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Introduction

• Two plugins of Frama-C for detection of concurrency bugs
developed in my BSc thesis:

• DEADLOCKF – deadlock detection
• RACERF – data race detection

• Both plugins can use the value analysis of EVA to improve their
precision (but can also run without it)

• Inspired by the tool RACERX1:
• Quite scalable (successfully evaluated on the Linux kernel)
• The tool is not available for experiments

1Dawson Engler and Ken Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. Symposium on Operating Systems Principles 2003.
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Principles

• Lightweight static analysis⇝ focus on detection of likely bugs
(no soundness/completeness guarantees)

• Both plugins are based on custom CFG traversals algorithm,
assuming that branching is always nondeterministic

• Focus on multi-threaded C code with mutexes (binary locks):
• The main focus is on the Pthreads library
• Custom locking/threading functions can be provided by the user
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Deadlocks & Data Races

• Deadlocks caused by incorrect usage of mutexes:

void *thread1(...)
lock(A);
...
lock(B);

void *thread2(...)
lock(B);
...
lock(A);

• Data Races caused by missing (mutex) synchronisation between
two memory accesses:

void *thread1(...)
counter++;

void *thread2(...)
counter--;
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Common Architecture of Both Plugins

Thread analysis

• Identify all thread entry points; for each, run EVA to compute an
(under-approximated) value analysis:

• Parameters of (un)lock operations
• Thread-create/join operations

Lockset analysis

• Compute which locks are held at which program points

Concurrency checking

• Determine whether two events may happen in parallel (mostly
for data races)
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Thread Analysis

• Start with a thread-create graph containing only the main
function

• Run EVA for each entry point in the graph with an initial state
given as the join of states of its create statement

• If new thread-create statements are found to be reachable,
update the thread-create graph

• Repeat until a fixpoint is reached (possibly accelerated using
widening) – usually fast since thread-create graphs are usually
acyclic
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Thread Analysis – Demonstration

int i = 0;

int main(...) {
i = 1;
create(thread1);
i = 2;
create(thread2);

}

void thread1(...) {
i--;
create(thread1);

}

void thread2(...) {
i++;

}

main

thread1i ∈ {1}

thread2
i ∈ {2}
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Lockset Analysis

• Lockset – the set of mutexes locked at the current program point
• For each line, we compute the set of possible locksets
• For each function, we compute its summary as a mapping from
input locksets to output sets of locksets

int f(...) {
lock(E);
...
unlock(E);

}

◀
◀ [[E]] = {A}
◀
◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}
{{A}, ∅}

• Summary: f : ∅ 7→ {{A}, ∅}
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Interpretation of Lockset Results

int f(...) {
lock(E);
...
unlock(E);

}
◀ [[E]] = {A,B}

{∅}
{{A}}
{{A}}
{{A}, ∅}

• The state at the last line can be interpreted in two ways:
• May-lockset: {A} (generally union of all locksets)
• Must-lockset: ∅ (generally intersection of all locksets)

• Duality of deadlock and data-race detection:
• Must-locksets for conservative deadlock detection
• May-locksets for conservative data race detection
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Deadlock Detection

During the lockset analysis, a lock-dependency graph (lockgraph for
short) is created:

• Whenever a lock ℓ is added to a lockset X, an edge x→ ℓ is
created for each x ∈ X

• Created edges are added as another component of function
summaries

• The graph is then checked for cycles representing possibility of
deadlocks
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Lockset Analysis – Locking Wrappers

• The proposed form of summaries does not work well for locking
wrappers (either direct or indirect):

void thread(...) {
wrapper(m1);
wrapper(m2);

}

void wrapper(m) {
lock(m);
...

}

• A heuristic solution: extend summaries with the value of
parameters (when they are precisely determined at the call site):

wrapper :(∅,m = m1) 7→ {{m1}},
({m1},m = m2) 7→ {{m1,m2}}

• Very heuristic, a lot of space for future improvements
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Running without EVA

• Running EVA automatically without manually setting its
parameters is not always possible

• Locking expressions are often just direct accesses to global
variables

⇝ A modified version of the algorithm that does not use EVA and
relies on syntactic information only
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Experimental Evaluation

• Benchmark of 997 multi-threaded programs
• Used for evaluation of a deadlock detector implemented in the
CPROVER framework

• Heavily preprocessed⇝ not all can be parsed by Frama-C
• Not all of them contain reachable parallelism (those are ignored in
our evaluation)

• 8 deadlocks manually created by the authors (deadlocks caused
solely by locks seem to be hard to find in wild)

