
Advanced Memory and Shape Analyses

Matthieu Lemerre, Xavier Rival, Hugo Illous,
Olivier Nicole, Julien Simonnet, Mihaela Sighireanu

Université Paris-Saclay, CEA LIST and INRIA and Département d’informatique de l’ENS

Frama-C Days 2024

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 1/29

Outline

1 Introduction

2 Relational shape analysis based on separation logic

3 Type-based analysis

4 Comparison and conclusion

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 2/29

Why is memory analysis important

Reason 1: Memory is a key program property
Structural invariants on memory are the backbone of the proof in systems programs.

“Much of the kernel-call code is directed at maintaining [data-structure] invariants”
– Walker et al., Specification and Verification of the UCLA Unix Security Kernel, 1980

“There are four main categories of invariants in our proof: 1. low-level memory invariants, 2. typing
invariants, 3. data structure invariants, and 4. algorithmic invariants. [...] 80% of the effort [...] went
into establishing invariants.”
– Klein et al., Comprehensive Formal Verification of an OS Microkernel, 2015

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 3/29

Why is memory analysis important

Reason 1: Memory is a key program property
Structural invariants on memory are the backbone of the proof in systems programs.

“Much of the kernel-call code is directed at maintaining [data-structure] invariants”
– Walker et al., Specification and Verification of the UCLA Unix Security Kernel, 1980

“There are four main categories of invariants in our proof: 1. low-level memory invariants, 2. typing
invariants, 3. data structure invariants, and 4. algorithmic invariants. [...] 80% of the effort [...] went
into establishing invariants.”
– Klein et al., Comprehensive Formal Verification of an OS Microkernel, 2015

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 3/29

Why is memory analysis important

Reason 2: A key safety and cybersecurity property
Memory safety is key for safety and security of systems software

Memory corruption is what makes C programming painful (crash, complex debugging, etc.)

Main cybersecurity attack vector (buffer overflows, use-after-free, etc.)

“70% of the vulnerabilities addressed through a security update each year continue to be
memory safety issues.” Microsoft

“63% of 2019’s exploited 0-day vulnerabilities fall under memory corruption.” Google project0

“ Future Software Should Be Memory Safe” . White House Press Release, Feb. 2024

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 4/29

Why is memory analysis important

Reason 2: A key safety and cybersecurity property
Memory safety is key for safety and security of systems software

Memory corruption is what makes C programming painful (crash, complex debugging, etc.)

Main cybersecurity attack vector (buffer overflows, use-after-free, etc.)

“70% of the vulnerabilities addressed through a security update each year continue to be
memory safety issues.” Microsoft

“63% of 2019’s exploited 0-day vulnerabilities fall under memory corruption.” Google project0

“ Future Software Should Be Memory Safe” . White House Press Release, Feb. 2024

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 4/29

Why is memory analysis important

Reason 3: General purpose analysis of C
Without a good memory abstraction, the analysis is limited to situations where the abstract state is
a finite list of known memory cells.

Ü In practice:
embedded systems programs (no dynamic memory allocation, no recursion), and
whole-program analysis (that cannot analyze parts of the program in isolation).

Counter examples:
Analyzing a function which is not main (e.g., a library function).
Analyzing a program that calls unknown functions pointers, or large/unknown libraries.
Analyzing a program with an unbounded recursion;
Analyzing a program that allocates an array with a variable length;
Analyzing a program that calls malloc in a loop;

Ü Ubiquitous situations!

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 5/29

Why is memory analysis important

Reason 3: General purpose analysis of C
Without a good memory abstraction, the analysis is limited to situations where the abstract state is
a finite list of known memory cells.

Ü In practice:
embedded systems programs (no dynamic memory allocation, no recursion), and
whole-program analysis (that cannot analyze parts of the program in isolation).

Counter examples:
Analyzing a function which is not main (e.g., a library function).
Analyzing a program that calls unknown functions pointers, or large/unknown libraries.
Analyzing a program with an unbounded recursion;
Analyzing a program that allocates an array with a variable length;
Analyzing a program that calls malloc in a loop;

Ü Ubiquitous situations!
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 5/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ {100}, x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ {100}, x ∈ {0}
i ∈ {99}, x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}

i ∈ {99}, x ∈ {0}
i ∈ [99, 100], x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [99, 100], x ∈ {0}
i ∈ [98, 99], x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}

i ∈ [98, 99], x ∈ {0}
i ∈ [98, 100], x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [98, 100], x ∈ {0}
i ∈ [97, 99], x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}


invariant

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Abstract interpretation basics (example: interval analysis)

Abstracts each numeric variable by an interval that over-approximate its possible values.

int i = 100;
int x = 0;
while(i > 1) {
i--;

}
int x = 42 / i;

Abstract interpretation automatically infers invariants of the program.
This can be used to automatically prove program properties.

