
Finding Deadlocks and Data Races with Frama-C

Tomáš Dacík∗ Tomáš Vojnar

Brno University of Technology, Faculty of Information Technology

∗ Supported by Brno Ph.D. Talent scholarship

Introduction

• Two plugins of Frama-C for detection of concurrency bugs
developed in my BSc thesis:

• DEADLOCKF – deadlock detection
• RACERF – data race detection

• Both plugins can use the value analysis of EVA to improve their
precision (but can also run without it)

• Inspired by the tool RACERX1:
• Quite scalable (successfully evaluated on the Linux kernel)
• The tool is not available for experiments

1Dawson Engler and Ken Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. Symposium on Operating Systems Principles 2003.

1/23

Principles

• Lightweight static analysis⇝ focus on detection of likely bugs
(no soundness/completeness guarantees)

• Both plugins are based on custom CFG traversals algorithm,
assuming that branching is always nondeterministic

• Focus on multi-threaded C code with mutexes (binary locks):
• The main focus is on the Pthreads library
• Custom locking/threading functions can be provided by the user

2/23

Deadlocks & Data Races

• Deadlocks caused by incorrect usage of mutexes:

void *thread1(...)
lock(A);
...
lock(B);

void *thread2(...)
lock(B);
...
lock(A);

• Data Races caused by missing (mutex) synchronisation between
two memory accesses:

void *thread1(...)
counter++;

void *thread2(...)
counter--;

3/23

Common Architecture of Both Plugins

Thread analysis

• Identify all thread entry points; for each, run EVA to compute an
(under-approximated) value analysis:

• Parameters of (un)lock operations
• Thread-create/join operations

Lockset analysis

• Compute which locks are held at which program points

Concurrency checking

• Determine whether two events may happen in parallel (mostly
for data races)

4/23

Thread Analysis

• Start with a thread-create graph containing only the main
function

• Run EVA for each entry point in the graph with an initial state
given as the join of states of its create statement

• If new thread-create statements are found to be reachable,
update the thread-create graph

• Repeat until a fixpoint is reached (possibly accelerated using
widening) – usually fast since thread-create graphs are usually
acyclic

5/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

mainmain

thread1i ∈ {1}

thread2
i ∈ {2}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

mainmain

thread1i ∈ {1}

thread2
i ∈ {2}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

mainmain

thread1i ∈ {1}

thread2
i ∈ {2}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}

thread1 i ∈ {1}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}

thread1 i ∈ {1}

i ∈ {1}

6/23

Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}

i ∈ {1}

i ∈ {1}

thread2 i ∈ {1} t {2} = {1, 2}

6/23

Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀
◀ [[E]] = {A}
◀
◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}
{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}

7/23

Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀

◀ [[E]] = {A}
◀
◀ [[E]] = {A,B}

{∅}

{{A}}
{{A}}
{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}

7/23

Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀

◀ [[E]] = {A}

◀
◀ [[E]] = {A,B}

{∅}
{{A}}

{{A}}
{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}

7/23

Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀
◀ [[E]] = {A}

◀

◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}

{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}

7/23

Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀
◀ [[E]] = {A}
◀

◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}
{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}

7/23

Interpretation of Lockset Results

int f(...) {
lock(E);
...
unlock(E);

}
◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}
{{A}, ∅}

• The state at the last line can be interpreted in two ways:
• May-lockset: {A} (generally union of all locksets)
• Must-lockset: ∅ (generally intersection of all locksets)

• Duality of deadlock and data-race detection:
• Must-locksets for conservative deadlock detection
• May-locksets for conservative data race detection

8/23

Deadlock Detection

During the lockset analysis, a lock-dependency graph (lockgraph for
short) is created:

• Whenever a lock ℓ is added to a lockset X, an edge x→ ℓ is
created for each x ∈ X

• Created edges are added as another component of function
summaries

• The graph is then checked for cycles representing possibility of
deadlocks

9/23

Lockset Analysis – Locking Wrappers

• The proposed form of summaries does not work well for locking
wrappers (either direct or indirect):

void thread(...) {
wrapper(m1);
wrapper(m2);

}

void wrapper(m) {
lock(m);
...

}

• A heuristic solution: extend summaries with the value of
parameters (when they are precisely determined at the call site):

wrapper :(∅,m = m1) 7→ {{m1}},
({m1},m = m2) 7→ {{m1,m2}}

• Very heuristic, a lot of space for future improvements

10/23

Lockset Analysis – Locking Wrappers

• The proposed form of summaries does not work well for locking
wrappers (either direct or indirect):

void thread(...) {
wrapper(m1);
wrapper(m2);

}

void wrapper(m) {
lock(m);
...

}

• A heuristic solution: extend summaries with the value of
parameters (when they are precisely determined at the call site):

wrapper :(∅,m = m1) 7→ {{m1}},
({m1},m = m2) 7→ {{m1,m2}}

• Very heuristic, a lot of space for future improvements

10/23

Running without EVA

• Running EVA automatically without manually setting its
parameters is not always possible

• Locking expressions are often just direct accesses to global
variables

⇝ A modified version of the algorithm that does not use EVA and
relies on syntactic information only

11/23

Experimental Evaluation

• Benchmark of 997 multi-threaded programs
• Used for evaluation of a deadlock detector implemented in the
CPROVER framework

• Heavily preprocessed⇝ not all can be parsed by Frama-C
• Not all of them contain reachable parallelism (those are ignored in
our evaluation)

• 8 deadlocks manually created by the authors (deadlocks caused
solely by locks seem to be hard to find in wild)

• DEADLOCK can detect all of them with value analysis, and 7 of them
without it

• Comparison with:
• CPROVER deadlock detection (implemented in a fork of CBMC)
• L2D2 (a plugin of Facebook/Meta INFER, also developed at BUT FIT)
– based on a bottom-up lockset analysis

