Software Analyzers

RUNTIME ANNOTATION CHECKING WITH FRAMA-C
THE E-ACSL PLuUG-IN

Julien Signoles June 13, 2024 @ Frama-C Days

CEA-List, Université Paris-Saclay, Software Safety and Security Lab

. ..
g list universite
_I PARIS-SACLAY

o)

Sotware Analyzers

2024-06-13

J. Signoles

Runtime Annotation Checking with Frama-C:
The E-ACSL Plug-in

Thibaut Benjamin and Julien Signoles

Abstract Runtime Annotation Checking (RAC) is a lightweight formal method
consisting in checking code annotations written in the source code during the pro-
gram execution. While static formal methods aim for guarantees that hold for any
execution of the analyzed program, RAC only provides guarantees about the par-
ticular execution it monitors. This allows RAC-based tools to be used to check a
wide range of properties with minimum intervention from the user. Frama-C can
perform RAC on C programs with the plug-in E-ACSL. This chapter presents RAC
through practical use with E-ACSL, shows advanced uses of E-ACSL leveraging the
collaboration with other plug-ins, and sheds some light on the internals of E-ACSL
and the technical difficulties of impl ing RAC.

Key words: runtime annotation checking, inline monitoring, dynamic analysis,
memory debugging.

E-ACSL Book CHAPTER

2/20

aa RuNTIME ANNOTATION CHECKING AND E-ACSL

Runtime Annotation Checking (RAC) [Huisman & Wijs, 2023]

“The basic idea of runtime annotation checking is that as a program is executed, every
precondition and postcondition is checked by simply evaluating the predicate, followed
by a test whether the outcome of this evaluation is true.”

'Customizable behavior
2024-06-13 — J. Signoles 3/20

99 RuNTIME ANNOTATION CHECKING AND E-ACSL

Runtime Annotation Checking (RAC) [Huisman & Wijs, 2023]

“The basic idea of runtime annotation checking is that as a program is executed, every
precondition and postcondition is checked by simply evaluating the predicate, followed
by a test whether the outcome of this evaluation is true.”

E-ACSL [Signoles et al, 2017] [Benjamin & Signoles, 2024]
Frama-C plug-in that takes as input a C program p and ACSL annotations and
generates a new C code that monitors the annotations. When executed:

> behaves similarly to p if every ACSL annotation is valid;

> stops' on the first invalid annotation otherwise

'Customizable behavior

2024-06-13 — J. Signoles 3/20

AAAAAAAAAAAAAAAAAA

1) What Does E-ACSL Provides
2) How E-ACSL Works

2024-06-13 — J. Signoles

OUTLINE

4/20

1) What Does E-ACSL Provides

1) First Example
2) Usages
3) Guarantees Provided

2) How E-ACSL Works

2024-06-13 — J. Signoles

OUTLINE

5/20

f ¥lama

Sotware Analyzers

1 | #include <stdio.h>
2 | #include <stdlib.h>
3
4 | int main () {
5] int »a, b;
6 a = (int ») malloc (10 » sizeof (int));
7 b = (int *) malloc (3 * sizeof (int));
8 for(int i=0; i <=10; i++) {
9 /| @ assert (i < 10);
10 afi] = i;
11 }
12 printf ("Donel\n");
13 return 0;
14 |}

RunNING E-ACSL BY ExamMPLE

> e-acsl-gcc.sh —c first.c

>ls -1

a.out /I normal binary (as compiled by gcc)
a.out.e-acsl // monitored binary after E-ACSL instrumentation
a.out.frama-c // monitored C file generated by E-ACSL

first .c /I user source file

> ./a.out.e-acsl

first .c: In function 'main’

first .c:9: Error: Assertion failed :
The failing predicate is:
i <10.
With values at failure point:
=1

Abandon (core dumped)

e-acsl-gcc-sh: convenient script that calls Frama-C and the C compiler appropriately

2024-06-13 — J. Signoles

6/20

RuNnNING E-ACSL BY EXAMPLE (CONT'D)

Sotware Analyzers

It also works on more complex specifications!