Here: no division by zero (an example of run-time error)
Other runtime errors: integer overflow
Memory-related errors: buffer overflow, null pointer dereference, invalid cast...

i ∈ {100}
i ∈ {100}, x ∈ {0}
i ∈ [2, 100], x ∈ {0}
i ∈ [1, 99], x ∈ {0}
i ∈ {1}, x ∈ {0}
i ∈ {1}, x ∈ {42}


invariant

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 6/29

Numerical and memory abstractions

Abstract interpretation = automatic computation of abstractions representing program properties.
Some numeric abstractions:

Example (Intervals)

// x ∈ [−9, 4]
y := x * x
// x ∈ [−9, 4] ∧ y ∈ [0, 81]

Example (Linear equations)

//
y := x * x
// y ≥ x ∧ y ≥ −x

What about memory abstractions? A hard, unsolved problem:
However, while for numerical domains, we have nice open-source libraries that can easily be
embedded into larger use-cases, it was noted that this is hardly the case for [data structures]
domains
– Dagstuhl seminar on Theoretical Advances and Emerging Applications in Abstract Interpretation

ÜHow to structure and interface with memory abstractions?

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 7/29

Three structures of abstract interpreters

struct point { int x; int y; } p;

Non-relational

Variable/Lvalue-based Value/SSA-based

p 7→ {x=[1−3], y=[2−4]}

p.x ∈ [1−3] ∧ p.y ∈ [2−4]
p 7→ {x=α, y=β} ∧

α ∈ [1−3] ∧ β ∈ [2−4]

Value, TIS-Analyzer

Eva, Astrée,MOPSA Codex, RMA, MemCAD

– No relations

+ Relations between vars + Relations between α

+ Expr-composable

– Not expr-composable + Expr-composable

[1−3] + [2−4] = [3−7]

p.x+ p.y =? α+ β = (α+ β)

+ Known structure

+ Known structure – Need study

p.x := p.x+ p.y

p 7→ {x=[3−7], y=[2−4]}

p.x ∈ [3−7] ∧ p.y ∈ [2−4]

p 7→ {x=α+ β, y=β} ∧
(α+ β) ∈ [3−7] ∧ β ∈ [2−4]

∧ α ∈ [1−3]

Value-based analysis allows clean separation between the numeric and memory abstractions.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 8/29

Three structures of abstract interpreters

struct point { int x; int y; } p;

Non-relational Variable/Lvalue-based

Value/SSA-based

p 7→ {x=[1−3], y=[2−4]} p.x ∈ [1−3] ∧ p.y ∈ [2−4]

p 7→ {x=α, y=β} ∧
α ∈ [1−3] ∧ β ∈ [2−4]

Value, TIS-Analyzer Eva, Astrée,MOPSA

Codex, RMA, MemCAD

– No relations + Relations between vars

+ Relations between α

+ Expr-composable – Not expr-composable

+ Expr-composable

[1−3] + [2−4] = [3−7] p.x+ p.y =?

α+ β = (α+ β)

+ Known structure + Known structure

– Need study

p.x := p.x+ p.y

p 7→ {x=[3−7], y=[2−4]} p.x ∈ [3−7] ∧ p.y ∈ [2−4]

p 7→ {x=α+ β, y=β} ∧
(α+ β) ∈ [3−7] ∧ β ∈ [2−4]

∧ α ∈ [1−3]

Value-based analysis allows clean separation between the numeric and memory abstractions.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 8/29

Three structures of abstract interpreters

struct point { int x; int y; } p;

Non-relational Variable/Lvalue-based Value/SSA-based

p 7→ {x=[1−3], y=[2−4]} p.x ∈ [1−3] ∧ p.y ∈ [2−4]
p 7→ {x=α, y=β} ∧

α ∈ [1−3] ∧ β ∈ [2−4]

Value, TIS-Analyzer Eva, Astrée,MOPSA Codex, RMA, MemCAD
– No relations + Relations between vars + Relations between α

+ Expr-composable – Not expr-composable + Expr-composable
[1−3] + [2−4] = [3−7] p.x+ p.y =? α+ β = (α+ β)