• DEADLOCK can detect all of them with value analysis, and 7 of them
without it

• Comparison with:
• CPROVER deadlock detection (implemented in a fork of CBMC)
• L2D2 (a plugin of Facebook/Meta INFER, also developed at BUT FIT)
– based on a bottom-up lockset analysis
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Experimental Results

total: 293 correct
false

positive
no

result
Deadlock 209 4 80
L2D2 273 11 9

CPROVER 92 42 159

total: 350 correct
false

positive
no

result
Deadlock 347 3 0
L2D2 324 18 8

CPROVER 87 45 218
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Data Race Detection

• Track memory accesses (in a similar way as locksets) and detect
pairs satisfying conditions of a data race:

• At least one is a write access
• Can happen in parallel
• Not-protected (empty intersection of may-locksets)

• Tracking of all accesses and checking all pairs for races is
potentially expensive:
⇝ Track only indistinguishable accesses (related mostly to their

traces and quite technical)
⇝ Process accesses more systematically (inspired by dynamic race

detectors)
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Data Race Detection - Details

Change of a memory location state by access (read/write) of thread t:

ReadOnly
(owner)

Exclusive
(owner)

Shared

Shared & modified

read, owner

write, owner

read, t = owner

∗, t = owner ∗

read, ∗

read, t 6= owner

write, t = owner

∗, t 6= owner

write, ∗write, t 6= owner

Exclusive
(owner) Shared & modified
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Only memory locations in Shared & Modified and Exclusive (if the en-
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Concurrency Checking

• Both plugins record traces of the form

<entry point>< function call>∗<event>,

where <event> is either a memory access or creation of a lock
dependency

• Traces are useful for reporting (but complicate summaries)

• Lightweight checking whether events of two traces cannot
happen in parallel:

• One surely happens before the thread of the other is created
(often corresponds to data initialisation)

• One happens after the thread of the other is surely joined (often
corresponds to data postprocessing/deleting)
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Experimental Evaluation

• A benchmark of 116 student programs implementing a ticket
synchronisation algorithm

• Smaller programs (200-300 LoC) but heavily concurrent and
parametric in the number of threads

• 23 confirmed data races found by the ANaConDA dynamic analyser

• A comparison with:
• GOBLINT 2 – over-approximating abstract interpreter
• O2 3 – detection focused on low false positive ratio

2Saan, S. et al. Static race detection for device drivers: the Goblint approach. ASE ’16.
3Bozhen Liu et al. When threads meet events: efficient and precise static race
detection with origins. PLDI 2021.
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Experimental Results

Confirmed races (23) Other (93)

detected missed race no race
RACER 20 3 4 89
O2 12 11 6 87

GOBLINT 21 2 46 47

• RACER reports false positive races on thread arguments (each
thread uses as an argument a different element of an array)

• All tools missed an intricate race caused by re-initialisation of
mutexes
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Current State

• Plugins are compatible with Frama-C 23.1 (Vanadium)
• DEADLOCK is available as an opam package and via github
• Both plugins are available via docker image

DEADLOCK on github Deadlock & Racer in docker image
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Small Demonstration



Command-line Output Example

[ deadlock ] === Lockgraph : ===
[ deadlock ] lock2 −> lock1 ( 1 times )
[ deadlock ] lock1 −> lock2 (3 times )
[ deadlock ] ==== Resul ts : ====
[ deadlock ] Deadlock between threads thread1 and thread2 :

Trace of dependency ( lock1 −> lock2 ) :
In thread thread1 :

C a l l of f ( deadlock . c : 6 )
Lock of lock1 ( deadlock . c : 2 )

Lock of lock2 ( deadlock . c : 7 )

Trace of dependency ( lock2 −> lock1 ) :
In thread thread2 :

Ca l l of g ( deadlock . c : 1 5 )
Lock of lock2 ( deadlock . c : 1 0 )

Ca l l of f ( deadlock . c : 1 1 )
Lock of lock1 ( deadlock . c : 2 )
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GUI example I
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GUI example II
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Summary

• Frama-C plugins for lightweight detection of deadlocks and data
races

• Successfully evaluated on small/medium-size programs
(especially nice: low false positive rate)

• Possible future work:
• Updating to the latest version of Frama-C
• More systematic implementation of the lockset analysis
• A focus on data races seems to be a more interesting direction
• Evaluation on new benchmarks (a new data race category in
SV-COMP)

• Combination with dynamic analysers (e.g., guiding noise insertion)
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