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Why is memory analysis important

Reason 1: Memory is a key program property
Structural invariants on memory are the backbone of the proof in systems programs.

“Much of the kernel-call code is directed at maintaining [data-structure] invariants”
– Walker et al., Specification and Verification of the UCLA Unix Security Kernel, 1980

“There are four main categories of invariants in our proof: 1. low-level memory invariants, 2. typing
invariants, 3. data structure invariants, and 4. algorithmic invariants. [...] 80% of the effort [...] went
into establishing invariants.”
– Klein et al., Comprehensive Formal Verification of an OS Microkernel, 2015
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Why is memory analysis important

Reason 2: A key safety and cybersecurity property
Memory safety is key for safety and security of systems software

Memory corruption is what makes C programming painful (crash, complex debugging, etc.)

Main cybersecurity attack vector (buffer overflows, use-after-free, etc.)

“70% of the vulnerabilities addressed through a security update each year continue to be
memory safety issues.” Microsoft

“63% of 2019’s exploited 0-day vulnerabilities fall under memory corruption.” Google project0

“ Future Software Should Be Memory Safe” . White House Press Release, Feb. 2024
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Why is memory analysis important

Reason 3: General purpose analysis of C
Without a good memory abstraction, the analysis is limited to situations where the abstract state is
a finite list of known memory cells.

Ü In practice:
embedded systems programs (no dynamic memory allocation, no recursion), and
whole-program analysis (that cannot analyze parts of the program in isolation).

Counter examples:
Analyzing a function which is not main (e.g., a library function).
Analyzing a program that calls unknown functions pointers, or large/unknown libraries.
Analyzing a program with an unbounded recursion;
Analyzing a program that allocates an array with a variable length;
Analyzing a program that calls malloc in a loop;

Ü Ubiquitous situations!
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Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...
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Numerical and memory abstractions

Abstract interpretation = automatic computation of abstractions representing program properties.
Some numeric abstractions:

Example (Intervals)

// x ∈ [−9, 4]
y := x * x
// x ∈ [−9, 4] ∧ y ∈ [0, 81]

Example (Linear equations)

//
y := x * x
// y ≥ x ∧ y ≥ −x

What about memory abstractions? A hard, unsolved problem:
However, while for numerical domains, we have nice open-source libraries that can easily be
embedded into larger use-cases, it was noted that this is hardly the case for [data structures]
domains
– Dagstuhl seminar on Theoretical Advances and Emerging Applications in Abstract Interpretation

ÜHow to structure and interface with memory abstractions?
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Three structures of abstract interpreters

struct point { int x; int y; } p;

Non-relational

Variable/Lvalue-based Value/SSA-based

p 7→ {x=[1−3], y=[2−4]}

p.x ∈ [1−3] ∧ p.y ∈ [2−4]
p 7→ {x=α, y=β} ∧

α ∈ [1−3] ∧ β ∈ [2−4]

Value, TIS-Analyzer

Eva, Astrée,MOPSA Codex, RMA, MemCAD

– No relations

+ Relations between vars + Relations between α

+ Expr-composable

– Not expr-composable + Expr-composable

[1−3] + [2−4] = [3−7]

p.x+ p.y =? α+ β = (α+ β)

+ Known structure

+ Known structure – Need study

p.x := p.x+ p.y

p 7→ {x=[3−7], y=[2−4]}

p.x ∈ [3−7] ∧ p.y ∈ [2−4]

p 7→ {x=α+ β, y=β} ∧
(α+ β) ∈ [3−7] ∧ β ∈ [2−4]

∧ α ∈ [1−3]

Value-based analysis allows clean separation between the numeric and memory abstractions.
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Variable vs value-based analysis for memory

Example (Microsoft CheckedC)
int n;
int *ptr : count(n);
if(...)
n++; // ptr: count(n-1)

else if(...)
n = n * n; //ptr: count(sqrt(n))

else if(...)
n = n / 2; // ptr: count(2*n) ||

// ptr:(count(2*n+1))
else if(...)
ptr++ // ptr: count(n-1);

}

Complicated relation
Ü forbid changing ptr or n

Example (Codex)
(int with self = α) n;
int[α]* ptr;
if(...)

n++; // ptr:int[α]*, n = α + 1
else if(...)

n = n * n; // ptr:int[α]*
// n = α * α

else if(...)
n = n / 2; // ptr:int[α]*

// n = α / 2
else if(...)

ptr++ // ptr:int[α]* + 1,n = α
}

Simple relation
Memory abstraction not involved
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Problem: renaming values when joining execution paths