+ Known structure + Known structure – Need study

p.x := p.x+ p.y

p 7→ {x=[3−7], y=[2−4]} p.x ∈ [3−7] ∧ p.y ∈ [2−4]

p 7→ {x=α+ β, y=β} ∧
(α+ β) ∈ [3−7] ∧ β ∈ [2−4]

∧ α ∈ [1−3]

Value-based analysis allows clean separation between the numeric and memory abstractions.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 8/29

Variable vs value-based analysis for memory

Example (Microsoft CheckedC)
int n;
int *ptr : count(n);
if(...)
n++; // ptr: count(n-1)

else if(...)
n = n * n; //ptr: count(sqrt(n))

else if(...)
n = n / 2; // ptr: count(2*n) ||

// ptr:(count(2*n+1))
else if(...)
ptr++ // ptr: count(n-1);

}

Complicated relation
Ü forbid changing ptr or n

Example (Codex)
(int with self = α) n;
int[α]* ptr;
if(...)

n++; // ptr:int[α]*, n = α + 1
else if(...)

n = n * n; // ptr:int[α]*
// n = α * α

else if(...)
n = n / 2; // ptr:int[α]*

// n = α / 2
else if(...)

ptr++ // ptr:int[α]* + 1,n = α
}

Simple relation
Memory abstraction not involved

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 9/29

Problem: renaming values when joining execution paths

Example

// p 7→ {x = α, y = β}
if(...) {

p.x := p.x + 1;
// p 7→ {x = α+ 1, y = β}

}
else {
p.x := p.x;
// p 7→ {x = α, y = β}

}
// p 7→ {x = ϕ(α, α+ 1), y = β}

What does ϕmean? Is this related to the ϕ of SSA? (Was unclear for several years…)
Recent advances: SSA Translation Is an Abstract Interpretation [POPL 2023], Compiling with
Abstract Interpretation [PLDI 2024]

Ü Allows future integration of Codex memory domains in Eva

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 10/29

Outline

1 Introduction

2 Relational shape analysis based on separation logic

3 Type-based analysis

4 Comparison and conclusion

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 11/ 29

State vs transformations

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e. relations between program
input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

The RMA (Relational Memory Analysis) plugin
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 12/29

State vs transformations

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e. relations between program
input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

The RMA (Relational Memory Analysis) plugin
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 12/29

State vs transformations

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e. relations between program
input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

The RMA (Relational Memory Analysis) plugin
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 12/29

State vs transformations

State analyses: Computes a set of reachable states
to verify state properties:

Can this program perform a null pointer dereference?
Does this program preserve structural invariants of data structures?

Transformation analyses: Compute abstract transformations, i.e. relations between program
input state and output state:

Does this program modify the linked list received as an argument?
Is this sorting algorithm in-place?

The RMA (Relational Memory Analysis) plugin
Abstract transformations as procedure summaries

Applied to shape analysis using separation logic.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 12/29

Overview

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 13/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯1
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯1

h♯19

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯21
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

h♯21

h♯39

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

State analysis by inlining

(using a shape domain)

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯20

h♯40

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

+ Precise analysis of procedures

– Analysis of append is repeated for each calling context
– Cannot handle recursive procedures

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 14/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯0

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Abstract transformations as procedure summaries

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

h♯1 = t♯(h♯0)

h♯2 = t♯(h♯1)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Applying an abstract transformation can speed up a state analysis.

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 15/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

Id(h♯0)

t♯◦Id(h♯0)

t♯ ◦ t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

append(list* l0,list* l1){

while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

Composition of relations can produce a new summary from summaries of
callee functions.

Summary was created for a given input state (context)

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 16/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list
α4,k2

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list
β2,l1

Id Id
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 17/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗ 0x0
α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list
α4,k2

Id
Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list
β2,l1

Id Id
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 17/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗ 0x0
α3

∗ list
α4,k2

Id Id

↓
Id(h♯0)

t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list
β2,l1

Id Id
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 17/29

Modular analysis by composition of abstract transformations [SAS 2020, FMSD 2021]

double_append(list* k0,list* k1,list* k2){

append(k0,k1);

append(k0,k2);

}

lseg(α1)
α0,k0

∗

0x0
α1

α2

α1

∗ lseg(α3)
α2,k1

∗

0x0
α3

α4

α3

∗ list
α4,k2

Id Id Id

↓ ↓

Id(h♯0)

t♯◦Id(h♯0)

t♯ ◦ t♯◦Id(h♯0)

append(list* l0,list* l1){

t♯
while(l0→n ̸=0x0){l0=l0→n;}
l0→n = l1;