1 | /=@ requires \valid(a+(0..length-1)); > e-acsl-gcc.sh -c search.c
2 @ requires \forall integer i, j; > ./a.out.eacsl
3 @ 0<=i<=]j <length ==> a[i] <=a[j]; search.c: In function 'binary_search’
4 @ requires length >=0; search.c:7: Error: Postcondition failed :
5) @ behavior exists: The failing predicate is:
6 @ assumes \exists integer i; 0<=i<length && a[i] == key; exists :
7 @ ensures 0<=\result<length && a[\result] == key; 0 <=\result < \old(length)
8 @ behavior not_exists: && «(\old(a) + \result) ==\old(key).
9 @ assumes Yforall integer i; O<=i<length ==> a[i] |= key; With values at failure point:

10 @ ensures \result == -1; - \result: -1

11 @ complete behaviors; Abandon (core dumped)

12 @ disjoint behaviors; /
13 | int binary_search(int+ a, int length, int key) {

18 while (low<high) { // instead of low <= high

27 | int main() {

28 intt[5] ={ 1,2, 3, 4,5},
29 return binary_search(t, 5, 5);
30 |}

2024-06-13 — J. Signoles 7/20

A FEw UsAGEs

gggggggggggggggggg

> checking unproved properties of static analyzers (e.g., Eva, WP)

> extending test suites with monitoring for catching hardly-observable defects

> checking non-ACSL properties, automatically, with the help of dedicated plug-ins
> absence of undefined behaviors (RTE)
> ordering of function calls and returns (Aorai)
> system level properties (MetACSL)
> Virgile Prevosto’s talk this afternoon!

> checking a few other properties automatically

> format string in printf- or scanf-like functions
> calls to critical libc functions, e.g. memset Or memcpy
> memory consumption

2024-06-13 — J. Signoles 8/20

CHECKING UNDEFINED BEHAVIORS: EXAMPLE

Sotware Analyzers

checking undefined behaviors automatically?
just give —-rte=all t0 e-acsl-gcc.sh

1 int main () > e-acsl-gcc.sh -c¢ —-rte=all search.c
2 | { > ./a.out.eacsl

3 int size = 3; undef.c: In function 'main’

4 int p[size]; undef.c:6: Error: Assertion failed :

5 for (inti=0; i <=3; i++) The failing predicate is:

6 pli] = 0; rte/mem_access:

7 return0; \valid (p + i).

8 |} With values at failure point:

- rte: mem_access: \valid(p +i): 0
- sizeof(int): 4
-i:3
- p: Ox7ffcaffdb010
Abandon (core dumped)

2024-06-13 — J. Signoles 9/20

RAC Tool's GUARANTEES

RAC is a lightweight formal method

criteria for evaluating runtime (annotation) checkers:
> expressivity: the more formal properties a RAC tool is able to check, the better.

> transparency: the instrumentation should not interfere with the behavior of the
original program, beyond interrupting the execution when detecting an invalid
property.

> soundness: the instrumented program should check the annotations accurately
(always detects the bug)

> correctness = transparency + soundness

> efficiency: to be practical, it is necessary to limit the time and memory overheads
induced by the instrumentation.

2024-06-13 — J. Signoles 10/20

ExPRESSIVITY FOR UNDEFINED BEHAVIORS

rrrrrrrrrrrrrrrrrr

Defect Type E-ACSL Google’s Sanitizers
Dynamic Memory 94% (81/86) 78% (67/86)
Static Memory v (67/67) 96% (64/67)
Pointer-related 56% (47/84) 32% (27/84)
Stack-related 35% (7/20) 70% (14/20)
Resource 99% (95/96) 60% (58/96)
Numeric 93% (100/108) 59% (64/108)
Miscellaneous 94% (33/35) 49% (17/35)
Inappropriate Code | — (0/64) — (0/64)
Concurrency — (0/44) 73% (32/44)
Overall 71% (430/604) 57% (343/604)

Detection Capabilities over Toyota ITC Benchmark [Vorobyov et al, 2018]

2024-06-13 — J. Signoles 11/20

oo © EFFiciENCY FOR UNDEFINED BEHAVIORS

Sotware Analyzers

104.91
) B E-ACSL-Shadow
50 y 5 Il MemCheck
¢) ASan
! ! Dr. Memory (64)
o ! 2 X Dr. Memory (32)
g
e}
3
<
(9
>
3
L)
£
€
=1
o

