p)

p

End addressStart address

> E-ACSL’s custom shadow memory [Vorobyov et al, 2017]

> issue: heavy instrumentation, so not very efficient
> solution: dedicated dataflow analysis [Ly et al, 2018]

> monitor only the over-approximated necessary memory locations

18/202024-06-13 – J. Signoles

Compiling Memory Properties

> how to compile \valid(p) or \initialize(p)?
> standard solution: shadow memory

> implemented in memory debuggers, e.g., Address Sanitizer [Serebryany et al, 2012]
> cannot evaluate block-level properties

\base_addr(p)

\o�set(p)

\block_length(p)

p

End addressStart address

> E-ACSL’s custom shadow memory [Vorobyov et al, 2017]

> issue: heavy instrumentation, so not very efficient
> solution: dedicated dataflow analysis [Ly et al, 2018]

> monitor only the over-approximated necessary memory locations
18/202024-06-13 – J. Signoles

Conclusion

> using E-ACSL is quite easy, yet find hard-to-catch bugs
> can be combined efficiently with plug-ins generating ACSL annotations

> scientific challenge: be expressive, sound and efficient altogether
> mathematical numbers

> integers
> rational numbers
> what about real numbers?

> memory properties
> assigns clauses? [Lehner, 2011]
> what about concurrency?

> multi-state properties, i.e. \old and \at
> partial solutions do exist, the most recent being [Filliâtre & Pascutto, 2022]
> one is implemented in E-ACSL (unpublished), can be improved

> inductive and axiomatic definitions?
> will be in Frama-C 30-Zinc, up to some extend

> more optimizations
19/202024-06-13 – J. Signoles

Bibliography
> M. Huisman, A. Wijs A Concise Guide to Software Verfication. From Model Checking to Annotation Checking. Springer Nature, 2023
> J. Signoles, N. Kosmatov, K. Vorobyov E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs. Tool Paper. Int. Work. on

Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CuBES), 2017
> T. Benjamin, J. Signoles Runtime Annotation Checking with Frama-C: The E-ACSL Plug-in. Guide to Software Verification with Frama-C: Core

Components, Usages, and Applications. N. Kosmatov, V. Prevosto, J. Signoles, eds, 2024
> K. Vorobyov, N. Kosmatov, and J. Signoles Detection of Security Vulnerabilities in C Code using Runtime Verification. Int. Conf. on Tests and Proofs

(TAP), 2018
> K. Vorobyov, J. Signoles, and N. Kosmatov Shadow State Encoding for Efficient Monitoring of Block-level Properties. Int. Symp. on Memory

Management (ISMM), 2017
> D. Pariente and J. Signoles Static Analysis and Runtime Assertion Checking: Contribution to Security Counter-Measures. Symp. sur la Sécurité des

Technologies de l’Information et des Communications (SSTIC), 2017
> M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, H. Venter Specification and Verification: The Spec# Experience. Communications of

the ACM, 2011
> T. Benjamin, J. Signoles Formalizing an Efficient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates. Int. Symp. on

Applied Computing (SAC), 2023
> N. Kosmatov, F. Maurica, and J. Signoles Efficient Runtime Assertion Checking for Properties over Mathematical Numbers. Int. Conf. on Runtime

Verification (RV), 2020
> T. Benjamin, J. Signoles Abstract Interpretation of Recursive Logic Definitions for Efficient Runtime Assertion Checking. Int. Conf. on Tests and Proofs

(TAP), 2023
> K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov AddressSanitizer: A Fast Address Sanity Checker. Annual Technical Conf. (ATC), 2012
> D. Ly, N. Kosmatov, F. Loulergue, and J. Signoles Soundness of a dataflow analysis for memory monitoring. Work. on Languages and Tools for

Ensuring Cyber-Resilience in Critical Software-Intensive Systems (HILT), 2018
> H. Lehner A Formal Definition of JML in Coq and its Application to Runtime Assertion Checking. PhD Thesis, ETH Zürich, 2011
> J.-C. Filliâtre, C. Pascutto Optimizing Prestate Copies in Runtime Verification of Function Postconditions Int. Conf. on Runtime Verification (RV), 2022

20/202024-06-13 – J. Signoles