12/23

Experimental Results

total: 293 correct
false

positive
no

result
Deadlock 209 4 80
L2D2 273 11 9

CPROVER 92 42 159

total: 350 correct
false

positive
no

result
Deadlock 347 3 0
L2D2 324 18 8

CPROVER 87 45 218

0 10000 20000 30000 40000
LOC

0

10

20

30

40

50

60

tim
e

[s
]

With value analysis

0 10000 20000 30000 40000
LOC

0

5

10

15

20

25

tim
e

[s
]

Without value analysis

The number of LoC is increased by heavy preprocessing done by CPROVER. 13/23

Data Race Detection

• Track memory accesses (in a similar way as locksets) and detect
pairs satisfying conditions of a data race:

• At least one is a write access
• Can happen in parallel
• Not-protected (empty intersection of may-locksets)

• Tracking of all accesses and checking all pairs for races is
potentially expensive:
⇝ Track only indistinguishable accesses (related mostly to their

traces and quite technical)
⇝ Process accesses more systematically (inspired by dynamic race

detectors)

14/23

Data Race Detection - Details

Change of a memory location state by access (read/write) of thread t:

ReadOnly
(owner)

Exclusive
(owner)

Shared

Shared & modified

read, owner

write, owner

read, t = owner

∗, t = owner ∗

read, ∗

read, t 6= owner

write, t = owner

∗, t 6= owner

write, ∗write, t 6= owner

Exclusive
(owner) Shared & modified

15/23

Data Race Detection - Details

Only memory locations in Shared & Modified and Exclusive (if the en-
try point is spawned multiple times) states are searched for races

ReadOnly
(owner)

Exclusive
(owner)

Shared

Shared & modified

read, owner

write, owner

read, t = owner

∗, t = owner ∗

read, ∗

read, t 6= owner

write, t = owner

∗, t 6= owner

write, ∗write, t 6= owner

Exclusive
(owner) Shared & modified

15/23

Concurrency Checking

• Both plugins record traces of the form

<entry point>< function call>∗<event>,

where <event> is either a memory access or creation of a lock
dependency

• Traces are useful for reporting (but complicate summaries)

• Lightweight checking whether events of two traces cannot
happen in parallel:

• One surely happens before the thread of the other is created
(often corresponds to data initialisation)

• One happens after the thread of the other is surely joined (often
corresponds to data postprocessing/deleting)

16/23

Concurrency Checking

• Both plugins record traces of the form

<entry point>< function call>∗<event>,

where <event> is either a memory access or creation of a lock
dependency

• Traces are useful for reporting (but complicate summaries)

• Lightweight checking whether events of two traces cannot
happen in parallel:

• One surely happens before the thread of the other is created
(often corresponds to data initialisation)

• One happens after the thread of the other is surely joined (often
corresponds to data postprocessing/deleting)

16/23

Experimental Evaluation

• A benchmark of 116 student programs implementing a ticket
synchronisation algorithm

• Smaller programs (200-300 LoC) but heavily concurrent and
parametric in the number of threads

• 23 confirmed data races found by the ANaConDA dynamic analyser

• A comparison with:
• GOBLINT 2 – over-approximating abstract interpreter
• O2 3 – detection focused on low false positive ratio

2Saan, S. et al. Static race detection for device drivers: the Goblint approach. ASE ’16.
3Bozhen Liu et al. When threads meet events: efficient and precise static race
detection with origins. PLDI 2021.

17/23

Experimental Results

Confirmed races (23) Other (93)

detected missed race no race
RACER 20 3 4 89
O2 12 11 6 87

GOBLINT 21 2 46 47

• RACER reports false positive races on thread arguments (each
thread uses as an argument a different element of an array)

• All tools missed an intricate race caused by re-initialisation of
mutexes

18/23

Experimental Results

Confirmed races (23) Other (93)

detected missed race no race
RACER 20 3 4 89
O2 12 11 6 87

GOBLINT 21 2 46 47

• RACER reports false positive races on thread arguments (each
thread uses as an argument a different element of an array)

• All tools missed an intricate race caused by re-initialisation of
mutexes

18/23

Current State

• Plugins are compatible with Frama-C 23.1 (Vanadium)
• DEADLOCK is available as an opam package and via github
• Both plugins are available via docker image

DEADLOCK on github Deadlock & Racer in docker image

19/23

Small Demonstration

Command-line Output Example

[deadlock] === Lockgraph : ===
[deadlock] lock2 −> lock1 (1 times)
[deadlock] lock1 −> lock2 (3 times)
[deadlock] ==== Resul ts : ====
[deadlock] Deadlock between threads thread1 and thread2 :

Trace of dependency (lock1 −> lock2) :
In thread thread1 :

C a l l of f (deadlock . c : 6)
Lock of lock1 (deadlock . c : 2)

Lock of lock2 (deadlock . c : 7)

Trace of dependency (lock2 −> lock1) :
In thread thread2 :

Ca l l of g (deadlock . c : 1 5)
Lock of lock2 (deadlock . c : 1 0)

Ca l l of f (deadlock . c : 1 1)
Lock of lock1 (deadlock . c : 2)

20/23

GUI example I

21/23

GUI example II

22/23

Summary

• Frama-C plugins for lightweight detection of deadlocks and data
races

• Successfully evaluated on small/medium-size programs
(especially nice: low false positive rate)

• Possible future work:
• Updating to the latest version of Frama-C
• More systematic implementation of the lockset analysis
• A focus on data races seems to be a more interesting direction
• Evaluation on new benchmarks (a new data race category in
SV-COMP)

• Combination with dynamic analysers (e.g., guiding noise insertion)

23/23

	Small Demonstration