GB® en®’ 102 o ke P el el W pio? ol end
16897415 419748 (e 000 0.0 01 99 15607 300 8, BEET 400 T 433 g0 9 o

el o 3 Y
no™ 470 »:; 5ped;g e
99877 990"

x 17 time-overhead; x2.4 memory overhead on SPEC-CPU

speed comparable to Valgrind; slower than AddressSanitizer

less memory-overhead than these tools [Vorobyov et al, 2017]
2024-06-13 — J. Signoles 12/20

“ Use CAsSE: GENERATING SECURITY
COUNTER-MEASURES

origina

Gena-CWE

source code

auto-detection of some CWE ~ complements on CWE
by abstract interpretation detection

/| DASSAULT
v AVIATION

counter-measures

with CWE
alarms

"CWE
instrumented"

alarms expressed translates ACSL alarms operate against
in ACSL into source code targeted CWE

Liuw —

First, use automatic static analysis to detect vulnerabilities
Then, switch to fast runtime monitoring

[Pariente & Signoles, 2017]

Experimented on modules from Apache/OpenSSL

2024-06-13 — J. Signoles 13/20

1) What Does E-ACSL Provides

2) How E-ACSL Works

1) Checking Arithmetic Properties
2) Checking Memory Properties

2024-06-13 — J. Signoles

OUTLINE

14/20

THE CHALLENGE OF COMPILING FORMAL ANNOTATIONS

rrrrrrrrrrrrrrrrrr

RAC is a compilation technique

> RAC compiles assertions into executable code

> input: /x@ assert x+1 == 0; =/
> output: assert (x+1 == 0);

> may look straightforward
> “The run-time checker [of Spec#] is straightforward” [Barnet et al., 2011]

2024-06-13 — J. Signoles 15/20

THE CHALLENGE OF COMPILING FORMAL ANNOTATIONS

rrrrrrrrrrrrrrrrrr

RAC is a compilation technique

> RAC compiles assertions into executable code
> input: /x@ assert x+1 == 0; =/
> output: assert (x+1 == 0);
> may look straightforward
> “The run-time checker [of Spec#] is straightforward” [Barnet et al., 2011]

> really straightforward??

> maybe not: “the run-time overhead [of Spec#] is prohibitive” [Barnet et al., 2011]
> maybe not: the example above is unsound, in general

2024-06-13 — J. Signoles 15/20

CoMPILING MATHEMETICAL NUMBERS SOUNDLY

Sotware Analyzers

dedicated library (GMP in C) for integers and rationals

1 | /%@ assert x + 1 == 0; */

2 |mpz_t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;

3 |int e_acsl_5;

4 |mpz_init_set_si(e_acsl_1, x); // e_acsl 1 = x

5 |mpz_init_set_si(e_acsl_2, 1); // e_acsl_2 =1

6 |mpz_init (e_acsl_3);

7 |mpz_add(e_acsl_3, e_acsl_1, e_acsl_2); // e_acsl 3 =x + 1
8 |mpz_init_set_si(e_acsl_4, 0); // e_acsl_4 =0

9 |e_acsl_5 = mpz_cmp(e_acsl_3, e_acsl_4); // x + 1 == 0

10 | e_acsl_assert (e_acsl_5 == 0); // runtime check

mpz_clear (e_acsl_1); mpz_clear(e_acsl_2); // deallocate
mpz_clear (e_acsl_3); mpz_clear (e_acsl_4);

n

sound [Benjamin & Signoles, 2023a] but not efficient

2024-06-13 — J. Signoles 16/20

CoMPILING MATHEMETICAL NUMBERS EFFICIENTLY

AAAAAAAAAAAAAAAAAA

> dedicated type system [Kosmatov et al, 2020], extended to an abstract
interpreter [Benjamin & Signoles, 2023b] for being sound and efficient

> use machine bounded numbers and arithmetic whenever possible
> use GMP otherwise

> only a few GMPs integers in practice

> very efficient in practice

> implemented in E-ACSL for integer and rational numbers

2024-06-13 — J. Signoles 17/20

CoMPILING MEMORY PROPERTIES

Sotware Analyzers

> how to compile \valid (p) or \initialize (p)?