}

lseg(β1)
β0,l0

∗T

0x0
β1

β2

β1

∗T↓ list
β2,l1

Id Id
Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 17/29

Outline

1 Introduction

2 Relational shape analysis based on separation logic

3 Type-based analysis

4 Comparison and conclusion

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 18/29

Separation logic vs type-based analysis

Shape analysis based on separation logic
Allows very precise invariant

Only need to provide initial state and inductive predicates (list…)

Sometimes matching may fail…

Need to reason about whether lists are separated or cyclic

Type-based analysis
Weaker invariant

But need to know less about the memory invariants
Type-based analysis: lightweight formal method

Goal: prove absence of undefined behaviour, including memory corruption
Per-function analysis that can scale to large program
Without rewriting in Rust or annotating the function body

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 19/29

Record & array types

Types represent a memory layout. Record types τ1 × τ2 and array types τ [e] concatenate types.

def int := byte[4]
def char := byte

def message :=
message* ×
char*

def message_box :=
int ×
message*

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 20/29

Refinement types

Types also represent values. Values in a refinement type τ with p fulfill predicate p.

def int := byte[4]
def char := byte

def message :=
message* ×
char*

def message_box :=
byte[4] with self >= 0 ×
message*

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 21/ 29

Non-null pointer types

Pointer types η⋆ denote non null addresses. Actually, η∗ is η ⋆ ∪ (byte[W] with self = 0)

def int := byte[4]
def char := byte

def message :=
message⋆ ×
char⋆

def message_box :=
byte[4] with self >= 0 ×
message⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 22/29

Existential types

Existential types: ∃α : τ1.τ2 bind in τ2 a symbolic variable α of type τ1.

def int := byte[4]
def char := byte

def message :=
∃ len:byte[4] with self >= 0.

message⋆ ×
char[len]⋆

def message_box :=
byte[4] with self >= 0 ×
message⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 23/29

Parameterized types

Parameterized types n(e1, ..., eℓ) use symbolic variables as parameters.

def int := byte[4]
def char := byte

def message(len:int) :=
message(len)⋆ ×
char[len]⋆

def message_box :=
∃ mlen:byte[4] with self >= 0.

byte[4] with self = mlen ×
message(mlen)⋆

1 // corresponding C type
2 //
3

4 struct message {
5 struct message *next;
6 char *buffer };
7

8 struct message_box {
9 int length;
10 struct message *first };

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 24/29

Union types

Union types τ1 ∪ τ2 specify that a value belongs to one type τi or both.

nullptr ≜ byte[W] with self=O

def node(h:byte[4]) :=
byte[4] ×
((node(h-1)⋆ × node(h-1)⋆) with h > 1
∪ (nullptr × nullptr) with h <= 1)

def nodeptr :=
∃ h:byte[4] with self > 0. node(h)⋆

1 struct node {
2 int value;
3 struct node *left;
4 struct node *right;
5 };

This specifies a perfect binary tree

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 25/29

Nominal type system

Pointer types η⋆ point to a region name η

def int := byte[4]
def coord := int × int
def foo := int

Derivation rules
(|coord ⋆ |) ⊆ (|int ⋆ |)
(|foo ⋆ |) ⊆ (|int ⋆ |)
(|coord ⋆ |) ∩ (|foo ⋆ |) = ∅

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 26/29

Outline

1 Introduction

2 Relational shape analysis based on separation logic

3 Type-based analysis

4 Comparison and conclusion

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 27/29

Conclusion

Memory analysis : a fundamental problem that limits applicability of static analysers
Was an exploratory solution now with a strong theory and fast becoming mature

Codex: a library of composable memory abstractions
Plan on integrating more with Eva analysis

Important applications:
Modular analysis (integrate abstract interpretation during the development phase, analysis of
libraries…)
Automated analysis of programs with complex memory invariants
Automated verification of memory safety

Different memory abstractions
Separation logic: for precise invariant on data structures
Types: a simpler, scalable analysis that handles low-level code
Future work: integrate separation logic and type-based analysis

Lemerre, Rival, Illous, Nicole, Simonnet, Sighireanu Advanced Memory and Shape Analyses Frama-C Days 2024 28/29

	Introduction
	Relational shape analysis based on separation logic
	Type-based analysis
	Comparison and conclusion