Example

// p 7→ {x = α, y = β}
if(...) {

p.x := p.x + 1;
// p 7→ {x = α+ 1, y = β}

}
else {
p.x := p.x;
// p 7→ {x = α, y = β}

}
// p 7→ {x = ϕ(α, α+ 1), y = β}

What does ϕmean? Is this related to the ϕ of SSA? (Was unclear for several years…)
Recent advances: SSA Translation Is an Abstract Interpretation [POPL 2023], Compiling with
Abstract Interpretation [PLDI 2024]

Ü Allows future integration of Codex memory domains in Eva
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State vs transformations

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e. relations between program
input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

The RMA (Relational Memory Analysis) plugin
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.
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Overview

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
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State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
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State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

+ Precise analysis of procedures

– Analysis of append is repeated for each calling context
– Cannot handle recursive procedures
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Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
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Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Applying an abstract transformation can speed up a state analysis.
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Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
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Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
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Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;
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Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Composition of relations can produce a new summary from summaries of
callee functions.

Summary was created for a given input state (context)
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Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list
α4,k2

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list
β2,l1

Id Id
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Separation logic vs type-based analysis

Shape analysis based on separation logic
Allows very precise invariant

Only need to provide initial state and inductive predicates (list…)

Sometimes matching may fail…

Need to reason about whether lists are separated or cyclic

Type-based analysis
Weaker invariant

But need to know less about the memory invariants
Type-based analysis: lightweight formal method

Goal: prove absence of undefined behaviour, including memory corruption
Per-function analysis that can scale to large program
Without rewriting in Rust or annotating the function body
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Record & array types

Types represent a memory layout. Record types τ1 × τ2 and array types τ [e] concatenate types.

def int := byte[4]
def char := byte

def message :=
message* ×
char*

def message_box :=
int ×
message*

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };
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Refinement types

Types also represent values. Values in a refinement type τ with p fulfill predicate p.

def int := byte[4]
def char := byte

def message :=
message* ×
char*

def message_box :=
byte[4] with self >= 0 ×
message*

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };
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Non-null pointer types

Pointer types η⋆ denote non null addresses. Actually, η∗ is η ⋆ ∪ (byte[W] with self = 0)

def int := byte[4]
def char := byte

def message :=
message⋆ ×
char⋆

def message_box :=
byte[4] with self >= 0 ×
message⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };
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Existential types

Existential types: ∃α : τ1.τ2 bind in τ2 a symbolic variable α of type τ1.

def int := byte[4]
def char := byte

def message :=
∃ len:byte[4] with self >= 0.

message⋆ ×
char[len]⋆

def message_box :=
byte[4] with self >= 0 ×
message⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };
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Parameterized types

Parameterized types n(e1, ..., eℓ) use symbolic variables as parameters.

def int := byte[4]
def char := byte

def message(len:int) :=
message(len)⋆ ×
char[len]⋆

def message_box :=
∃ mlen:byte[4] with self >= 0.

byte[4] with self = mlen ×
message(mlen)⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };
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Union types

Union types τ1 ∪ τ2 specify that a value belongs to one type τi or both.

nullptr ≜ byte[W] with self=O

def node(h:byte[4]) :=
byte[4] ×
( (node(h-1)⋆ × node(h-1)⋆) with h > 1
∪ (nullptr × nullptr) with h <= 1)

def nodeptr :=
∃ h:byte[4] with self > 0. node(h)⋆

1 struct node {
2 int value;
3 struct node *left;
4 struct node *right;
5 };

This specifies a perfect binary tree
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Nominal type system

Pointer types η⋆ point to a region name η

def int := byte[4]
def coord := int × int
def foo := int

Derivation rules
(|coord ⋆ |) ⊆ (|int ⋆ |)
(|foo ⋆ |) ⊆ (|int ⋆ |)
(|coord ⋆ |) ∩ (|foo ⋆ |) = ∅
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Conclusion

Memory analysis : a fundamental problem that limits applicability of static analysers
Was an exploratory solution now with a strong theory and fast becoming mature

Codex: a library of composable memory abstractions
Plan on integrating more with Eva analysis

Important applications:
Modular analysis (integrate abstract interpretation during the development phase, analysis of
libraries…)
Automated analysis of programs with complex memory invariants
Automated verification of memory safety

Different memory abstractions
Separation logic: for precise invariant on data structures
Types: a simpler, scalable analysis that handles low-level code
Future work: integrate separation logic and type-based analysis
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