> standard solution: shadow memory
> implemented in memory debuggers, e.g., Address Sanitizer [Serebryany et al, 2012]
> cannot evaluate block-level properties

\offset(p) +_p
\block_length(p)

A\base_addr(p) 3
Start address End address

2024-06-13 — J. Signoles 18/20

rrrrrrrrrrrrrrrrrr

CoMPILING MEMORY PROPERTIES

> how to compile \valid (p) or \initialize (p)?

> standard solution: shadow memory

> implemented in memory debuggers, e.g., Address Sanitizer [Serebryany et al, 2012]

> cannot evaluate block-level properties

\offset(p)

\

\block_length(p)

A\base_addr(p)
Start address

End address

> E-ACSLs custom shadow memory [Vorobyov et al, 2017]

> issue: heavy instrumentation, so not very efficient
> solution: dedicated dataflow analysis [Ly et al, 2018]

> monitor only the over-approximated necessary memory locations

2024-06-13 — J. Signoles

18/20

CONCLUSION

rrrrrrrrrrrrrrrrrr

> using E-ACSL is quite easy, yet find hard-to-catch bugs
> can be combined efficiently with plug-ins generating ACSL annotations

> scientific challenge: be expressive, sound and efficient altogether
> mathematical numbers
> integers
> rational numbers
> what about real numbers?
> memory properties
> assigns clauses? [Lehner, 2011]
> what about concurrency?
> multi-state properties, i.e. \old and \at
> partial solutions do exist, the most recent being [Filliatre & Pascutto, 2022]
> one is implemented in E-ACSL (unpublished), can be improved
> inductive and axiomatic definitions?
> will be in Frama-C 30-Zinc, up to some extend

> more optimizations
2024-06-13 — J. Signoles 19/20

BIBLIOGRAPHY

Sotware Analyzers

> M. Huisman, A. Wijs A Concise Guide to Software Verfication. From Model Checking to Annotation Checking. Springer Nature, 2023

> J. Signoles, N. Kosmatov, K. Vorobyov E-ACSL, a Runtime Verification Tool for Safety and Security of C Programs. Tool Paper. Int. Work. on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CuBES), 2017

> T. Benjamin, J. Signoles Runtime Annotation Checking with Frama-C: The E-ACSL Plug-in. Guide to Software Verification with Frama-C: Core
Components, Usages, and Applications. N. Kosmatov, V. Prevosto, J. Signoles, eds, 2024

> K. Vorobyov, N. Kosmatov, and J. Signoles Detection of Security Vulnerabilities in C Code using Runtime Verification. Int. Conf. on Tests and Proofs
(TAP), 2018

> K. Vorobyov, J. Signoles, and N. Kosmatov Shadow State Encoding for Efficient Monitoring of Block-level Properties. Int. Symp. on Memory
Management (ISMM), 2017

> D. Pariente and J. Signoles Static Analysis and Runtime Assertion Checking: Contribution to Security Counter-Measures. Symp. sur la Sécurité des
Technologies de I'Information et des Communications (SSTIC), 2017

> M. Barnett, M. Fahndrich, K. R. M. Leino, P. Mdller, W. Schulte, H. Venter Specification and Verification: The Spec# Experience. Communications of
the ACM, 2011

> T. Benjamin, J. Signoles Formalizing an Efficient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates. Int. Symp. on
Applied Computing (SAC), 2023

> N. Kosmatov, F. Maurica, and J. Signoles Efficient Runtime Assertion Checking for Properties over Mathematical Numbers. Int. Conf. on Runtime
Verification (RV), 2020

> T. Benjamin, J. Signoles Abstract Interpretation of Recursive Logic Definitions for Efficient Runtime Assertion Checking. Int. Conf. on Tests and Proofs
(TAP), 2023

> K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov AddressSanitizer: A Fast Address Sanity Checker. Annual Technical Conf. (ATC), 2012

> D. Ly, N. Kosmatov, F. Loulergue, and J. Signoles Soundness of a dataflow analysis for memory monitoring. Work. on Languages and Tools for
Ensuring Cyber-Resilience in Critical Software-Intensive Systems (HILT), 2018

> H. Lehner A Formal Definition of JML in Coq and its Application to Runtime Assertion Checking. PhD Thesis, ETH Zurich, 2011
> J.-C. Filliatre, C. Pascutto Optimizing Prestate Copies in Runtime Verification of Function Postconditions Int. Conf. on Runtime Verification (RV), 2022

2024-06-13 — J. Signoles 20/20

