
Cegarmc
Integrating Software Model Checking into Frama-C

Artjom Plaunov

City University of New York

N. Kosmatov, A. Plaunov, S. Shankar, and J. Signoles, “Combining Analyses Within Frama-C,” in Guide to
Software Verification with Frama-C, Springer, 2024.

Supervisor

1

Table of contents

1. (Very) Brief Overview of Model Checking

2. Software Model Checking

3. CegarMC

2

Model Checking

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)

3

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)
1990: Symbolic Model Checking (SMV in 1992)

3

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)
1990: Symbolic Model Checking (SMV in 1992)

1990s: Successful applications verifying hardware in industry

3

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)
1990: Symbolic Model Checking (SMV in 1992)

1990s: Successful applications verifying hardware in industry

1998: Bounded Model Checking using SAT

3

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)
1990: Symbolic Model Checking (SMV in 1992)

1990s: Successful applications verifying hardware in industry

1998: Bounded Model Checking using SAT

2000: Counterexample Guided Abstraction Refinement (CEGAR)

3

Model Checking

Model checking is an automated verification technique for finite state +
concurrent systems

1981: CTL ExplicitModel Checking - Independently developed by
Clarke/Emerson and Sifakis/Quielle. (EMC model checker 1982)
1990: Symbolic Model Checking (SMV in 1992)

1990s: Successful applications verifying hardware in industry

1998: Bounded Model Checking using SAT

2000: Counterexample Guided Abstraction Refinement (CEGAR)

2000 - Present: Software Model Checking

3

Model Checking

Pros

• Turnkey Verification: Automatic

• Good with Finite + Control + Concurrent Structures

• Counterexample Generation (BMC, Bug Finding)

Cons

• Doesn’t Scale (State Space Explosion)

• Limited Verification Complexity (e.g., no tricky loop invariants)

• Limited Expression of Properties (Assert Statements).

4

Software Model Checking +
CEGAR

Software Model Checking

1 . . .
2 / / un lock phase
3 i f (p1 != 0) {
4 __VERIFIER_asser t (l k1 == 1) ;
5 l k1 = 0 ;
6 }
7

8 i f (p2 != 0) {
9 __VERIFIER_asser t (l k2 == 1) ;
10 l k2 = 0 ;
11 }
12 . . .
13

5

CEGAR

Abstract
Program

-
Verify
(model
check)

-
(true) Verification

Successful

?

(false)

Counterexample

Validate -
(true) Verification

Fails
�

(false)
Spurious

Counterexample

Refine

6

Predicates

Figure 1: CEGAR Approach

6

Example: CPAchecker

Figure 2: CPAchecker Abstraction Refinements

7

Cegarmc

CegarMC: Current Implementation

Verification Interface:

1 /*@
2 r e q u i r e s R1 ;
3 e n s u r e s E1 ;
4 * / / / Proved by WP
5 i n t foo () {
6 /*@
7 r e q u i r e s R1 ;
8 e n s u r e s E1 ;
9 * / / / Proved by Cegarmc
10 S1 ;
11 /*@
12 r e q u i r e s E1 ;
13 e n s u r e s E2 ;
14 * / / / Proved by WP
15 S2 ;
16 }

8

CegarMC: Current Implementation

Translate ACSL Statement Contracts into Reachability Problems:

1 De c l a r a t i o n s ;
2 __VERIFIER_assume (R1) ;
3 <S1 T r a n s l a t i o n >
4 __VERIFIER_asser t (E1) ;

9

CegarMC Options

Context Flag: Use EVA analysis to provide context for statement contract.

1 De c l a r a t i o n s ;
2 __VERIFIER_assume (EVA ANALYSIS) ;
3 __VERIFIER_assume (R1) ;
4 <S1 T r a n s l a t i o n >
5 __VERIFIER_asser t (E1) ;

10

CegarMC Options

• Abstract Calls Flag: Use already verified function contracts to reduce
model checking state space.

1

2 /*@ en s u r e s \ r e s u l t == 1 ; * /
3 i n t foo () {
4 . . .
5 }
6

7 i n t main () {
8 i n t x ;
9 /*@ en s u r e s E1 ; * /
10 {
11 / / O r i g i n a l code :
12 x = foo () ;
13 / / T r a n s l a t i o n (S imp l i f i e d) :
14 / / __VERIFIER_assume (x == 1) ;
15 / / . . .
16 / / __VERIFIER_asser t (E1) ;
17 }
18 } 11

Architecture + Demo

Core plug-ins

Frama-C kernel
(including APIs for CIL and
abstract interpretation lattices)

CegarMC

Frama-C

SATABS

CPA
checker

. . . WPEva

ACSL annotations

12

Aside: Model Checking vs. Abstract Interpretation

Why use model checking when we have Abstract Interpretation?

• Abstract Interpretation is much more scalable.

• Model Checking is not scalable.

• Model Checking has CEGAR, non-monadic properties, and can be
more path-sensitive.

• Caveat Distinction is blurring: 1) CPAchecker, 2) CEGAR for Abstract
Interpretation.

(Bruni Roberto, Giacobazzi Roberto, Gori Roberta, and Ranzato Francesco.
2022. Abstract interpretation repair.)

13

Current/Future Work

• Port CegarMC to most recent Frama-C version

• Bug Finding: Bounded Model Checking

• Extend pointer support

• Use EVA to improve model checking

• Feedback - what would you like to see in this tool?

14

	(Very) Brief Overview of Model Checking
	Software Model Checking
	CegarMC

